{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"product":{"reference-bonus":{"ru":"Предложить бонус за референс","_type":"localeString","en":"Offer a reference bonus"},"configurator":{"ru":"Конфигуратор","_type":"localeString","en":"Сonfigurator"},"i-sell-it":{"en":"I sell it","ru":"I sell it","_type":"localeString"},"i-use-it":{"_type":"localeString","en":"I use it","ru":"I use it"},"roi-calculator":{"ru":"ROI-калькулятор","_type":"localeString","en":"ROI-calculator"},"selling":{"ru":"Продают","_type":"localeString","en":"Selling"},"using":{"en":"Using","ru":"Используют","_type":"localeString"},"show-more-button":{"en":"Show more","ru":"Показать еще","_type":"localeString"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"supplier-popover":{"ru":"поставщик","_type":"localeString","en":"supplier"},"implementation-popover":{"ru":"внедрение","_type":"localeString","en":"deployment"},"manufacturer-popover":{"_type":"localeString","en":"manufacturer","ru":"производитель"},"short-description":{"_type":"localeString","en":"Pitch","ru":"Краткое описание"},"i-use-it-popover":{"en":"Make your introduction and get a bonus from ROI4CIO or the supplier.","ru":"Внесите свое внедрение и получите бонус от ROI4CIO или поставщика.","_type":"localeString"},"details":{"en":"Details","ru":"Детальнее","_type":"localeString"},"description":{"_type":"localeString","en":"Description","ru":"Описание"},"product-features":{"_type":"localeString","en":"Product features","ru":"Особенности продукта"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"solutions":{"ru":"Проблемы которые решает","_type":"localeString","en":" Problems that solves"},"values":{"ru":"Ценности","_type":"localeString","en":"Values"},"сomparison-matrix":{"en":"Comparison matrix","ru":"Матрица сравнения","_type":"localeString"},"testing":{"_type":"localeString","en":"Testing","ru":"Тестирование"},"compare":{"ru":"Сравнить с конкурентами","_type":"localeString","en":"Compare with competitors"},"characteristics":{"_type":"localeString","en":" Characteristics","ru":"Характеристики"},"transaction-features":{"en":"Transaction Features","ru":"Особенности сделки","_type":"localeString"},"average-discount":{"_type":"localeString","en":"Partner average discount","ru":"Средняя скидка партнера"},"deal-protection":{"ru":"Защита сделки","_type":"localeString","en":"Deal protection"},"average-deal":{"_type":"localeString","en":"Average deal size","ru":"Средний размер сделки"},"average-time":{"ru":"Средний срок закрытия сделки","_type":"localeString","en":"Average deal closing time"},"login":{"ru":"Войти","_type":"localeString","en":"Login"},"register":{"_type":"localeString","en":"Register","ru":"Зарегистрироваться"},"to-know-more":{"_type":"localeString","en":"To know more","ru":"Чтобы узнать больше"},"scheme":{"_type":"localeString","en":" Scheme of work","ru":"Схема работы"},"competitive-products":{"ru":"Конкурентные продукты","_type":"localeString","en":" Competitive products"},"implementations-with-product":{"en":"Deployments with this product","ru":"Внедрения с этим продуктом","_type":"localeString"},"user-features":{"_type":"localeString","en":"User features","ru":"Особенности пользователей"},"job-roles":{"ru":"Роли заинтересованных сотрудников","_type":"localeString","en":" Roles of Interested Employees"},"organizational-features":{"ru":"Организационные особенности","_type":"localeString","en":"Organizational Features"},"calculate-price":{"_type":"localeString","en":" Calculate product price","ru":"Рассчитать цену продукта"},"selling-stories":{"ru":"Продающие истории","_type":"localeString","en":" Selling stories"},"materials":{"ru":"Материалы","_type":"localeString","en":"Materials"},"about-product":{"_type":"localeString","en":"About Product","ru":"О продукте"},"or":{"ru":"или","_type":"localeString","en":"or"},"program-sends-data":{"en":"Program Sends Data","_type":"localeString"},"calculate-roi":{"ru":"Рассчитать ROI продукта","_type":"localeString","en":"Calculate Product ROI"},"complementary-categories":{"en":"Complementary Categories","ru":"Схожие категории","_type":"localeString"},"program-receives-data":{"en":"Program Receives Data","_type":"localeString"},"rebate":{"ru":"Бонус","_type":"localeString","en":"Bonus"},"rebate-for-poc":{"en":"Bonus 4 POC","ru":"Бонус 4 POC","_type":"localeString"},"configurator-content":{"en":"Calculate price for this product here","ru":"Рассчитайте стоимость продукта","_type":"localeString"},"configurator-link":{"ru":"тут","_type":"localeString","en":"here"},"vendor-popover":{"ru":"производитель","_type":"localeString","en":"vendor"},"user-popover":{"ru":"пользователь","_type":"localeString","en":"user"},"select-for-presentation":{"en":"select product for presentation","ru":"выбрать продукт для презентации","_type":"localeString"},"auth-message":{"ru":"Вам нужно зарегистрироваться или войти.","_type":"localeString","en":"You have to register or login."},"add-to-comparison":{"ru":"Добавить в сравнение","_type":"localeString","en":"Add to comparison"},"added-to-comparison":{"ru":"Добавлено в сравнения","_type":"localeString","en":"Added to comparison"},"roi-calculator-content":{"en":"Calculate ROI for this product here","ru":"Рассчитайте ROI для данного продукта","_type":"localeString"},"not-yet-converted":{"ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later."},"videos":{"en":"Videos","ru":"Видео","_type":"localeString"},"vendor-verified":{"ru":"Подтверждено производителем","_type":"localeString","en":"Vendor verified"},"event-schedule":{"en":"Events schedule","ru":"Расписание событий","_type":"localeString"},"scheduling-tip":{"ru":"Выберите удобную дату и время и зарегистрируйтесь на ивент.","_type":"localeString","en":"Please, сhoose a convenient date and time and register for the event."},"register-to-schedule":{"ru":"Для того чтобы зарегистрироваться на ивент пожалуйста авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString","en":"To register for the event please log in or register on the site."},"comparison-matrix":{"_type":"localeString","en":"Comparison matrix","ru":"Матрица сравнений"},"compare-with-competitive":{"_type":"localeString","en":" Compare with competitive","ru":"Сравнить с конкурентными"},"avg-deal-closing-unit":{"ru":"месяцев","_type":"localeString","en":"months"},"under-construction":{"ru":"Данная услуга всё ещё находится в разработке.","_type":"localeString","en":"Current feature is still developing to become even more useful for you."},"product-presentation":{"ru":"Презентация продукта","_type":"localeString","en":"Product presentation"},"go-to-comparison-table":{"ru":"Перейти к таблице сравнения","_type":"localeString","en":" Go to comparison table"},"see-product-details":{"_type":"localeString","en":"See Details","ru":"Детали"}},"header":{"help":{"en":"Help","de":"Hilfe","ru":"Помощь","_type":"localeString"},"how":{"_type":"localeString","en":"How does it works","de":"Wie funktioniert es","ru":"Как это работает"},"login":{"de":"Einloggen","ru":"Вход","_type":"localeString","en":"Log in"},"logout":{"en":"Sign out","ru":"Выйти","_type":"localeString"},"faq":{"de":"FAQ","ru":"FAQ","_type":"localeString","en":"FAQ"},"references":{"en":"Requests","de":"References","ru":"Мои запросы","_type":"localeString"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find-it-product":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"ru":"Матрица сравнения","_type":"localeString","en":"Comparison Matrix"},"roi-calculators":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"b4r":{"en":"Bonus for reference","ru":"Бонус за референс","_type":"localeString"},"business-booster":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"catalogs":{"en":"Catalogs","ru":"Каталоги","_type":"localeString"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"categories":{"_type":"localeString","en":"Categories","ru":"Категории"},"for-suppliers":{"_type":"localeString","en":"For suppliers","ru":"Поставщикам"},"blog":{"ru":"Блог","_type":"localeString","en":"Blog"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"_type":"localeString","en":"My account","ru":"Мой кабинет"},"register":{"en":"Register","ru":"Зарегистрироваться","_type":"localeString"},"comparison-deletion":{"ru":"Удаление","_type":"localeString","en":"Deletion"},"comparison-confirm":{"en":"Are you sure you want to delete","ru":"Подтвердите удаление","_type":"localeString"},"search-placeholder":{"ru":"Введите поисковый запрос","_type":"localeString","en":"Enter your search term"},"my-profile":{"_type":"localeString","en":"My profile","ru":"Мои данные"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"en":"IT catalogs","_type":"localeString"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"_type":"localeString","en":"Find IT product"},"sub_b4reference":{"en":"Get reference from user","_type":"localeString"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"_type":"localeString","en":"Create an avatar for the event"},"catalogs_new":{"_type":"localeString","en":"Products"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"_type":"localeString","en":"Our IT Catalogs"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"_type":"localeString","en":"Our Products"},"it_it_catalogs":{"_type":"localeString","en":"IT catalogs"}},"footer":{"copyright":{"en":"All rights reserved","de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString"},"company":{"_type":"localeString","en":"My Company","de":"Über die Firma","ru":"О компании"},"about":{"en":"About us","de":"Über uns","ru":"О нас","_type":"localeString"},"infocenter":{"de":"Infocenter","ru":"Инфоцентр","_type":"localeString","en":"Infocenter"},"tariffs":{"ru":"Тарифы","_type":"localeString","en":"Subscriptions","de":"Tarife"},"contact":{"en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами","_type":"localeString"},"marketplace":{"en":"Marketplace","de":"Marketplace","ru":"Marketplace","_type":"localeString"},"products":{"de":"Produkte","ru":"Продукты","_type":"localeString","en":"Products"},"compare":{"_type":"localeString","en":"Pick and compare","de":"Wähle und vergleiche","ru":"Подобрать и сравнить"},"calculate":{"_type":"localeString","en":"Calculate the cost","de":"Kosten berechnen","ru":"Расчитать стоимость"},"get_bonus":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference","de":"Holen Sie sich einen Rabatt"},"salestools":{"en":"Salestools","de":"Salestools","ru":"Salestools","_type":"localeString"},"automatization":{"ru":"Автоматизация расчетов","_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung"},"roi_calcs":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators","de":"ROI-Rechner"},"matrix":{"_type":"localeString","en":"Comparison matrix","de":"Vergleichsmatrix","ru":"Матрица сравнения"},"b4r":{"de":"Rebate 4 Reference","ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference"},"our_social":{"_type":"localeString","en":"Our social networks","de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети"},"subscribe":{"en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString"},"subscribe_info":{"en":"and be the first to know about promotions, new features and recent software reviews","ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString"},"policy":{"en":"Privacy Policy","ru":"Политика конфиденциальности","_type":"localeString"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find":{"_type":"localeString","en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта"},"quote":{"ru":"Калькулятор цены","_type":"localeString","en":"Price calculator"},"boosting":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"en":"blog","ru":"блог","_type":"localeString"},"pay4content":{"_type":"localeString","en":"we pay for content","ru":"платим за контент"},"categories":{"en":"categories","ru":"категории","_type":"localeString"},"showForm":{"ru":"Показать форму","_type":"localeString","en":"Show form"},"subscribe__title":{"ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!"},"subscribe__email-label":{"ru":"Email","_type":"localeString","en":"Email"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"_type":"localeString","en":"This field is required","ru":"Это поле обязательное"},"subscribe__notify-label":{"_type":"localeString","en":"Yes, please, notify me about news, events and propositions","ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях"},"subscribe__agree-label":{"ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data"},"subscribe__submit-label":{"ru":"Подписаться","_type":"localeString","en":"Subscribe"},"subscribe__email-message":{"ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString","en":"Please, enter the valid email"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"en":"Last, first name","ru":"Имя Фамилия","_type":"localeString"},"subscribe__success":{"_type":"localeString","en":"You are successfully subscribed! Check you mailbox.","ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик."},"subscribe__error":{"ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString","en":"Subscription is unsuccessful. Please, try again later."},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter","de":"roi4presenter","ru":"roi4presenter"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"en":"Home","ru":"Главная","_type":"localeString"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"en":"Products","ru":"Продукты","_type":"localeString"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"registration":{"en":"Registration","ru":"Регистрация","_type":"localeString"},"b2b-platform":{"ru":"Портал для покупателей, поставщиков и производителей ИТ","_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers"}},"comment-form":{"title":{"_type":"localeString","en":"Leave comment","ru":"Оставить комментарий"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"_type":"localeString","en":"Last name","ru":"Фамилия"},"company":{"en":"Company name","ru":"Компания","_type":"localeString"},"position":{"ru":"Должность","_type":"localeString","en":"Position"},"actual-cost":{"_type":"localeString","en":"Actual cost","ru":"Фактическая стоимость"},"received-roi":{"en":"Received ROI","ru":"Полученный ROI","_type":"localeString"},"saving-type":{"_type":"localeString","en":"Saving type","ru":"Тип экономии"},"comment":{"en":"Comment","ru":"Комментарий","_type":"localeString"},"your-rate":{"ru":"Ваша оценка","_type":"localeString","en":"Your rate"},"i-agree":{"ru":"Я согласен","_type":"localeString","en":"I agree"},"terms-of-use":{"_type":"localeString","en":"With user agreement and privacy policy","ru":"С пользовательским соглашением и политикой конфиденциальности"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"ru":"{NAME} - это обязательное поле","_type":"localeString","en":"{NAME} is required filed"}},"maintenance":{"title":{"ru":"На сайте проводятся технические работы","_type":"localeString","en":"Site under maintenance"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}}},"translationsStatus":{"product":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"product":{"title":{"en":"ROI4CIO: Product","ru":"ROI4CIO: Продукт","_type":"localeString"},"meta":[{"name":"og:type","content":"website"},{"content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg","name":"og:image"}],"translatable_meta":[{"name":"og:title","translations":{"ru":"Конкретный продукт","_type":"localeString","en":"Example product"}},{"translations":{"ru":"Описание для конкретного продукта","_type":"localeString","en":"Description for one product"},"name":"og:description"},{"name":"title","translations":{"ru":"Продукт","_type":"localeString","en":"Product"}},{"name":"description","translations":{"_type":"localeString","en":"Product description","ru":"Описание продукта"}},{"translations":{"_type":"localeString","en":"Product keywords","ru":"Ключевые слова продукта"},"name":"keywords"}]}},"pageMetaDataStatus":{"product":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{"remme-keyhub":{"id":6178,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Remme.png","logo":true,"scheme":false,"title":"Remme Keyhub","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"remme-keyhub","companyTitle":"Remme","companyTypes":["vendor"],"companyId":8883,"companyAlias":"remme","description":"Keyhub is a cloud platform to automatically discover, organize, and track all SSL/TLS certificates across the enterprise. \r\n<ul> <li>SSL/TLS auto detection </li> <li>Inventory and Dashboard </li> <li>Reports and alerts </li> <li>Subdomains scanning </li> <li>CT Logs monitoring </li> <li>CSR decoder and generator </li> </ul>\r\n<b>Get rid of the guesswork </b>\r\n<ul> <li>Real-time automatic discovery </li> <li>Private and public certificates management </li> <li>Expiration dates tracking and alerting </li> <li>Holistic view of certificates from multiple issuers </li> <li>Identification of issues and vulnerabilities </li> <li>Corporate policy compliance check </li> </ul>\r\n<b>Power up your workflow </b>\r\nBuilt on design thinking principles, Keyhub simplifies routine operations, reduces adoption time and streamlines digital transformation. \r\n<i>Detect</i>\r\nIdentify every certificate, known and unknown, with a permanent auto scan of your external and internal environments. \r\n<ul> <li>Scan by a single domain, domain list, or IP range including up to 10,000 targets in one scan profile </li> <li>Find even more certificates by including subdomains </li> <li>Perform an internal scan by installing a Windows or Linux agent in just two clicks </li> </ul>\r\n<i>Organize</i>\r\nGet enhanced visibility in one place. Filter, group and sort all your certificates to get the list exactly the way you want it. \r\n<ul> <li>Auto update feature always keeps your inventory up-to-date. </li> <li>Nine conditional filters help you organize the data according to your needs </li> <li>Create custom certificate groups for further tracking to save you time </li> </ul>\r\n<i>Analyze</i>\r\nDrill down through the system health from “general overview” to the “detailed card” on each digital certificate regardless of the issuer. \r\n<ul> <li>Evaluate the entire landscape with seven interactive charts, and see the full picture, all on one screen </li> <li>Make informed decisions based on customized system health reports delivered right to your inbox </li> <li>Schedule report start date and frequency, and then add more recipients if needed </li> </ul>","shortDescription":"Certificate Management on autopilot","type":"Software","isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Remme Keyhub","keywords":"","description":"Keyhub is a cloud platform to automatically discover, organize, and track all SSL/TLS certificates across the enterprise. \r\n<ul> <li>SSL/TLS auto detection </li> <li>Inventory and Dashboard </li> <li>Reports and alerts </li> <li>Subdomains scanning </li> <li>C","og:title":"Remme Keyhub","og:description":"Keyhub is a cloud platform to automatically discover, organize, and track all SSL/TLS certificates across the enterprise. \r\n<ul> <li>SSL/TLS auto detection </li> <li>Inventory and Dashboard </li> <li>Reports and alerts </li> <li>Subdomains scanning </li> <li>C","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Remme.png"},"eventUrl":"","translationId":6177,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"}],"characteristics":[],"concurentProducts":[{"id":6159,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/reddfort_.png","logo":true,"scheme":false,"title":"ReddFort App-Protect","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"reddfort-app-protect","companyTitle":"ReddFort Software","companyTypes":["vendor"],"companyId":8877,"companyAlias":"reddfort-software","description":"ReddFort App-Protect consists of a basic protection that protects all programs installed on the client against compromise by means of a secure and encrypted database. This protection starts before the operating system starts. This means that changes to the installation base are no longer possible. All programs and processes that are not in the database, no matter how they got to the client (e-mail, internet, network, drives), are recognized before the upload and are not executed.\r\nReddFort App-Protect also includes a \"GuardedDesktop\". This creates a secure application environment in the form of a second desktop. This creates an isolated - non-virtual / sandbox - environment within which previously registered applications are executed. During the runtime, it is ensured that active applications only use permitted and genuine system components. Any deviation in the applications is noticed and prevented. \r\n<ul> <li>Current malware, which is not yet known to the AV system laboratories, is not executed when ReddFort is used. </li> <li>Real protection against the start of the operating system, therefore no changes to the installation base are possible. </li> <li>All programs installed on the client are protected against compromise by a secure and encrypted database. </li> <li>Any attack on program files (by email, internet, network drives) is prevented. </li> <li>Security gaps in programs used by hackers are covered by the ReddFort App-Protect solution. </li> <li>Secured security desktop against key logger and picture viewer. </li> </ul>","shortDescription":"More than a secure basis\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"ReddFort App-Protect","keywords":"","description":"ReddFort App-Protect consists of a basic protection that protects all programs installed on the client against compromise by means of a secure and encrypted database. This protection starts before the operating system starts. This means that changes to the ins","og:title":"ReddFort App-Protect","og:description":"ReddFort App-Protect consists of a basic protection that protects all programs installed on the client against compromise by means of a secure and encrypted database. This protection starts before the operating system starts. This means that changes to the ins","og:image":"https://old.roi4cio.com/fileadmin/user_upload/reddfort_.png"},"eventUrl":"","translationId":6158,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":483,"title":"Messaging Security","alias":"messaging-security","description":"<span style=\"font-weight: bold; \">Messaging security</span> is a subcategory of <span style=\"font-style: italic; \">unified threat management (UTM) </span>focused on securing and protecting an organization’s communication infrastructure. Communication channels can include email software, messaging apps, and social network IM platforms. This extra layer of security can help secure devices and block a wider range of viruses or malware attacks.\r\nMessaging security helps to ensure the confidentiality and authenticity of an organization’s communication methods. Confidentiality refers to making sure only the intended recipients are able to read the messages and authenticity refers to making sure the identity of each sender or recipient is verified.\r\nOftentimes, attackers aim to gain access to an entire network or system by infiltrating the messaging infrastructure. Implementing proper data and message security can minimize the chance of data leaks and identity theft.\r\n<span style=\"color: rgb(97, 97, 97); \">Encrypted messaging (also known as secure messaging) provides end-to-end encryption for user-to-user text messaging. Encrypted messaging prevents anyone from monitoring text conversations. Many encrypted messenger apps also offer end-to-end encryption for phone calls made using the apps, as well as for files that are sent using the apps.</span>\r\nTwo modern methods of encryption are the <span style=\"font-style: italic; \">Public Key (Asymmetric)</span> and the <span style=\"font-style: italic; \">Private Key (Symmetric</span>) methods. While these two methods of encryption are similar in that they both allow users to encrypt data to hide it from the prying eyes of outsiders and then decrypt it for viewing by an authorized party, they differ in how they perform the steps involved in the process.\r\n<span style=\"font-weight: bold; \">Email</span> security message can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send. \r\n<span style=\"font-weight: bold;\">Encrypted messaging systems </span>must be encrypted end-to-end, so that even the service provider and its staff are unable to decipher what’s in your communications. Ideal solutions is “server-less” encrypted chat where companies won’t store user information anywhere.\r\nIn a more general sense, users of unsecured public Wi-Fi should also consider using a <span style=\"font-weight: bold;\">Virtual Private Network </span>(VPN) application, to conceal their identity and location from Internet Service Providers (ISPs), higher level surveillance, and the attentions of hackers.","materialsDescription":"<h1 class=\"align-center\"> What is messaging security?</h1>\r\nMessaging Security is a program that provides protection for companies' messaging infrastructure. The programs include IP reputation-based anti-spam, pattern-based anti-spam, administrator-defined block/allow lists, mail antivirus, zero-hour malware detection, and email intrusion prevention.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Six Dimensions of Comprehensive Messaging Security</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">IP-Reputation Anti-spam.</span> It checks each email connection request with a database of IP addresses to establish whether a sender is a legitimate or known spam sender and malware. If a sender is recognized it undesirable the messaging Security program drops the connection before the message is accepted.</li><li><span style=\"font-weight: bold; \">Pattern-based anti-spam</span> utilizes a proprietary algorithm to establish a fingerprint-like signature of email messages. When a message comes in, its pattern is calculated and checked against a database to determine if the message matches a known email pattern. </li><li><span style=\"font-weight: bold; \">Block/Allow List Anti-spam.</span> Administrators can create a list of IP addresses or domains that they would like to either block or allow. This method ensures that trusted sources are explicitly allowed and unwanted sources are explicitly denied access.</li><li><span style=\"font-weight: bold; \">Mail Antivirus.</span> This layer of protection blocks a wide range of known viruses and malware attacks.</li><li><span style=\"font-weight: bold; \">Zero-Hour Malware Protection.</span> By analyzing large numbers of messages, outbreaks are detected along with their corresponding messages. These message patterns are then flagged as malicious, giving information about a given attack.</li><li><span style=\"font-weight: bold; \">SmartDefense Email IPS.</span> The messaging security program utilizes SmartDefense Email IPS to stop attacks targeting the messaging infrastructure. </li></ul>\r\n<h1 class=\"align-center\">What are Signal, Wire and LINE messenger security apps like ?</h1>\r\n<p class=\"align-left\">Secure private messenger is a messaging application that emphasizes the privacy and of users using encryption and service transparency. While every modern messenger system is using different security practices (most prominently SSL/HTTPS) - the difference between secure and classic messengers is what we don’t know in the scope of implementation and approach to user data. </p>\r\n<p class=\"align-left\">Message access control and secure messengers evolved into a distinct category due to the growing awareness that communication over the internet is accessible by third parties, and reasonable concerns that the messages can be used against the users.</p>\r\n<h1 class=\"align-center\">Why secure communication is essential for business?</h1>\r\n<p class=\"align-left\">In the context of business operation, communication is a vital element of maintaining an efficient and dynamic working process. It lets you keep everything up to date and on the same page. And since many things are going on at the same time - tools like messengers are one of the many helpers that make the working day a little more manageable.</p>\r\n<p class=\"align-left\">Some of the information, like employee and customer data, proprietary information, data directly linked to business performance or future projections, may be strictly under a non-disclosure agreement. Without proper text message authentication in information security or encryption, it remains vulnerable to exposure. The chances are slim, but the possibility remains. </p>\r\n<p class=\"align-left\">And there are people interested in acquiring that sensitive information, people who like to play dirty because getting a competitive advantage is a decent motivation to go beyond the law. And when private conversations leak, especially the business-related ones - the impact is comparable with the Titanic hitting an iceberg. </p>\r\n<p class=\"align-left\">Encrypted massages in messenger prevents this from happening.</p>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Messaging_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6447,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/STTarx.jpg","logo":true,"scheme":false,"title":"STT LLC STTarx","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"stt-llc-sttarx","companyTitle":"STT LLC","companyTypes":["vendor"],"companyId":8979,"companyAlias":"stt-llc","description":"STTarx has been designed from the ground up to remedy a widely observed flaw in Internet Protocol communications in order to provide secure network communications. The STTarx solution allows organizations to deploy a resilient network architecture that is lightweight, inconspicuous and dependable. \r\nThe patented STTarx approach has a ten-year development history. The product has been examined by leading research and security organizations. \r\nDevices protected by STTarx are quiet. The solution has a light, indistinguishable footprint. Unauthorized, inbound and outbound, communications attempts are discarded, tossed away and ignored without displaying or exhibiting a sensible signature or response. \r\nWith STTarx, computers and associated network segments are indiscernible. Directed attacks are ignored, thereby mitigating denial attacks. Communications require a four–factor, 512–bit, authorization between participating devices in a true peer–to–peer model which is easily managed by an intuitive, centralized, interface which does not present a single point of failure. \r\nStatic encryption does not exist — the patented methodology constantly alters encryption algorithms, key lengths and keys in seconds while encrypting the data that is being transmitted. An additional, secondary, encryption is applied, per–packet, in order to further protect data–in–transit. ","shortDescription":"STTarx™ is efficient next–generation network security software that combines device access control and dynamic data transport encryption.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"STT LLC STTarx","keywords":"","description":"STTarx has been designed from the ground up to remedy a widely observed flaw in Internet Protocol communications in order to provide secure network communications. The STTarx solution allows organizations to deploy a resilient network architecture that is ligh","og:title":"STT LLC STTarx","og:description":"STTarx has been designed from the ground up to remedy a widely observed flaw in Internet Protocol communications in order to provide secure network communications. The STTarx solution allows organizations to deploy a resilient network architecture that is ligh","og:image":"https://old.roi4cio.com/fileadmin/user_upload/STTarx.jpg"},"eventUrl":"","translationId":6447,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":852,"title":"Network security","alias":"network-security","description":" Network security consists of the policies and practices adopted to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs; conducting transactions and communications among businesses, government agencies and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: it secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.\r\nNetwork security starts with authentication, commonly with a username and a password. Since this requires just one detail authenticating the user name — i.e., the password—this is sometimes termed one-factor authentication. With two-factor authentication, something the user 'has' is also used (e.g., a security token or 'dongle', an ATM card, or a mobile phone); and with three-factor authentication, something the user 'is' is also used (e.g., a fingerprint or retinal scan).\r\nOnce authenticated, a firewall enforces access policies such as what services are allowed to be accessed by the network users. Though effective to prevent unauthorized access, this component may fail to check potentially harmful content such as computer worms or Trojans being transmitted over the network. Anti-virus software or an intrusion prevention system (IPS) help detect and inhibit the action of such malware. An anomaly-based intrusion detection system may also monitor the network like wireshark traffic and may be logged for audit purposes and for later high-level analysis. Newer systems combining unsupervised machine learning with full network traffic analysis can detect active network attackers from malicious insiders or targeted external attackers that have compromised a user machine or account.\r\nCommunication between two hosts using a network may be encrypted to maintain privacy.\r\nHoneypots, essentially decoy network-accessible resources, may be deployed in a network as surveillance and early-warning tools, as the honeypots are not normally accessed for legitimate purposes. Techniques used by the attackers that attempt to compromise these decoy resources are studied during and after an attack to keep an eye on new exploitation techniques. Such analysis may be used to further tighten security of the actual network being protected by the honeypot. A honeypot can also direct an attacker's attention away from legitimate servers. A honeypot encourages attackers to spend their time and energy on the decoy server while distracting their attention from the data on the real server. Similar to a honeypot, a honeynet is a network set up with intentional vulnerabilities. Its purpose is also to invite attacks so that the attacker's methods can be studied and that information can be used to increase network security. A honeynet typically contains one or more honeypots.","materialsDescription":" <span style=\"font-weight: bold;\">What is Network Security?</span>\r\nNetwork security is any action an organization takes to prevent malicious use or accidental damage to the network’s private data, its users, or their devices. The goal of network security is to keep the network running and safe for all legitimate users.\r\nBecause there are so many ways that a network can be vulnerable, network security involves a broad range of practices. These include:\r\n<ul><li><span style=\"font-weight: bold;\">Deploying active devices:</span> Using software to block malicious programs from entering, or running within, the network. Blocking users from sending or receiving suspicious-looking emails. Blocking unauthorized use of the network. Also, stopping the network's users accessing websites that are known to be dangerous.</li><li><span style=\"font-weight: bold;\">Deploying passive devices:</span> For instance, using devices and software that report unauthorized intrusions into the network, or suspicious activity by authorized users.</li><li><span style=\"font-weight: bold;\">Using preventative devices:</span> Devices that help identify potential security holes, so that network staff can fix them.</li><li><span style=\"font-weight: bold;\">Ensuring users follow safe practices:</span> Even if the software and hardware are set up to be secure, the actions of users can create security holes. Network security staff is responsible for educating members of the organization about how they can stay safe from potential threats.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is Network Security Important?</span>\r\nUnless it’s properly secured, any network is vulnerable to malicious use and accidental damage. Hackers, disgruntled employees, or poor security practices within the organization can leave private data exposed, including trade secrets and customers’ private details.\r\nLosing confidential research, for example, can potentially cost an organization millions of dollars by taking away competitive advantages it paid to gain. While hackers stealing customers’ details and selling them to be used in fraud, it creates negative publicity and public mistrust of the organization.\r\nThe majority of common attacks against networks are designed to gain access to information, by spying on the communications and data of users, rather than to damage the network itself.\r\nBut attackers can do more than steal data. They may be able to damage users’ devices or manipulate systems to gain physical access to facilities. This leaves the organization’s property and members at risk of harm.\r\nCompetent network security procedures keep data secure and block vulnerable systems from outside interference. This allows the network’s users to remain safe and focus on achieving the organization’s goals.\r\n<span style=\"font-weight: bold;\">Why Do I Need Formal Education to Run a Computer Network?</span>\r\nEven the initial setup of security systems can be difficult for those unfamiliar with the field. A comprehensive security system is made of many pieces, each of which needs specialized knowledge.\r\nBeyond setup, each aspect of security is constantly evolving. New technology creates new opportunities for accidental security leaks, while hackers take advantage of holes in security to do damage as soon as they find them. Whoever is in charge of the network’s security needs to be able to understand the technical news and changes as they happen, so they can implement safety strategies right away.\r\nProperly securing your network using the latest information on vulnerabilities helps minimize the risk that attacks will succeed. Security Week reported that 44% of breaches in 2014 came from exploits that were 2-4 years old.\r\nUnfortunately, many of the technical aspects of network security are beyond those who make hiring decisions. So, the best way an organization can be sure that their network security personnel are able to properly manage the threats is to hire staff with the appropriate qualifications.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3639,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/zix.png","logo":true,"scheme":false,"title":"Zix Mail","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"zix-mail","companyTitle":"Zix","companyTypes":["supplier","vendor"],"companyId":5805,"companyAlias":"zix","description":"Installed on your desktop, <span style=\"font-weight: bold; \">Zix Mail</span> provides end-to-end email encryption to protect messages and attachments with a single click. With ZixMail, you enjoy automated key management and leverage the ZixDirectory and Best Method of Delivery to exchange secure email with anyone, anywhere on any device. <span style=\"font-weight: bold; \">Zix Mail</span> integrates with your on-site or Web-based email, and encrypted messages are delivered using your existing email address. Optional plug-ins are also available to you for full integration with Microsoft Outlook.\r\n <b>How Zix Mail works?</b>\r\nZixMail makes end-to-end email encryption easy, keeping customer data, employee records, financial information and other sensitive data secure both internally and externally. Work principles:\r\n <b>Encryption in a click</b> \r\nIf you want to encrypt an email, simply create a message and click the ‘Encrypt & Send’ button.\r\n <b>Secure at rest and in transit</b> \r\nMaintaining end-to-end encryption, emails are encrypted in transit as well as on your mail server. Simply click on your email and enter your password to view encrypted email.\r\n <b>Email encryption to anyone</b> \r\nUnsure of your recipients’ capabilities? We deliver encrypted emails using our patented Best Method of Delivery, inclusive of a secure pull option for recipients without email encryption.\r\nZix Mail Benefits:\r\n<ul> <li>EASY TO GET STARTED. Installing ZixMail is quick, and learning how to use it is simple.</li> <li>CONVENIENT INTEGRATION. ZixMail can be used with your current email system, and optional plug-ins make it even more convenient for Outlook users.</li> <li>KEY MANAGEMENT. We take care of the most complicated aspect of email encryption - key management - by connecting you to ZixDirectory, the world’s largest key repository.</li> <li>ADDED AUTHENTICATION. Time-stamping provides further peace of mind with proof of delivery and receipt for your encrypted emails.</li> </ul>","shortDescription":"ZixMail makes end-to-end email encryption easy, keeping customer data, employee records, financial information and other sensitive data secure both internally and externally.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Zix Mail","keywords":"","description":"Installed on your desktop, <span style=\"font-weight: bold; \">Zix Mail</span> provides end-to-end email encryption to protect messages and attachments with a single click. With ZixMail, you enjoy automated key management and leverage the ZixDirectory and Best M","og:title":"Zix Mail","og:description":"Installed on your desktop, <span style=\"font-weight: bold; \">Zix Mail</span> provides end-to-end email encryption to protect messages and attachments with a single click. With ZixMail, you enjoy automated key management and leverage the ZixDirectory and Best M","og:image":"https://old.roi4cio.com/fileadmin/user_upload/zix.png"},"eventUrl":"","translationId":3640,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":307,"title":"Archiving Software","alias":"archiving-software","description":" Enterprise <span style=\"font-weight: bold;\">archiving software </span>is designed to assist in storing a company’s structured and unstructured data. By incorporating unstructured data (e.g., email messages and media files), enterprise information archiving software provides more complete archives of business data across the board. Data can be stored on premise with local data servers or on cloud servers, or using a hybrid of the two. These solutions are used throughout a business by any employee, since all teams should be archiving their data for, at minimum, auditing purposes. Data archiving software are typically implemented and maintained by a company’s data team, and they can be used by companies of any size.\r\nWhile similar to a backup software solution, archiving solution handles the original data as opposed to a copy of that data. To qualify for the data archiving solutions category, a product must: \r\n<ul><li>Store both structured and unstructured data</li><li>Provide data management options for archived data</li><li>Protect access to archived data</li></ul>","materialsDescription":"<h1 class=\"align-center\"> What is Archiving Software?</h1>\r\nArchiving Software supports enterprises in retaining and rapidly retrieving structured and unstructured data over time while complying with security standards and the like. File archiving may include images, messages (e.g. IMs, social media posts, etc.), emails, and content from web pages and social sites. Compliant data retention may require retaining data in its native form and context so that it can be understood.\r\nAlso called Enterprise Information Archiving (EIA), archiving software is designed to meet discovery requirements. That means that the archive must be searchable so that all stored data can be retrieved with context intact.\r\nArchiving software is most commonly a requirement for banking institutions and governments. More stringent privacy laws means that EIA has become a concern for private corporations as well. Archiving software will contain features overlapping Enterprise Search, Data Governance and eDiscovery, and some features in common with ECM.\r\n<h1 class=\"align-center\">What’s the Difference: Backup vs Archive</h1>\r\nBackups and archives serve different functions, yet it’s common to hear the terms used interchangeably in cloud storage. \r\nA <span style=\"font-weight: bold;\">backup </span>is a copy of your data that is made to protect against loss of that data. Typically, backups are made on a regular basis according to a time schedule or when the original data changes. The original data is not deleted, but older backups are often deleted in favor of newer backups.<br /><span style=\"font-weight: bold;\">The goal of a backup</span> is to make a copy of anything in current use that can’t afford to be lost. A backup of a desktop or mobile device might include just the user data so that a previous version of a file can be recovered if necessary.\r\nOn these types of devices an assumption is often made that the OS and applications can easily be restored from original sources if necessary (and/or that restoring an OS to a new device could lead to significant corruption issues). In a virtual server environment, a backup could include.\r\nAn <span style=\"font-weight: bold;\">archive </span>is a copy of data made for long-term storage and reference. The original data may or may not be deleted from the source system after the archive copy is made and stored, though it is common for the archive to be the only copy of the data. \r\nIn contrast to a backup whose purpose is to be able to return a computer or file system to a state it existed in previously, <span style=\"font-weight: bold;\">data archiving can have multiple purposes</span>. An archiving system can provide an individual or organization with a permanent record of important papers, legal documents, correspondence, and other matters.\r\nOften, archive program is used to meet information retention requirements for corporations and businesses. If a dispute or inquiry arises about a business practice, contract, financial transaction, or employee, the records pertaining to that subject can be obtained from the archive.\r\nAn archive is frequently used to ease the burden on faster and more frequently accessed data storage systems. Older data that is unlikely to be needed often is put on systems that don’t need to have the speed and accessibility of systems that contain data still in use. Archival storage systems are usually less expensive, as well, so a strong motivation is to save money on data storage.\r\nArchives are often created based on the age of the data or whether the project the data belongs to is still active. Data archiving solutions might send data to an archive if it hasn’t been accessed in a specified amount of time, when it has reached a certain age, if a person is no longer with the organization, or the files have been marked for storage because the project has been completed or closed.<br /><br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Archiving_Software.png"},{"id":483,"title":"Messaging Security","alias":"messaging-security","description":"<span style=\"font-weight: bold; \">Messaging security</span> is a subcategory of <span style=\"font-style: italic; \">unified threat management (UTM) </span>focused on securing and protecting an organization’s communication infrastructure. Communication channels can include email software, messaging apps, and social network IM platforms. This extra layer of security can help secure devices and block a wider range of viruses or malware attacks.\r\nMessaging security helps to ensure the confidentiality and authenticity of an organization’s communication methods. Confidentiality refers to making sure only the intended recipients are able to read the messages and authenticity refers to making sure the identity of each sender or recipient is verified.\r\nOftentimes, attackers aim to gain access to an entire network or system by infiltrating the messaging infrastructure. Implementing proper data and message security can minimize the chance of data leaks and identity theft.\r\n<span style=\"color: rgb(97, 97, 97); \">Encrypted messaging (also known as secure messaging) provides end-to-end encryption for user-to-user text messaging. Encrypted messaging prevents anyone from monitoring text conversations. Many encrypted messenger apps also offer end-to-end encryption for phone calls made using the apps, as well as for files that are sent using the apps.</span>\r\nTwo modern methods of encryption are the <span style=\"font-style: italic; \">Public Key (Asymmetric)</span> and the <span style=\"font-style: italic; \">Private Key (Symmetric</span>) methods. While these two methods of encryption are similar in that they both allow users to encrypt data to hide it from the prying eyes of outsiders and then decrypt it for viewing by an authorized party, they differ in how they perform the steps involved in the process.\r\n<span style=\"font-weight: bold; \">Email</span> security message can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send. \r\n<span style=\"font-weight: bold;\">Encrypted messaging systems </span>must be encrypted end-to-end, so that even the service provider and its staff are unable to decipher what’s in your communications. Ideal solutions is “server-less” encrypted chat where companies won’t store user information anywhere.\r\nIn a more general sense, users of unsecured public Wi-Fi should also consider using a <span style=\"font-weight: bold;\">Virtual Private Network </span>(VPN) application, to conceal their identity and location from Internet Service Providers (ISPs), higher level surveillance, and the attentions of hackers.","materialsDescription":"<h1 class=\"align-center\"> What is messaging security?</h1>\r\nMessaging Security is a program that provides protection for companies' messaging infrastructure. The programs include IP reputation-based anti-spam, pattern-based anti-spam, administrator-defined block/allow lists, mail antivirus, zero-hour malware detection, and email intrusion prevention.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Six Dimensions of Comprehensive Messaging Security</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">IP-Reputation Anti-spam.</span> It checks each email connection request with a database of IP addresses to establish whether a sender is a legitimate or known spam sender and malware. If a sender is recognized it undesirable the messaging Security program drops the connection before the message is accepted.</li><li><span style=\"font-weight: bold; \">Pattern-based anti-spam</span> utilizes a proprietary algorithm to establish a fingerprint-like signature of email messages. When a message comes in, its pattern is calculated and checked against a database to determine if the message matches a known email pattern. </li><li><span style=\"font-weight: bold; \">Block/Allow List Anti-spam.</span> Administrators can create a list of IP addresses or domains that they would like to either block or allow. This method ensures that trusted sources are explicitly allowed and unwanted sources are explicitly denied access.</li><li><span style=\"font-weight: bold; \">Mail Antivirus.</span> This layer of protection blocks a wide range of known viruses and malware attacks.</li><li><span style=\"font-weight: bold; \">Zero-Hour Malware Protection.</span> By analyzing large numbers of messages, outbreaks are detected along with their corresponding messages. These message patterns are then flagged as malicious, giving information about a given attack.</li><li><span style=\"font-weight: bold; \">SmartDefense Email IPS.</span> The messaging security program utilizes SmartDefense Email IPS to stop attacks targeting the messaging infrastructure. </li></ul>\r\n<h1 class=\"align-center\">What are Signal, Wire and LINE messenger security apps like ?</h1>\r\n<p class=\"align-left\">Secure private messenger is a messaging application that emphasizes the privacy and of users using encryption and service transparency. While every modern messenger system is using different security practices (most prominently SSL/HTTPS) - the difference between secure and classic messengers is what we don’t know in the scope of implementation and approach to user data. </p>\r\n<p class=\"align-left\">Message access control and secure messengers evolved into a distinct category due to the growing awareness that communication over the internet is accessible by third parties, and reasonable concerns that the messages can be used against the users.</p>\r\n<h1 class=\"align-center\">Why secure communication is essential for business?</h1>\r\n<p class=\"align-left\">In the context of business operation, communication is a vital element of maintaining an efficient and dynamic working process. It lets you keep everything up to date and on the same page. And since many things are going on at the same time - tools like messengers are one of the many helpers that make the working day a little more manageable.</p>\r\n<p class=\"align-left\">Some of the information, like employee and customer data, proprietary information, data directly linked to business performance or future projections, may be strictly under a non-disclosure agreement. Without proper text message authentication in information security or encryption, it remains vulnerable to exposure. The chances are slim, but the possibility remains. </p>\r\n<p class=\"align-left\">And there are people interested in acquiring that sensitive information, people who like to play dirty because getting a competitive advantage is a decent motivation to go beyond the law. And when private conversations leak, especially the business-related ones - the impact is comparable with the Titanic hitting an iceberg. </p>\r\n<p class=\"align-left\">Encrypted massages in messenger prevents this from happening.</p>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Messaging_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6461,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SurfEasy.png","logo":true,"scheme":false,"title":"SurfEasy VPN","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"surfeasy-vpn","companyTitle":"SurfEasy","companyTypes":["supplier","vendor"],"companyId":6821,"companyAlias":"surfeasy","description":"SurfEasy VPN uses encryption to help block hackers from stealing the personal info you send and receive over Wi-Fi \r\n<b>Features:</b>\r\n<ul> <li>No-log network. We don’t retain any logs related to your online, browsing or downloading activity, so even we don’t know what you’re up to. </li> <li>Bank-grade encryption. We use bank-grade encryption to ensure that your information has protection by the highest-quality technology. </li> <li>One click IP masking. Switch your location with just one click. </li> <li>500 ultra fast servers in 28 countries (and increasing). With servers in 28 countries and counting, you can access your favorite apps and websites from abroad, just like at home. </li> <li>Enhanced Tracker Blocker. Our tracker blocking algorithm blocks tracking cookies used by advertisers to follow you online, giving you a private and peaceful online experience. </li> <li>Unlimited simultaneous use on 5 devices. Enjoy unlimited use on all your devices, even if you use them at the same time. </li> <li>No data limits on all paid plans. All our paid plans give you no data limits, meaning you never have to worry about VPN usage limits. </li> <li>Available on multiple platforms. SurfEasy VPN supports Windows, Mac, iOS, and Android. We also offer extensions for Opera and Chrome browsers. </li> <li>Friendly phone/email/chat support. Our support team lives up to the friendly Canadian stereotype and are available 7 days a week (9am -5pm Est, English only) to help with whatever you need. </li> <li>99.9% uptime. Our reliable network maintains a 99.9% uptime. </li> <li>14-day money back guarantee for monthly plans. Not satisfied? Get your money back! We offer a hassle-free cancellation and refund policy. </li> </ul>","shortDescription":"Help keep your online activity private with SurfEasy VPN\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"SurfEasy VPN","keywords":"","description":"SurfEasy VPN uses encryption to help block hackers from stealing the personal info you send and receive over Wi-Fi \r\n<b>Features:</b>\r\n<ul> <li>No-log network. We don’t retain any logs related to your online, browsing or downloading activity, so even we don’t ","og:title":"SurfEasy VPN","og:description":"SurfEasy VPN uses encryption to help block hackers from stealing the personal info you send and receive over Wi-Fi \r\n<b>Features:</b>\r\n<ul> <li>No-log network. We don’t retain any logs related to your online, browsing or downloading activity, so even we don’t ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SurfEasy.png"},"eventUrl":"","translationId":6461,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":49,"title":"VPN - Virtual Private Network","alias":"vpn-virtual-private-network","description":"A <span style=\"font-weight: bold; \">virtual private network (VPN)</span> extends a private network across a public network, and enables users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network. Applications running on a computing device, e.g. a laptop, desktop, smartphone, across a VPN may therefore benefit from the functionality, security, and management of the private network. Encryption is a common though not an inherent part of a VPN connection.\r\nAt its most basic level, VPN tunneling creates a point-to-point connection that cannot be accessed by unauthorized users. To actually create the VPN tunnel, the endpoint device needs to be running a VPN client (software application) locally or in the cloud. The VPN client runs in the background and is not noticeable to the end user unless there are performance issues.\r\nThe performance of a VPN can be affected by a variety of factors, among them the speed of users' internet connections, the types of protocols an internet service provider may use and the type of encryption the VPN uses. In the enterprise, performance can also be affected by poor quality of service (QoS) outside the control of an organization's information technology (IT) department.\r\nConsumers use a virtual private network software to protect their online activity and identity. By using an anonymous VPN service, a user's Internet traffic and data remain encrypted, which prevents eavesdroppers from sniffing Internet activity. Personal VPN services are especially useful when accessing public Wi-Fi hotspots because the public wireless services might not be secure. In addition to public Wi-Fi security, it also provides consumers with uncensored Internet access and can help prevent data theft and unblock websites.\r\nCompanies and organizations will typically use a VPN security to communicate confidentially over a public network and to send voice, video or data. It is also an excellent option for remote workers and organizations with global offices and partners to share data in a private manner.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Types of VPNs</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Remote access VPN</span>. Remote access VPN clients connect to a VPN gateway server on the organization's network. The gateway requires the device to authenticate its identity before granting access to internal network resources such as file servers, printers and intranets. This type of VPN usually relies on either IP Security (IPsec) or Secure Sockets Layer (SSL) to secure the connection.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Site-to-site VPN.</span> In contrast, a site-to-site VPN uses a gateway device to connect an entire network in one location to a network in another location. End-node devices in the remote location do not need VPN clients because the gateway handles the connection. Most site-to-site VPNs connecting over the internet use IPsec. It is also common for them to use carrier MPLS clouds rather than the public internet as the transport for site-to-site VPNs. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Mobile VPN.</span> In a mobile VPN, a VPN server still sits at the edge of the company network, enabling secure tunneled access by authenticated, authorized VPN clients. Mobile VPN tunnels are not tied to physical IP addresses, however. Instead, each tunnel is bound to a logical IP address. That logical IP address sticks to the mobile device no matter where it may roam.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">VPN Hardware</span>. It offer a number of advantages over the software-based VPN. In addition to enhanced security, hardware VPNs can provide load balancing to handle large client loads. Administration is managed through a Web browser interface. A hardware VPN is more expensive than a software VPN. Because of the cost, hardware VPNs are a more realistic option for large businesses than for small businesses or branch offices. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">VPN appliance.</span> A VPN appliance, also known as a VPN gateway appliance, is a network device equipped with enhanced security features. Also known as an SSL (Secure Sockets Layer) VPN appliance, it is in effect a router that provides protection, authorization, authentication and encryption for VPNs.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Dynamic multipoint virtual private network (DMVPN</span>). A dynamic multipoint virtual private network (DMVPN) is a secure network that exchanges data between sites without needing to pass traffic through an organization's headquarter virtual private network (VPN) server or router. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">VPN Reconnect.</span> VPN Reconnect is a feature of Windows 7 and Windows Server 2008 R2 that allows a virtual private network connection to remain open during a brief interruption of Internet service. Usually, when a computing device using a VPN connection drops its Internet connection, the end user has to manually reconnect to the VPN. VPN Reconnect keeps the VPN tunnel open for a configurable amount of time so when Internet service is restored, the VPN connection is automatically restored as well. </li></ul>\r\n<p class=\"align-left\"> </p>","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is VPN software?</span></h1>\r\n<span style=\"font-weight: normal;\"></span>VPN software is a tool that allows users to create a secure, encrypted connection over a computer network such as the Internet. The platform was developed to allow for secure access to business applications and other resources.\r\n<header><h1 class=\"align-center\"><span style=\"font-weight: normal;\">How does VPN software work?</span></h1></header>\r\n<p class=\"align-left\">So what does VPN do? Basically, a VPN is a group of computers or networks, which are connected over the Internet. For businesses, VPN services serve as avenues for getting access to networks when they are not physically on the same network. Such a service can also be used to encrypt communications over public networks.</p>\r\n<p class=\"align-left\">VPNs are usually deployed through local installation or by logging on to a service’s website. To give you an idea as to how VPN works, the software allows your computer to basically exchange keys with a remote server, through which all data traffic is encrypted and kept secure, safe from prying eyes. It lets you browse the Internet without the worry of being tracked, monitored and identified without permission. A VPN also helps in accessing blocked sites and in circumventing censorship.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What are the features of VPN software?</span></h1>\r\n<p class=\"align-left\">There are a variety of ways by which you can determine what VPN suits you. Here are some features of software VPN solutions and buying factors that you should consider:<br /><br /></p>\r\n<ul><li><span style=\"font-weight: bold;\">Privacy</span>: You should know what kind of privacy you really need. Is it for surfing, downloading or simply accessing blocked sites? Best of VPN programs offer one or more of these capabilities.</li><li><span style=\"font-weight: bold;\">Software/features</span>: Platforms should not be limited to ease of use, they should include features such as kill switches and DNS leak prevention tools which provide a further layer of protection.</li><li><span style=\"font-weight: bold;\">Security</span>: One should consider the level of security that a service offers. This can prevent hackers and agencies from accessing your data.</li><li><span style=\"font-weight: bold;\">Cross-platform support</span>: A VPN solution should be able to run on any device. To do this, setup guides for different platforms should be provided by the vendor.</li><li><span style=\"font-weight: bold;\">The number of servers/countries</span>: For these services, the more servers VPN there are, the better the service. This allows users to connect from virtually all over the world. It will also enable them to change their locations at will.</li><li><span style=\"font-weight: bold;\">Speed</span>: It’s common knowledge that using VPN comes with reduction in Internet speed. This is due to the fact that signals need to travel long distances and the demands of the encryption and decryption processes. Choose a service that has minimal impact on Internet speed.</li><li><span style=\"font-weight: bold;\">Simultaneous connections</span>: Many services allow users to use only one device at a time. However, many VPN service providers allow customers to connect multiple devices all at the same time.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VPN_-_Virtual_Private_Network.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3650,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/zentera.png","logo":true,"scheme":false,"title":"Zentera's CoIP Enclave","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"zenetras-coip-enclave","companyTitle":"Zentera Systems","companyTypes":["vendor"],"companyId":5817,"companyAlias":"zentera-systems","description":"<b>CoIP Enclave</b> uses an advanced overlay network to bring the unifying power of a virtual private cloud (VPC) to a complex hybrid environment. Abstracting away details of the physical network connections, developers can enable unmodified Linux and Windows applications to communicate seamlessly and securely with hosts in other datacenters and public clouds – even those belonging to another enterprise. Distributed applications can be deployed in an afternoon, without the need to touch existing firewall and router configurations or establish dedicated VPN connections. Once set up, applications can be migrated in seconds.\r\nAfter setting up an Enclave, enterprises can:\r\n<ul> <li>Deploy applications to a hybrid or multi-cloud environment without time-consuming network analysis and design</li> <li>Bridge hosts or subnets, even if no physical route exists</li> <li>Virtualize networking for existing on-premises applications</li> </ul>\r\n<b>CoIP Enclave</b> enhances a company’s existing security architecture by providing an extra layer with additional controls. The technology operates at the session layer in the ISO network model (L5), using but not interfering with the existing network and security infrastructure. CoIP isolates traffic end-to-end in encrypted SSL tunnels that are set up to support application traffic on an as-needed basis. The endpoint network can be locked to the CoIP Enclave; by requiring traffic to travel over the CoIP overlay network and blocking other traffic that comes in over the physical interface, the endpoint is effectively invisible to other endpoints, even on the same subnet.\r\nSolutions:\r\n<ul> <li><i><b>Overlay for Hybrid Infrastructure.</b></i> Because the security challenge is ultimately caused by disruptive applications, Zentera solves the challenge by providing an application-based overlay network that meets the Zero Trust Security model. Zentera’s Zero Trust Network is designed to connect and protect applications, regardless of their physical locations. Zentera’s CoIP Solution is hardware agnostic, completely decoupled from the underlying physical network.</li> <li><b><i>Supply Chain Access.</i></b> Third-party users can only access what they’re authorized to access; everything else is blocked and beyond their reach. That is because Zentera’s ZTNs are overlay networks with complete micro-segmentation</li> <li><i><b>Overlay Fabric for Enterprise Datacenter Migration to the Cloud.</b></i> Zentera’s CoIP Enclave™ solution creates a zero trust network that connects on-premises environments into the cloud. This virtual network fabric completely abstracts the physical network topology, forwarding traffic to the datacenter machine and provides connectivity back to the on-premises environments. This allows datacenter applications to be migrated without modification, and enables a running datacenter to be migrated in stages to minimize downtime.</li> <li><b><i>Self-Service Hybrid Networking Tools for DevOps.</b></i> Zentera’s CoIP™ solution creates a Zero Trust Network that extends from clouds back to on-premises environments. This “Universal VPC” can be created and managed directly by DevOps teams, without touching existing on-premises networking and security settings. With “self-service” provisioning and automation, DevOps users can set up hybrid applications while retaining the agility and flexibility associated with public clouds.</li> <li><b><i>Overlay for Smart Manufacturing.</i></b> Zentera’s CoIP™ Solution connects factories and platform vendors with a virtual overlay network that allows a remote platform to access data within the factory without requiring either party to fully open its networks. This overlay network is set up without modifying legacy networks or changing firewall rules, condensing the InfoSec and compliance process.</li> </ul>","shortDescription":"CoIP gives you the security that you need, and at the same time overlay networking gives you a level of agility that you just don’t have today in a traditional infrastructure","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":5,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Zentera's CoIP Enclave","keywords":"","description":"<b>CoIP Enclave</b> uses an advanced overlay network to bring the unifying power of a virtual private cloud (VPC) to a complex hybrid environment. Abstracting away details of the physical network connections, developers can enable unmodified Linux and Windows ","og:title":"Zentera's CoIP Enclave","og:description":"<b>CoIP Enclave</b> uses an advanced overlay network to bring the unifying power of a virtual private cloud (VPC) to a complex hybrid environment. Abstracting away details of the physical network connections, developers can enable unmodified Linux and Windows ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/zentera.png"},"eventUrl":"","translationId":3649,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6471,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SysCloud.png","logo":true,"scheme":false,"title":"SysCloud Google Drive Encryption","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"syscloud-google-drive-encryption","companyTitle":"SysCloud","companyTypes":["vendor"],"companyId":8984,"companyAlias":"syscloud","description":"Encrypt confidential or sensitive files and folders on Google Drive using SysCloud encryption for Google Drive. Features include hassle-free access to documents for owners, admin encryption enforcement, admin password reset, and auto-encryption. \r\n<b>Why do you need SysCloud’s Google Drive encryption? </b>\r\n<i>Accidental or malicious sharing </i>\r\nAccidental or malicious sharing of confidential files will expose all of its content. \r\n<i>Employee exits </i>\r\nWhen employees leave your organization, there is a risk of data loss and theft. \r\n<i>Phishing attacks </i>\r\nPhishing attacks can expose your confidential data and potentially damage your reputation. \r\n<i>Third-party applications </i>\r\nThird party applications installed through G Suite Marketplace could gain access to sensitive content in your Google Drive. \r\n<b>Get Drive encryption to work for your business </b>\r\n<ul> <li>Encrypt any file or folder in Google Drive using a user-created encryption key </li> <li>Admins can control the encryption keys for all users in the domain </li> <li>Encrypt an entire folder and all files within the folder are automatically encrypted </li> <li>Enforce encryption for the entire domain or for a specific set of users </li> <li>Only collaborators are required to provide the keys to access the files </li> <li>Enforce encryption for documents shared outside of your domain </li> </ul>","shortDescription":"Stop data theft and data loss","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"SysCloud Google Drive Encryption","keywords":"","description":"Encrypt confidential or sensitive files and folders on Google Drive using SysCloud encryption for Google Drive. Features include hassle-free access to documents for owners, admin encryption enforcement, admin password reset, and auto-encryption. \r\n<b>Why do yo","og:title":"SysCloud Google Drive Encryption","og:description":"Encrypt confidential or sensitive files and folders on Google Drive using SysCloud encryption for Google Drive. Features include hassle-free access to documents for owners, admin encryption enforcement, admin password reset, and auto-encryption. \r\n<b>Why do yo","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SysCloud.png"},"eventUrl":"","translationId":6471,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3151,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Key_Management_Service.jpg","logo":true,"scheme":false,"title":"Amazon Key Management Service (KMS)","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":4,"alias":"amazon-key-management-service-kms","companyTitle":"Amazon Web Services","companyTypes":["supplier","vendor"],"companyId":176,"companyAlias":"amazon-web-services","description":"AWS Key Management Service (KMS) makes it easy for you to create and manage keys and control the use of encryption across a wide range of AWS services and in your applications. AWS KMS is a secure and resilient service that uses FIPS 140-2 validated hardware security modules to protect your keys. AWS KMS is integrated with AWS CloudTrail to provide you with logs of all key usage to help meet your regulatory and compliance needs.\r\n\r\n<span style=\"text-decoration: underline; \"><span style=\"font-weight: bold; \">FEATURES</span></span>\r\nAWS Key Management Service (KMS) gives you centralized control over the encryption keys used to protect your data. AWS KMS is integrated with AWS services making it easy to encrypt data you store in these services and control access to the keys that decrypt it. AWS KMS is integrated with AWS CloudTrail, which provides you the ability to audit who used which keys, on which resources, and when. AWS KMS also enables developers to easily add encryption functionality to their application code either directly through encrypt and decrypt service APIs or through its integration with the AWS Encryption SDK.\r\n<span style=\"font-weight: bold; \">Centralized Key Management</span>\r\nAWS Key Management Service provides you with centralized control of your encryption keys. Customer master keys (CMKs) are used to control access to data encryption keys that encrypt and decrypt your data. You can create new master keys whenever you wish, and easily manage who has access to them and which services they can be used with. You can also import keys from your own key management infrastructure into AWS KMS or use keys stored in your AWS CloudHSM cluster and manage them from AWS KMS. You can manage your master keys and audit usage from the AWS Management Console or by using the AWS SDK or AWS Command Line Interface (CLI).\r\nThe keys in AWS KMS, whether created within KMS, your CloudHSM cluster, or imported by you, are stored in highly durable storage in an encrypted format so that they can be used when needed. You can choose to have AWS KMS automatically rotate master keys created within KMS once per year without the need to re-encrypt data that has already been encrypted with your master key. You don’t need to keep track of older versions of your master keys as KMS keeps them available to decrypt previously encrypted data.\r\n<span style=\"font-weight: bold; \">AWS Service Integration</span>\r\nAWS KMS is seamlessly integrated with most AWS services. This integration means that you can easily use KMS master keys to control the encryption of the data you store within these services. When deciding to encrypt data in a service, you can chose to use an AWS managed master key that is created in KMS for you automatically by that service. You can track the usage of the key but it is managed by the service on your behalf.\r\nIf you need direct control over the lifecycle of a master key or wish to allow other accounts to use it, you can create and manage your own master keys that can be used on your behalf by AWS services. These customer managed master keys give you full control over the access permissions that determine who can use the key and under which conditions.\r\n<span style=\"font-weight: bold; \">Audit Capabilities</span>\r\nIf you have AWS CloudTrail enabled for your AWS account, each request you make to AWS KMS is recorded in a log file that is delivered to the Amazon S3 bucket that you specified when you enabled AWS CloudTrail. The information recorded includes details of the user, time, date, API action and, when relevant, the key used.\r\n<span style=\"font-weight: bold; \">Scalability, Durability, and High Availability</span>\r\nAWS KMS is a fully managed service. As your use of encryption grows KMS automatically scales to meet your needs. AWS KMS enables you to manage thousands of master keys in your account and to use them whenever you want. AWS KMS defines default limits for number of keys and request rates, but you can request increased limits if necessary.\r\nThe master keys you create in AWS KMS or ones that are created on your behalf by other AWS services cannot be exported from the serviced. Therefore KMS takes responsibility for their durability. To help ensure that your keys and your data is highly available, KMS stores multiple copies of encrypted versions of your keys in systems that are designed for 99.999999999% durability.\r\nIf you import keys into KMS, you maintain a secure copy of the master keys so that you can re-import them if they are not available when you need to use them. If you use the custom key store feature in KMS to create your master keys in an AWS CloudHSM cluster, encrypted copies of your keys are automatically backed up and you have full control over the recovery process.\r\nAWS KMS is designed to be a highly available service with a regional API endpoint. As most AWS services rely on AWS KMS for encryption and decryption, it is architected to provide a level of availability that supports the rest of AWS and is backed by the AWS KMS Service Level Agreement.\r\n<span style=\"font-weight: bold; \">Secure</span>\r\nAWS KMS is designed so that no one, including AWS employees, can retrieve your plaintext keys from the service. The service uses FIPS 140-2 validated hardware security modules (HSMs) to protect the confidentiality and integrity of your keys regardless of whether you request KMS to create keys on your behalf, create them in an AWS CloudHSM cluster, or import them into the service. Your plaintext keys are never written to disk and only ever used in volatile memory of the HSMs for the time needed to perform your requested cryptographic operation. Keys created by KMS are never transmitted outside of the AWS region in which they were created and can only be used in the region in which they were created. Updates to the KMS HSM firmware is controlled by multi-party access control that is audited and reviewed by an independent group within Amazon as well as a NIST-certified lab in compliance with FIPS 140-2.\r\n<span style=\"font-weight: bold; \">Custom Key Store</span>\r\nAWS KMS provides the option for you to create your own key store using HSMs that you control. Each custom key store is backed by an AWS CloudHSM cluster. When you create a KMS customer master key (CMK) in a custom key store, KMS generates and stores non-extractable key material for the CMK in an AWS CloudHSM cluster that you own and manage. When you use a CMK in a custom key store, the cryptographic operations under that key are performed in your CloudHSM cluster.\r\nMaster keys that are stored in a custom key store rather than the default KMS key store are managed in the same way as any other master key in KMS and can be used by any AWS service that supports customer managed CMKs.\r\nThe use of a custom key store involves the additional cost of the CloudHSM cluster and makes you responsible for the availability of the key material in that cluster.\r\n<span style=\"font-weight: bold; \">Key Storage</span>\r\nEach customer master key (CMK) that you create in AWS Key Management Service (KMS), regardless of whether you use it with KMS-generated key material or key material imported by you, costs $1/month until you delete it. For a CMK with key material generated by KMS, if you opt-in to have the CMK automatically rotated each year, each newly rotated version will raise the cost of the CMK by $1/month. KMS retains and manages each previous version of the CMK to ensure you can decrypt older data. You are not charged for the following:\r\n<ul><li>Creation and storage of AWS managed CMKs, which are automatically created on your behalf when you first attempt to encrypt a resource in a supported AWS service.</li><li>CMKs that are scheduled for deletion. If you cancel the deletion during the waiting period, the CMK will incur charges as though it was never scheduled for deletion.</li><li>Data keys, which are created by GenerateDataKey and GenerateDataKeyWithoutPlaintext API requests. You are charged for these API requests per the usage pricing discussed below whether you make these API requests directly or they are made on your behalf by an integrated AWS service. You are not charged an ongoing monthly fee for the data keys themselves as they are neither stored nor managed by KMS.</li></ul>\r\n<span style=\"font-weight: bold; \">Custom Key Store</span>\r\nYou have the option of using a CloudHSM cluster to generate and store your AWS KMS keys. The use of a custom key store does not affect the KMS charges for storing and using a CMK. However, a custom key store does require you to maintain a CloudHSM cluster that contains at least two HSMs. More HSMs can be added for improved availability and performance. The standard CloudHSM charges apply.\r\n<span style=\"font-weight: bold; \">Free Tier</span>\r\nAWS Key Management Service provides a free tier of 20,000 requests/month calculated across all regions that KMS is available.\r\n\r\n<span style=\"text-decoration: underline; \"><span style=\"font-weight: bold; \">BENEFITS:</span></span>\r\n<span style=\"font-weight: bold; \">Fully managed</span>\r\nYou control access to your encrypted data by defining permissions to use keys while AWS KMS enforces your permissions and handles the durability and physical security of your keys.\r\n<span style=\"font-weight: bold; \">Centralized key management</span>\r\nAWS KMS presents a single control point to manage keys and define policies consistently across integrated AWS services and your own applications. You can easily create, import, rotate, delete, and manage permissions on keys from the AWS Management Console or by using the AWS SDK or CLI.\r\n<span style=\"font-weight: bold; \">Manage encryption for AWS services</span>\r\nAWS KMS is integrated with AWS services to simplify using your keys to encrypt data across your AWS workloads. You choose the level of access control that you need, including the ability to share encrypted resources between accounts and services. KMS logs all use of keys to AWS CloudTrail to give you an independent view of who accessed your encrypted data, including AWS services using them on your behalf.\r\n<span style=\"font-weight: bold; \">Encrypt data in your applications</span>\r\nAWS KMS is integrated with the AWS Encryption SDK to enable you to used KMS-protected data encryption keys to encrypt locally within your applications. Using simple APIs you can also build encryption and key management into your own applications wherever they run.\r\n<span style=\"font-weight: bold; \">Built-in auditing</span>\r\nAWS KMS is integrated with AWS CloudTrail to record all API requests, including key management actions and usage of your keys. Logging API requests helps you manage risk, meet compliance requirements and conduct forensic analysis.\r\n<span style=\"font-weight: bold; \">Low cost</span>\r\nThere is no commitment and no upfront charges to use AWS KMS. You only pay US $1/month to store any key that you create. AWS managed keys that are created on your behalf by AWS services are free to store. You are charged per-request when you use or manage your keys beyond the free tier.\r\n<span style=\"font-weight: bold; \">Secure</span>\r\nAWS KMS uses FIPS 140-2 validated hardware security modules (HSMs) to generate and protect keys. Your keys are only used inside these devices and can never leave them unencrypted. KMS keys are never shared outside the AWS region in which they were created.\r\n<span style=\"font-weight: bold;\">Compliance</span>\r\nThe security and quality controls in AWS KMS have been certified under multiple compliance schemes to simplify your own compliance obligations. AWS KMS provides the option to store your keys in single-tenant HSMs in AWS CloudHSM instances that you control.","shortDescription":"AWS Key Management Service (KMS) makes it easy for you to create and manage keys and control the use of encryption across a wide range of AWS services and in your applications.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Amazon Key Management Service (KMS)","keywords":"","description":"AWS Key Management Service (KMS) makes it easy for you to create and manage keys and control the use of encryption across a wide range of AWS services and in your applications. AWS KMS is a secure and resilient service that uses FIPS 140-2 validated hardware s","og:title":"Amazon Key Management Service (KMS)","og:description":"AWS Key Management Service (KMS) makes it easy for you to create and manage keys and control the use of encryption across a wide range of AWS services and in your applications. AWS KMS is a secure and resilient service that uses FIPS 140-2 validated hardware s","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Key_Management_Service.jpg"},"eventUrl":"","translationId":3151,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3412,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/EgoSecure.png","logo":true,"scheme":false,"title":"EgoSecure Data Protection","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"egosecure-data-protection","companyTitle":"EgoSecure","companyTypes":["vendor"],"companyId":5160,"companyAlias":"egosecure","description":"If data is lost due to theft, negligence or accident, great damage can be done. It can ruin businesses and reputations. The most vulnerable points of attack are our devices, e.g. computers, smartphones, laptops, etc., which are operated by people – and people are fallible.\r\nAnti-virus protection and a firewall are not enough to protect data. Data is the life-blood of every organization and for more than 10 years, we have been innovating and leading the way in the field of data protection. To date, more than 2,100 customers from every industry and of all sizes, are benefiting from EgoSecure Data Protection.\r\nWe do more than just blindly protecting your data. Firstly, our unique solution determines the data protection situation of your network. It then gives you accurate information, specific to your network, with guidance on how to protect yourself via our 20+ protection modules. This process can even be automated.\r\nWe call this a simply beautiful solution; making complicated things simple is what makes us so very attractive to our customers.","shortDescription":"With EgoSecure Data Protection, the German security specialist EgoSecure from Ettlingen has been the innovation leader in comprehensive data protection solutions since 2005.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":2,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"EgoSecure Data Protection","keywords":"","description":"If data is lost due to theft, negligence or accident, great damage can be done. It can ruin businesses and reputations. The most vulnerable points of attack are our devices, e.g. computers, smartphones, laptops, etc., which are operated by people – and people ","og:title":"EgoSecure Data Protection","og:description":"If data is lost due to theft, negligence or accident, great damage can be done. It can ruin businesses and reputations. The most vulnerable points of attack are our devices, e.g. computers, smartphones, laptops, etc., which are operated by people – and people ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/EgoSecure.png"},"eventUrl":"","translationId":3413,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":5,"title":"Security Software","alias":"security-software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png"},{"id":24,"title":"DLP - Data Leak Prevention","alias":"dlp-data-leak-prevention","description":"Data leak prevention (DLP) is a suite of technologies aimed at stemming the loss of sensitive information that occurs in enterprises across the globe. By focusing on the location, classification and monitoring of information at rest, in use and in motion, this solution can go far in helping an enterprise get a handle on what information it has, and in stopping the numerous leaks of information that occur each day. DLP is not a plug-and-play solution. The successful implementation of this technology requires significant preparation and diligent ongoing maintenance. Enterprises seeking to integrate and implement DLP should be prepared for a significant effort that, if done correctly, can greatly reduce risk to the organization. Those implementing the solution must take a strategic approach that addresses risks, impacts and mitigation steps, along with appropriate governance and assurance measures.","materialsDescription":" <span style=\"font-weight: bold;\">How to protect the company from internal threats associated with leakage of confidential information?</span>\r\nIn order to protect against any threat, you must first realize its presence. Unfortunately, not always the management of companies is able to do this if it comes to information security threats. The key to successfully protecting against information leaks and other threats lies in the skillful use of both organizational and technical means of monitoring personnel actions.\r\n<span style=\"font-weight: bold;\">How should the personnel management system in the company be organized to minimize the risks of leakage of confidential information?</span>\r\nA company must have a special employee responsible for information security, and a large department must have a department directly reporting to the head of the company.\r\n<span style=\"font-weight: bold;\">Which industry representatives are most likely to encounter confidential information leaks?</span>\r\nMore than others, representatives of such industries as industry, energy, and retail trade suffer from leaks. Other industries traditionally exposed to leakage risks — banking, insurance, IT — are usually better at protecting themselves from information risks, and for this reason they are less likely to fall into similar situations.\r\n<span style=\"font-weight: bold;\">What should be adequate measures to protect against leakage of information for an average company?</span>\r\nFor each organization, the question of protection measures should be worked out depending on the specifics of its work, but developing information security policies, instructing employees, delineating access to confidential data and implementing a DLP system are necessary conditions for successful leak protection for any organization. Among all the technical means to prevent information leaks, the DLP system is the most effective today, although its choice must be taken very carefully to get the desired result. So, it should control all possible channels of data leakage, support automatic detection of confidential information in outgoing traffic, maintain control of work laptops that temporarily find themselves outside the corporate network...\r\n<span style=\"font-weight: bold;\">Is it possible to give protection against information leaks to outsourcing?</span>\r\nFor a small company, this may make sense because it reduces costs. However, it is necessary to carefully select the service provider, preferably before receiving recommendations from its current customers.\r\n<span style=\"font-weight: bold;\">What data channels need to be monitored to prevent leakage of confidential information?</span>\r\nAll channels used by employees of the organization - e-mail, Skype, HTTP World Wide Web protocol ... It is also necessary to monitor the information recorded on external storage media and sent to print, plus periodically check the workstation or laptop of the user for files that are there saying should not.\r\n<span style=\"font-weight: bold;\">What to do when the leak has already happened?</span>\r\nFirst of all, you need to notify those who might suffer - silence will cost your reputation much more. Secondly, you need to find the source and prevent further leakage. Next, you need to assess where the information could go, and try to somehow agree that it does not spread further. In general, of course, it is easier to prevent the leakage of confidential information than to disentangle its consequences.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Leak_Prevention.png"},{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":483,"title":"Messaging Security","alias":"messaging-security","description":"<span style=\"font-weight: bold; \">Messaging security</span> is a subcategory of <span style=\"font-style: italic; \">unified threat management (UTM) </span>focused on securing and protecting an organization’s communication infrastructure. Communication channels can include email software, messaging apps, and social network IM platforms. This extra layer of security can help secure devices and block a wider range of viruses or malware attacks.\r\nMessaging security helps to ensure the confidentiality and authenticity of an organization’s communication methods. Confidentiality refers to making sure only the intended recipients are able to read the messages and authenticity refers to making sure the identity of each sender or recipient is verified.\r\nOftentimes, attackers aim to gain access to an entire network or system by infiltrating the messaging infrastructure. Implementing proper data and message security can minimize the chance of data leaks and identity theft.\r\n<span style=\"color: rgb(97, 97, 97); \">Encrypted messaging (also known as secure messaging) provides end-to-end encryption for user-to-user text messaging. Encrypted messaging prevents anyone from monitoring text conversations. Many encrypted messenger apps also offer end-to-end encryption for phone calls made using the apps, as well as for files that are sent using the apps.</span>\r\nTwo modern methods of encryption are the <span style=\"font-style: italic; \">Public Key (Asymmetric)</span> and the <span style=\"font-style: italic; \">Private Key (Symmetric</span>) methods. While these two methods of encryption are similar in that they both allow users to encrypt data to hide it from the prying eyes of outsiders and then decrypt it for viewing by an authorized party, they differ in how they perform the steps involved in the process.\r\n<span style=\"font-weight: bold; \">Email</span> security message can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send. \r\n<span style=\"font-weight: bold;\">Encrypted messaging systems </span>must be encrypted end-to-end, so that even the service provider and its staff are unable to decipher what’s in your communications. Ideal solutions is “server-less” encrypted chat where companies won’t store user information anywhere.\r\nIn a more general sense, users of unsecured public Wi-Fi should also consider using a <span style=\"font-weight: bold;\">Virtual Private Network </span>(VPN) application, to conceal their identity and location from Internet Service Providers (ISPs), higher level surveillance, and the attentions of hackers.","materialsDescription":"<h1 class=\"align-center\"> What is messaging security?</h1>\r\nMessaging Security is a program that provides protection for companies' messaging infrastructure. The programs include IP reputation-based anti-spam, pattern-based anti-spam, administrator-defined block/allow lists, mail antivirus, zero-hour malware detection, and email intrusion prevention.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Six Dimensions of Comprehensive Messaging Security</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">IP-Reputation Anti-spam.</span> It checks each email connection request with a database of IP addresses to establish whether a sender is a legitimate or known spam sender and malware. If a sender is recognized it undesirable the messaging Security program drops the connection before the message is accepted.</li><li><span style=\"font-weight: bold; \">Pattern-based anti-spam</span> utilizes a proprietary algorithm to establish a fingerprint-like signature of email messages. When a message comes in, its pattern is calculated and checked against a database to determine if the message matches a known email pattern. </li><li><span style=\"font-weight: bold; \">Block/Allow List Anti-spam.</span> Administrators can create a list of IP addresses or domains that they would like to either block or allow. This method ensures that trusted sources are explicitly allowed and unwanted sources are explicitly denied access.</li><li><span style=\"font-weight: bold; \">Mail Antivirus.</span> This layer of protection blocks a wide range of known viruses and malware attacks.</li><li><span style=\"font-weight: bold; \">Zero-Hour Malware Protection.</span> By analyzing large numbers of messages, outbreaks are detected along with their corresponding messages. These message patterns are then flagged as malicious, giving information about a given attack.</li><li><span style=\"font-weight: bold; \">SmartDefense Email IPS.</span> The messaging security program utilizes SmartDefense Email IPS to stop attacks targeting the messaging infrastructure. </li></ul>\r\n<h1 class=\"align-center\">What are Signal, Wire and LINE messenger security apps like ?</h1>\r\n<p class=\"align-left\">Secure private messenger is a messaging application that emphasizes the privacy and of users using encryption and service transparency. While every modern messenger system is using different security practices (most prominently SSL/HTTPS) - the difference between secure and classic messengers is what we don’t know in the scope of implementation and approach to user data. </p>\r\n<p class=\"align-left\">Message access control and secure messengers evolved into a distinct category due to the growing awareness that communication over the internet is accessible by third parties, and reasonable concerns that the messages can be used against the users.</p>\r\n<h1 class=\"align-center\">Why secure communication is essential for business?</h1>\r\n<p class=\"align-left\">In the context of business operation, communication is a vital element of maintaining an efficient and dynamic working process. It lets you keep everything up to date and on the same page. And since many things are going on at the same time - tools like messengers are one of the many helpers that make the working day a little more manageable.</p>\r\n<p class=\"align-left\">Some of the information, like employee and customer data, proprietary information, data directly linked to business performance or future projections, may be strictly under a non-disclosure agreement. Without proper text message authentication in information security or encryption, it remains vulnerable to exposure. The chances are slim, but the possibility remains. </p>\r\n<p class=\"align-left\">And there are people interested in acquiring that sensitive information, people who like to play dirty because getting a competitive advantage is a decent motivation to go beyond the law. And when private conversations leak, especially the business-related ones - the impact is comparable with the Titanic hitting an iceberg. </p>\r\n<p class=\"align-left\">Encrypted massages in messenger prevents this from happening.</p>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Messaging_Security.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3158,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Amazon_Simple_Queue_Service__SQS_.gif","logo":true,"scheme":false,"title":"Amazon Simple Queue Service (SQS)","vendorVerified":0,"rating":"0.00","implementationsCount":2,"suppliersCount":0,"supplierPartnersCount":4,"alias":"amazon-simple-queue-service-sqs","companyTitle":"Amazon Web Services","companyTypes":["supplier","vendor"],"companyId":176,"companyAlias":"amazon-web-services","description":"Amazon Simple Queue Service (SQS) is a fully managed message queuing service that enables you to decouple and scale microservices, distributed systems, and serverless applications. SQS eliminates the complexity and overhead associated with managing and operating message oriented middleware, and empowers developers to focus on differentiating work. Using SQS, you can send, store, and receive messages between software components at any volume, without losing messages or requiring other services to be available. Get started with SQS in minutes using the AWS console, Command Line Interface or SDK of your choice, and three simple commands.\r\nSQS offers two types of message queues. Standard queues offer maximum throughput, best-effort ordering, and at-least-once delivery. SQS FIFO queues are designed to guarantee that messages are processed exactly once, in the exact order that they are sent.\r\n\r\n<span style=\"text-decoration: underline; \"><span style=\"font-weight: bold; \">FEATURES:</span></span>\r\n<span style=\"font-weight: bold; \">Queue types</span>\r\nAmazon SQS offers two queue types for different application requirements:\r\n<span style=\"font-weight: bold; \">Standard Queues</span>\r\n<span style=\"font-weight: bold; \">Unlimited Throughput:</span> Standard queues support a nearly unlimited number of transactions per second (TPS) per API action.\r\n<span style=\"font-weight: bold; \">At-Least-Once Delivery:</span> A message is delivered at least once, but occasionally more than one copy of a message is delivered.\r\n<span style=\"font-weight: bold; \">Best-Effort Ordering:</span> Occasionally, messages might be delivered in an order different from which they were sent.\r\nYou can use standard message queues in many scenarios, as long as your application can process messages that arrive more than once and out of order, for example:\r\n<ul><li>Decouple live user requests from intensive background work: Let users upload media while resizing or encoding it.</li><li>Allocate tasks to multiple worker nodes: Process a high number of credit card validation requests.</li><li>Batch messages for future processing: Schedule multiple entries to be added to a database.</li></ul>\r\n<span style=\"font-weight: bold; \">FIFO Queues</span>\r\n<span style=\"font-weight: bold; \">High Throughput:</span> By default, FIFO queues support up to 300 messages per second (300 send, receive, or delete operations per second). When you batch 10 messages per operation (maximum), FIFO queues can support up to 3,000 messages per second.\r\n<span style=\"font-weight: bold; \">Exactly-Once Processing:</span> A message is delivered once and remains available until a consumer processes and deletes it. Duplicates aren't introduced into the queue.\r\n<span style=\"font-weight: bold; \">First-In-First-Out Delivery:</span> The order in which messages are sent and received is strictly preserved (i.e. First-In-First-Out).\r\nFIFO queues are designed to enhance messaging between applications when the order of operations and events is critical, or where duplicates can't be tolerated, for example:\r\n<ul><li>Ensure that user-entered commands are executed in the right order.</li><li>Display the correct product price by sending price modifications in the right order.</li><li>Prevent a student from enrolling in a course before registering for an account.</li></ul>\r\n<span style=\"font-weight: bold; \">Functionality</span>\r\n<ul><li><span style=\"font-weight: bold; \">Unlimited queues and messages:</span> Create unlimited Amazon SQS queues with an unlimited number of message in any region</li><li><span style=\"font-weight: bold; \">Payload Size:</span> Message payloads can contain up to 256KB of text in any format. Each 64KB ‘chunk’ of payload is billed as 1 request. For example, a single API call with a 256KB payload will be billed as four requests. To send messages larger than 256KB, you can use the Amazon SQS Extended Client Library for Java, which uses Amazon S3 to store the message payload. A reference to the message payload is sent using SQS.</li><li><span style=\"font-weight: bold; \">Batches:</span> Send, receive, or delete messages in batches of up to 10 messages or 256KB. Batches cost the same amount as single messages, meaning SQS can be even more cost effective for customers that use batching.</li><li><span style=\"font-weight: bold; \">Long polling:</span> Reduce extraneous polling to minimize cost while receiving new messages as quickly as possible. When your queue is empty, long-poll requests wait up to 20 seconds for the next message to arrive. Long poll requests cost the same amount as regular requests.</li><li><span style=\"font-weight: bold; \">Retain messages in queues for up to 14 days.</span></li><li><span style=\"font-weight: bold; \">Send and read messages simultaneously.</span></li><li><span style=\"font-weight: bold; \">Message locking:</span> When a message is received, it becomes “locked” while being processed. This keeps other computers from processing the message simultaneously. If the message processing fails, the lock will expire and the message will be available again.</li><li><span style=\"font-weight: bold; \">Queue sharing:</span> Securely share Amazon SQS queues anonymously or with specific AWS accounts. Queue sharing can also be restricted by IP address and time-of-day.</li><li><span style=\"font-weight: bold; \">Server-side encryption (SSE):</span> Protect the contents of messages in Amazon SQS queues using keys managed in the AWS Key Management Service (AWS KMS). SSE encrypts messages as soon as Amazon SQS receives them. The messages are stored in encrypted form and Amazon SQS decrypts messages only when they are sent to an authorized consumer.</li><li><span style=\"font-weight: bold; \">Dead Letter Queues (DLQ):</span> Handle messages that have not been successfully processed by a consumer with Dead Letter Queues. When the maximum receive count is exceeded for a message it will be moved to the DLQ associated with the original queue. Set up separate consumer processes for DLQs which can help analyze and understand why messages are getting stuck. DLQs must be of the same type as the source queue (standard or FIFO).</li></ul>\r\n<span style=\"font-weight: bold; \">Using Amazon SQS with other AWS infrastructure web services</span>\r\nAmazon SQS message queuing can be used with other AWS Services such as Redshift, DynamoDB, RDS, EC2, ECS, Lambda, and S3, to make distributed applications more scalable and reliable. Below are some common design patterns:\r\n<ul><li><span style=\"font-weight: bold; \">Work Queues:</span> Decouple components of a distributed application that may not all process the same amount of work simultaneously.</li><li><span style=\"font-weight: bold; \">Buffer and Batch Operations:</span> Add scalability and reliability to your architecture, and smooth out temporary volume spikes without losing messages or increasing latency.</li><li><span style=\"font-weight: bold; \">Request Offloading:</span> Move slow operations off of interactive request paths by enqueing the request.</li><li><span style=\"font-weight: bold; \">Fanout:</span> Combine SQS with Simple Notification Service (SNS) to send identical copies of a message to multiple queues in parallel.</li><li><span style=\"font-weight: bold; \">Priority:</span> Use separate queues to provide prioritization of work.</li><li>Scalability: Because message queues decouple your processes, it’s easy to scale up the send or receive rate of messages - simply add another process.</li><li><span style=\"font-weight: bold; \">Resiliency:</span> When part of your system fails, it doesn’t need to take the entire system down. Message queues decouple components of your system, so if a process that is reading messages from the queue fails, messages can still be added to the queue to be processed when the system recovers.</li></ul>\r\n\r\n<span style=\"text-decoration: underline; \"><span style=\"font-weight: bold; \">PRICING:</span></span>\r\n<ul><li>Pay only for what you use</li><li>No minimum fee</li></ul>\r\n<span style=\"font-weight: bold; \">Amazon SQS Free Tier</span>\r\nYou can get started with Amazon SQS for free. All customers can make 1 million Amazon SQS requests for free each month. Some applications might be able to operate within this Free Tier limit.\r\n<span style=\"font-weight: bold; \">How are Amazon SQS requests priced?</span>\r\nThe first 1 million monthly requests are free. After that, the pricing is as follows for all regions:\r\n<span style=\"font-weight: bold; \">Price per 1 Million Requests after Free Tier (Monthly)</span>\r\n<ul><li>Standard Queue $0.40 ($0.00000040 per request)</li><li>FIFO Queue $0.50 ($0.00000050 per request)</li></ul>\r\n<span style=\"font-weight: bold; \">How are Amazon SQS charges metered?</span>\r\n<span style=\"font-weight: bold; \">API Actions.</span> Every Amazon SQS action counts as a request.\r\n<span style=\"font-weight: bold; \">FIFO Requests.</span> API actions for sending, receiving, deleting, and changing visibility of messages from FIFO queues are charged at FIFO rates. All other API requests are charged at standard rates.\r\n<span style=\"font-weight: bold; \">Contents of Requests.</span> A single request can have from 1 to 10 messages, up to a maximum total payload of 256 KB.\r\n<span style=\"font-weight: bold; \">Size of Payloads.</span> Each 64 KB chunk of a payload is billed as 1 request (for example, an API action with a 256 KB payload is billed as 4 requests).\r\n<span style=\"font-weight: bold; \">Interaction with Amazon S3.</span> When using the Amazon SQS Extended Client Library to send payloads using Amazon S3, you incur Amazon S3 charges for any Amazon S3 storage you use to send message payloads.<br /><span style=\"font-weight: bold; \">Interaction with AWS KMS.</span> When using the AWS Key Management Service to manage keys for SQS server-side encryption, you incur charges for calls from Amazon SQS to AWS KMS.\r\n\r\n<span style=\"text-decoration: underline; \"><span style=\"font-weight: bold; \">BENEFITS:</span></span>\r\n<span style=\"font-weight: bold; \">Eliminate Administrative Overhead</span>\r\nAWS manages all ongoing operations and underlying infrastructure needed to provide a highly available and scalable message queuing service. With SQS, there is no upfront cost, no need to acquire, install, and configure messaging software, and no time-consuming build-out and maintenance of supporting infrastructure. SQS queues are dynamically created and scale automatically so you can build and grow applications quickly and efficiently.\r\n<span style=\"font-weight: bold; \">Reliably Deliver Messages</span>\r\nUse Amazon SQS to transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be available. SQS lets you decouple application components so that they run and fail independently, increasing the overall fault tolerance of the system. Multiple copies of every message are stored redundantly across multiple availability zones so that they are available whenever needed.\r\n<span style=\"font-weight: bold; \">Keep Sensitive Data Secure</span>\r\nYou can use Amazon SQS to exchange sensitive data between applications using server-side encryption (SSE) to encrypt each message body. Amazon SQS SSE integration with AWS Key Management Service (KMS) allows you to centrally manage the keys that protect SQS messages along with keys that protect your other AWS resources. AWS KMS logs every use of your encryption keys to AWS CloudTrail to help meet your regulatory and compliance needs.\r\n<span style=\"font-weight: bold;\">Scale Elastically and Cost-Effectively</span>\r\nAmazon SQS leverages the AWS cloud to dynamically scale based on demand. SQS scales elastically with your application so you don’t have to worry about capacity planning and pre-provisioning. There is no limit to the number of messages per queue, and standard queues provide nearly unlimited throughput. Costs are based on usage which provides significant cost saving versus the “always-on” model of self-managed messaging middleware.","shortDescription":"Amazon Simple Queue Service (SQS) - a fully managed message queues for microservices, distributed systems, and serverless applications.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Amazon Simple Queue Service (SQS)","keywords":"","description":"Amazon Simple Queue Service (SQS) is a fully managed message queuing service that enables you to decouple and scale microservices, distributed systems, and serverless applications. SQS eliminates the complexity and overhead associated with managing and operati","og:title":"Amazon Simple Queue Service (SQS)","og:description":"Amazon Simple Queue Service (SQS) is a fully managed message queuing service that enables you to decouple and scale microservices, distributed systems, and serverless applications. SQS eliminates the complexity and overhead associated with managing and operati","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Amazon_Simple_Queue_Service__SQS_.gif"},"eventUrl":"","translationId":3158,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":271,"title":"Messaging Applications","alias":"messaging-applications","description":" Messaging apps (a.k.a. "Social messaging" or "chat applications") are apps and platforms that enable messaging, many of which started around social networking platforms, but many of which have now developed into broad platforms enabling status updates, chatbots, payments and conversational commerce (e-commerce via chat).\r\nSome examples of popular messaging apps include WhatsApp, China's WeChat and QQ Messenger, Viber, Line, Snapchat, Korea's KakaoTalk, Google Hangouts, Blackberry Messenger, Telegram, and Vietnam's Zalo. Slack focuses on messaging and file sharing for work teams. Some social networking services offer messaging services as a component of their overall platform, such as Facebook's Facebook Messenger, along with Instagram and Twitter's direct messaging functions.\r\nMessaging apps are the most widely used smartphone apps with in 2018 over 1.3 billion monthly users of WhatsApp and Facebook Messenger, 980 million monthly active users of WeChat and 843 million monthly active users of QQ Mobile.\r\nOnline chatting apps differ from the previous generation of instant messaging platforms like the defunct AIM, Yahoo! Messenger, and Windows Live Messenger, in that they are primarily used via mobile apps on smartphones as opposed to personal computers, although some messaging apps offer web-based versions or software for PC operating systems.\r\nAs people upgraded in the 2010s from feature phones to smartphones, they moved from traditional calling and SMS (which are paid services) to messaging apps which are free or only incur small data charges.\r\n<p class=\"align-left\"> </p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Messaging apps each have some of the following features:</span></p>\r\n<ul><li>Chat</li></ul>\r\n<ol><li>One-on-one chat</li><li>Group chat</li><li> Broadcast lists</li><li>Chatbots (including "bot in group chats")</li><li>"Smart replies" (suggested replies to incoming messages provided by Google's Reply platform )</li></ol>\r\n<ul><li>Calls</li></ul>\r\n<ol><li>Voice calls</li><li> Video calls</li></ol>\r\n<ul><li>Audio alerts (on Line)</li><li>File sharing</li><li>Games</li><li>"Mini Programs" (e.g. WeChat Mini Program)</li><li>News discovery (e.g. Snapchat Discover)</li><li>Payments or mobile wallet, e.g. WeChat Pay which processes much of the Chinese mobile payment volume of US$5 trillion (2016)</li><li>Personal (cloud) storage</li><li>Push notifications</li><li>Status updates (WhatsApp Status, WeChat Moments)</li><li>Stickers</li><li>Virtual assistant, e.g. Google Assistant in Google Allo</li></ul>\r\n<p class=\"align-left\">Unlike chat rooms with many users engaging in multiple and overlapping conversations, instant messaging application sessions usually take place between two users in a private, back-and-forth style of communication.</p>\r\n<p class=\"align-left\">One of the core features of different messaging apps is the ability to see whether a friend or co-worker is online and connected through the selected service -- a capability known as presence. As the technology has evolved, many online messaging apps have added support for exchanging more than just text-based messages, allowing actions like file transfers and image sharing within the instant messaging session.</p>\r\n<p class=\"align-left\">Instant messaging also differs from email in the immediacy of the message exchange. It also tends to be session-based, having a start and an end. Because application message is intended to mimic in-person conversations, individual messages are often brief. Email, on the other hand, usually reflects a longer-form, letter-writing style.<br /><br /><br /></p>","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is instant messaging software?</span></h1>\r\nCompanies use instant messaging software to facilitate communication between their staff members who may be located in different places and countries. Popular websites such as Facebook offer instant chat services for free. Good quality messenger application solutions provide useful features such as video calling, web conferencing, and VoIP. Advanced platforms offer IP radio, IPTV, and desktop sharing tools. Large enterprises have greater communication needs and therefore they typically invest in installing an internal IM server to serve their thousands of employees.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">Why people use Messaging Apps?</span></h1>\r\n<ul><li>Real-time text transmission</li><li>Conveniency</li><li>Records of a chat history</li><li>Easy for multitasking</li><li>Operating anytime anywhere using the WiFi or Mobile Network operators</li><li>Stickers</li></ul>\r\nCommunication is an essential component of any business: interaction with external or internal customers, end users, employees. A good communication platform is vital to stay connected with the employees and broadcast information fast and efficiently. Thousands of people support the escalation from IM to other ways of communication, such as group chat, voice calls or video conferencing.<br />Depending on the purpose of use we can separate popular messenger nto those with business needs or for corporate use, such as Slack, Hangouts, Flock, Stride and those for everyday communications like WhatsApp, FB Messenger, WeChat, Telegram, and others.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How messaging apps can benefit your business?</span></h1>\r\n<p class=\"align-center\"></p>\r\nHeads bowed, shoulders hunched over glowing screens—we all might be a little guilty of smartphone addiction, and mobile usage is only increasing. We’re in constant communication with one another, and over the past few years messaging apps like Facebook Messenger and WeChat have become commonplace. Of the 10 most globally used apps, messaging apps account for 6.\r\nWith consumer messaging apps on the rise, businesses have begun to connect with customers on yet another channel. According to Gartner, “By 2019, requests for customer support through consumer mobile messaging apps will exceed requests for customer support through traditional social media.”\r\nServing up customer support through customer messaging software can deepen your brand’s relationship with customers. On the customer side, messaging apps provide an immediate way to connect with your business and get a response.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Here are three ways your business can benefit from connecting with customers over consumer messaging apps:</span></p>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Unrestricted communication.</span> No matter where they are in the world, messaging apps offer your customers unrestricted communication options. Unlike SMS, which often incurs charges, your customers can still reach out privately via messaging apps and receive a timely response without worrying about cost. That means happier customers, and happy customers mean a happy bottom line for your business.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Move customer queries from public to private. </span>Giving your customers an easy option to reach your business privately not only decreases their likelihood of publicly tweeting a complaint, it also offers a space to exchange sensitive information, like delivery details. With a more private outlet for customer interactions, your business can thoroughly help customers while simultaneously saving brand face.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Increase first contact resolution with chatbot integrations.</span> According to Gartner, artificial intelligence is a top trend for 2017. With the help of chatbots, your business can better manage workflows and automatically respond to customer requests via messaging. Chatbots can help point customers to the right information, helping them self-serve and ultimately allowing your support agents to focus on the issues that require a human touch. </li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Messaging_Applications.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3675,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/AnubisNetworks.png","logo":true,"scheme":false,"title":"AnubisNetworks MPS","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"anubisnetworks-mps","companyTitle":"AnubisNetworks","companyTypes":["supplier","vendor"],"companyId":5887,"companyAlias":"anubisnetworks","description":"<b>For Service Providers</b>\r\nGrow your revenue and lower your costs, managing and selling email security services.\r\nThe great skillset of Service Providers, their ability with communications networks, and especially their proximity to customers, make Service Providers especially fit to provide carrier-grade systems and value-added managed services on the Cybersecurity market.\r\n<b>For Enterprises</b>\r\nEmail security is critical for business to face the growth of cyber threats\r\nThe permanent relevance of Email in organizations, affected by the increasing security concerns associated with phishing, data leakage, and privacy protection, among others, pushes Service Providers to provide Email Security on top of the existing email infrastructure. Preferably, with an Email Security service robust enough to build trust on organizations, while becoming a value added service for the cloud platform itself, as well as hosted Service Providers and Resellers.\r\n<b>MPS Characteristics</b>\r\n<b>AnubisNetworks Global Threat Intelligence Platform</b>\r\nAnubisNetworks’ security ecosystem permanently monitors the world for Botnets, IP Reputation, Email phishing and Malware campaigns, and communicates with MPS edge filters, for real time proactive malware prevention.\r\n<b>Control Features on top of Security Features</b>\r\nDLP (Data Leakage Protection), Quota Management, Rate control, Email Validation, transport Encryption and many other features are available per user and per scope, taking this platform far beyond Email Security. \r\n<b>Complete Visibility on your platform </b>\r\nComplete details on messages and queues for inbound and outbound flows. MPS also contains several dashboard data, system auditing, business information tools, each feature configurable by scope and data. \r\n<b>Customizable/White Label GUI </b>\r\nEach of the hierarchy scopes can be fully customized with your brand identity, your partners and your end customers. \r\n<b>Lean Management of Quarantine</b>\r\nQuarantine can be managed by IT and/or end users, in a centralized console, with the option of web end user interface and/or email interface (via periodic digests). \r\n<b>Hierarchic Multitenant System for Inbound and Outbound</b>\r\nAn advanced architecture with several administration scopes (Virtual scopes, SMTP domains and LDAP based Organizational units), each with distinct roles – including Helpdesk users - for both centralized and delegated management. \r\n<b>Email Secure Routing and Virtual Aliases </b>\r\nMPS brings a new dimension to email routing management by enabling the usage of BCC, Email Queue holding, Distribution lists, Virtual Aliases, and Listeners based routing. And protected under SPF, TLS and DKIM encryption mechanisms. \r\n<b>Auditing, Monitoring and Billing information</b>\r\nAdvanced and easy access to detailed information on all activities and system information, for billing, auditing and compliance purposes.\r\n<b>Email Control</b>\r\n<ul> <li>DLP - Data Leakage Protection</li> <li>Multitenant Quota management</li> <li>White & Blacklists inheritance</li> <li>Attachments Discovery</li> <li>BCC and Archiving plugins</li> <li>AD Integration for AAA</li> </ul>","shortDescription":"MPS is a high-performance Email Security system designed from scratch to address the specific needs of enterprises and service providers","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"AnubisNetworks MPS","keywords":"","description":"<b>For Service Providers</b>\r\nGrow your revenue and lower your costs, managing and selling email security services.\r\nThe great skillset of Service Providers, their ability with communications networks, and especially their proximity to customers, make Service ","og:title":"AnubisNetworks MPS","og:description":"<b>For Service Providers</b>\r\nGrow your revenue and lower your costs, managing and selling email security services.\r\nThe great skillset of Service Providers, their ability with communications networks, and especially their proximity to customers, make Service ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/AnubisNetworks.png"},"eventUrl":"","translationId":3675,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":24,"title":"DLP - Data Leak Prevention","alias":"dlp-data-leak-prevention","description":"Data leak prevention (DLP) is a suite of technologies aimed at stemming the loss of sensitive information that occurs in enterprises across the globe. By focusing on the location, classification and monitoring of information at rest, in use and in motion, this solution can go far in helping an enterprise get a handle on what information it has, and in stopping the numerous leaks of information that occur each day. DLP is not a plug-and-play solution. The successful implementation of this technology requires significant preparation and diligent ongoing maintenance. Enterprises seeking to integrate and implement DLP should be prepared for a significant effort that, if done correctly, can greatly reduce risk to the organization. Those implementing the solution must take a strategic approach that addresses risks, impacts and mitigation steps, along with appropriate governance and assurance measures.","materialsDescription":" <span style=\"font-weight: bold;\">How to protect the company from internal threats associated with leakage of confidential information?</span>\r\nIn order to protect against any threat, you must first realize its presence. Unfortunately, not always the management of companies is able to do this if it comes to information security threats. The key to successfully protecting against information leaks and other threats lies in the skillful use of both organizational and technical means of monitoring personnel actions.\r\n<span style=\"font-weight: bold;\">How should the personnel management system in the company be organized to minimize the risks of leakage of confidential information?</span>\r\nA company must have a special employee responsible for information security, and a large department must have a department directly reporting to the head of the company.\r\n<span style=\"font-weight: bold;\">Which industry representatives are most likely to encounter confidential information leaks?</span>\r\nMore than others, representatives of such industries as industry, energy, and retail trade suffer from leaks. Other industries traditionally exposed to leakage risks — banking, insurance, IT — are usually better at protecting themselves from information risks, and for this reason they are less likely to fall into similar situations.\r\n<span style=\"font-weight: bold;\">What should be adequate measures to protect against leakage of information for an average company?</span>\r\nFor each organization, the question of protection measures should be worked out depending on the specifics of its work, but developing information security policies, instructing employees, delineating access to confidential data and implementing a DLP system are necessary conditions for successful leak protection for any organization. Among all the technical means to prevent information leaks, the DLP system is the most effective today, although its choice must be taken very carefully to get the desired result. So, it should control all possible channels of data leakage, support automatic detection of confidential information in outgoing traffic, maintain control of work laptops that temporarily find themselves outside the corporate network...\r\n<span style=\"font-weight: bold;\">Is it possible to give protection against information leaks to outsourcing?</span>\r\nFor a small company, this may make sense because it reduces costs. However, it is necessary to carefully select the service provider, preferably before receiving recommendations from its current customers.\r\n<span style=\"font-weight: bold;\">What data channels need to be monitored to prevent leakage of confidential information?</span>\r\nAll channels used by employees of the organization - e-mail, Skype, HTTP World Wide Web protocol ... It is also necessary to monitor the information recorded on external storage media and sent to print, plus periodically check the workstation or laptop of the user for files that are there saying should not.\r\n<span style=\"font-weight: bold;\">What to do when the leak has already happened?</span>\r\nFirst of all, you need to notify those who might suffer - silence will cost your reputation much more. Secondly, you need to find the source and prevent further leakage. Next, you need to assess where the information could go, and try to somehow agree that it does not spread further. In general, of course, it is easier to prevent the leakage of confidential information than to disentangle its consequences.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Leak_Prevention.png"},{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":41,"title":"Antispam","alias":"antispam","description":"In each system, which involves the communication of users, there is always the problem of spam, or the mass mailing of unsolicited emails, which is solved using the antispam system. An antispam system is installed to catch and filter spam at different levels. Spam monitoring and identification are relevant on corporate servers that support corporate email, here the antispam system filters spam on the server before it reaches the mailbox. There are many programs that help to cope with this task, but not all of them are equally useful. The main objective of such programs is to stop sending unsolicited letters, however, the methods of assessing and suppressing such actions can be not only beneficial but also detrimental to your organization. So, depending on the rules and policies of mail servers, your server, or even a domain, may be blacklisted and the transfer of letters will be limited through it, and you may not even be warned about it.\r\nThe main types of installation and use of anti-spam systems:\r\n<ul><li>installation of specialized equipment, a gateway that filters mail before it reaches the server;</li><li>use of external antispam systems for analyzing emails and content;</li><li>setting up an antispam system with the ability to learn on the mail server itself;</li><li>installation of spam filtering software on the client’s computer.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Anti-spam technologies:</span>\r\n<span style=\"font-weight: bold;\">Heuristic analysis</span>\r\nExtremely complex, highly intelligent technology for empirical analysis of all parts of a message: header fields, message bodies, etc. Not only the message itself is analyzed. The heuristic analyzer is constantly being improved, new rules are continuously added to it. It works “ahead of the curve” and makes it possible to recognize still unknown varieties of spam of a new generation before the release of available updates.\r\n<span style=\"font-weight: bold;\">Filtering counteraction</span>\r\nThis is one of the most advanced and effective anti-spam technologies. It is to recognize the tricks resorted to by spammers to bypass anti-spam filters.\r\n<span style=\"font-weight: bold;\">HTML based analysis</span>\r\nHTML code comparable to samples of HTML signatures in antispam. Such a comparison, using the available data on the size of typical spam images, protects users from spam messages using HTML-code, which are often included in the online image.\r\n<span style=\"font-weight: bold;\">Spam detection technology for message envelopes</span>\r\nDetection of fakes in the "stamps" of SMTP-servers and in other elements of the e-mail header is the newest direction in the development of anti-spam methods. Email addresses can not be trusted. Fake emails contain more than just spam. For example, anonymous and even threats. Technologies of various anti-spam systems allow you to send such messages. Thus, it provides not only the economic movement, but also the protection of employees.\r\n<span style=\"font-weight: bold;\">Semantic analysis</span>\r\nMeaning in words and phrases is compared with typical spam vocabulary. Comparison of provisions for a special dictionary, for expression and symbols.\r\n<span style=\"font-weight: bold;\">Anti-camming technology</span>\r\nScamming is probably the most dangerous type of spam. All of them have the so-called "Nigerian letters", reports of winnings in the lottery, casino, fake letters and credit services.\r\n<span style=\"font-weight: bold;\">Technical spam filtering</span>\r\nAutomatic notification of e-mail - bounce-messages - to inform users about the malfunction of the postal system (for example, non-delivery of address letters). Attackers can use similar messages. Under the guise of a technical notification, computer service or ordinary spam can penetrate the computer.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Antispam.png"},{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":483,"title":"Messaging Security","alias":"messaging-security","description":"<span style=\"font-weight: bold; \">Messaging security</span> is a subcategory of <span style=\"font-style: italic; \">unified threat management (UTM) </span>focused on securing and protecting an organization’s communication infrastructure. Communication channels can include email software, messaging apps, and social network IM platforms. This extra layer of security can help secure devices and block a wider range of viruses or malware attacks.\r\nMessaging security helps to ensure the confidentiality and authenticity of an organization’s communication methods. Confidentiality refers to making sure only the intended recipients are able to read the messages and authenticity refers to making sure the identity of each sender or recipient is verified.\r\nOftentimes, attackers aim to gain access to an entire network or system by infiltrating the messaging infrastructure. Implementing proper data and message security can minimize the chance of data leaks and identity theft.\r\n<span style=\"color: rgb(97, 97, 97); \">Encrypted messaging (also known as secure messaging) provides end-to-end encryption for user-to-user text messaging. Encrypted messaging prevents anyone from monitoring text conversations. Many encrypted messenger apps also offer end-to-end encryption for phone calls made using the apps, as well as for files that are sent using the apps.</span>\r\nTwo modern methods of encryption are the <span style=\"font-style: italic; \">Public Key (Asymmetric)</span> and the <span style=\"font-style: italic; \">Private Key (Symmetric</span>) methods. While these two methods of encryption are similar in that they both allow users to encrypt data to hide it from the prying eyes of outsiders and then decrypt it for viewing by an authorized party, they differ in how they perform the steps involved in the process.\r\n<span style=\"font-weight: bold; \">Email</span> security message can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send. \r\n<span style=\"font-weight: bold;\">Encrypted messaging systems </span>must be encrypted end-to-end, so that even the service provider and its staff are unable to decipher what’s in your communications. Ideal solutions is “server-less” encrypted chat where companies won’t store user information anywhere.\r\nIn a more general sense, users of unsecured public Wi-Fi should also consider using a <span style=\"font-weight: bold;\">Virtual Private Network </span>(VPN) application, to conceal their identity and location from Internet Service Providers (ISPs), higher level surveillance, and the attentions of hackers.","materialsDescription":"<h1 class=\"align-center\"> What is messaging security?</h1>\r\nMessaging Security is a program that provides protection for companies' messaging infrastructure. The programs include IP reputation-based anti-spam, pattern-based anti-spam, administrator-defined block/allow lists, mail antivirus, zero-hour malware detection, and email intrusion prevention.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Six Dimensions of Comprehensive Messaging Security</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">IP-Reputation Anti-spam.</span> It checks each email connection request with a database of IP addresses to establish whether a sender is a legitimate or known spam sender and malware. If a sender is recognized it undesirable the messaging Security program drops the connection before the message is accepted.</li><li><span style=\"font-weight: bold; \">Pattern-based anti-spam</span> utilizes a proprietary algorithm to establish a fingerprint-like signature of email messages. When a message comes in, its pattern is calculated and checked against a database to determine if the message matches a known email pattern. </li><li><span style=\"font-weight: bold; \">Block/Allow List Anti-spam.</span> Administrators can create a list of IP addresses or domains that they would like to either block or allow. This method ensures that trusted sources are explicitly allowed and unwanted sources are explicitly denied access.</li><li><span style=\"font-weight: bold; \">Mail Antivirus.</span> This layer of protection blocks a wide range of known viruses and malware attacks.</li><li><span style=\"font-weight: bold; \">Zero-Hour Malware Protection.</span> By analyzing large numbers of messages, outbreaks are detected along with their corresponding messages. These message patterns are then flagged as malicious, giving information about a given attack.</li><li><span style=\"font-weight: bold; \">SmartDefense Email IPS.</span> The messaging security program utilizes SmartDefense Email IPS to stop attacks targeting the messaging infrastructure. </li></ul>\r\n<h1 class=\"align-center\">What are Signal, Wire and LINE messenger security apps like ?</h1>\r\n<p class=\"align-left\">Secure private messenger is a messaging application that emphasizes the privacy and of users using encryption and service transparency. While every modern messenger system is using different security practices (most prominently SSL/HTTPS) - the difference between secure and classic messengers is what we don’t know in the scope of implementation and approach to user data. </p>\r\n<p class=\"align-left\">Message access control and secure messengers evolved into a distinct category due to the growing awareness that communication over the internet is accessible by third parties, and reasonable concerns that the messages can be used against the users.</p>\r\n<h1 class=\"align-center\">Why secure communication is essential for business?</h1>\r\n<p class=\"align-left\">In the context of business operation, communication is a vital element of maintaining an efficient and dynamic working process. It lets you keep everything up to date and on the same page. And since many things are going on at the same time - tools like messengers are one of the many helpers that make the working day a little more manageable.</p>\r\n<p class=\"align-left\">Some of the information, like employee and customer data, proprietary information, data directly linked to business performance or future projections, may be strictly under a non-disclosure agreement. Without proper text message authentication in information security or encryption, it remains vulnerable to exposure. The chances are slim, but the possibility remains. </p>\r\n<p class=\"align-left\">And there are people interested in acquiring that sensitive information, people who like to play dirty because getting a competitive advantage is a decent motivation to go beyond the law. And when private conversations leak, especially the business-related ones - the impact is comparable with the Titanic hitting an iceberg. </p>\r\n<p class=\"align-left\">Encrypted massages in messenger prevents this from happening.</p>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Messaging_Security.png"},{"id":824,"title":"ATP - Advanced Threat Protection","alias":"atp-advanced-threat-protection","description":" Advanced threat protection (ATP) refers to a category of security solutions that defend against sophisticated malware or hacking-based attacks targeting sensitive data. Advanced threat protection solutions can be available as software or as managed services. ATP solutions can differ in approaches and components, but most include some combination of endpoint agents, network devices, email gateways, malware protection systems, and a centralized management console to correlate alerts and manage defenses.\r\nThe primary benefit offered by advanced threat protection software is the ability to prevent, detect, and respond to new and sophisticated attacks that are designed to circumvent traditional security solutions such as antivirus, firewalls, and IPS/IDS. Attacks continue to become increasingly targeted, stealthy, and persistent, and ATP solutions take a proactive approach to security by identifying and eliminating advanced threats before data is compromised.\r\nAdvanced threat protection services build on this benefit by providing access to a global community of security professionals dedicated to monitoring, tracking, and sharing information about emerging and identified threats. ATP service providers typically have access to global threat information sharing networks, augmenting their own threat intelligence and analysis with information from third parties. When a new, advanced threat is detected, ATP service providers can update their defenses to ensure protection keeps up. This global community effort plays a substantial role in maintaining the security of enterprises around the world.\r\nEnterprises that implement advanced threat protection are better able to detect threats early and more quickly formulate a response to minimize damage and recover should an attack occur. A good security provider will focus on the lifecycle of an attack and manage threats in real-time. ATP providers notify the enterprise of attacks that have occurred, the severity of the attack, and the response that was initiated to stop the threat in its tracks or minimize data loss. Whether managed in-house or provided as a service, advanced threat protection solutions secure critical data and systems, no matter where the attack originates or how major the attack or potential attack is perceived.","materialsDescription":" <span style=\"font-weight: bold;\">How Advanced Threat Protection Works?</span>\r\nThere are three primary goals of advanced threat protection: early detection (detecting potential threats before they have the opportunity to access critical data or breach systems), adequate protection (the ability to defend against detected threats swiftly), and response (the ability to mitigate threats and respond to security incidents). To achieve these goals, advanced threat protection services and solutions must offer several components and functions for comprehensive ATP:\r\n<ul><li><span style=\"font-weight: bold;\">Real-time visibility</span> – Without continuous monitoring and real-time visibility, threats are often detected too late. When damage is already done, response can be tremendously costly in terms of both resource utilization and reputation damage.</li><li><span style=\"font-weight: bold;\">Context</span> – For true security effectiveness, threat alerts must contain context to allow security teams to effectively prioritize threats and organize response.</li><li><span style=\"font-weight: bold;\">Data awareness</span> – It’s impossible to determine threats truly capable of causing harm without first having a deep understanding of enterprise data, its sensitivity, value, and other factors that contribute to the formulation of an appropriate response.</li></ul>\r\nWhen a threat is detected, further analysis may be required. Security services offering ATP typically handle threat analysis, enabling enterprises to conduct business as usual while continuous monitoring, threat analysis, and response occurs behind the scenes. Threats are typically prioritized by potential damage and the classification or sensitivity of the data at risk. Advanced threat protection should address three key areas:\r\n<ul><li>Halting attacks in progress or mitigating threats before they breach systems</li><li>Disrupting activity in progress or countering actions that have already occurred as a result of a breach</li><li>Interrupting the lifecycle of the attack to ensure that the threat is unable to progress or proceed</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon-ATP.png"},{"id":826,"title":"Sandbox","alias":"sandbox","description":" In computer security, a "sandbox" is a security mechanism for separating running programs, usually in an effort to mitigate system failures or software vulnerabilities from spreading. It is often used to execute untested or untrusted programs or code, possibly from unverified or untrusted third parties, suppliers, users or websites, without risking harm to the host machine or operating system. A sandbox typically provides a tightly controlled set of resources for guest programs to run in, such as scratch space on disk and memory. Network access, the ability to inspect the host system or read from input devices are usually disallowed or heavily restricted.\r\nIn the sense of providing a highly controlled environment, sandboxes may be seen as a specific example of virtualization. Sandboxing is frequently used to test unverified programs that may contain a virus or other malicious code, without allowing the software to harm the host device.","materialsDescription":" <span style=\"font-weight: bold;\">What is the sandbox?</span>\r\nThe sandbox is like a ''virtual machine'', which runs on the device. It is a section of the device, for which a user account has been set in the system. In this section, programs can be started, data can be collected and services can be provided, which are not available within the system of the router. Inside the sandbox, the environment is like it is inside a Linux PC. The sandbox is an area separate from the router part of the system, which ensures that the router can fulfill its task without interference from the sandbox.\r\n<span style=\"font-weight: bold;\">What is the use of the sandbox?</span>\r\nBesides its actual tasks, the device can fulfill additional tasks via sandbox. Without the sandbox, these tasks would have to be carried out by an additional industrial computer.\r\nNot having to install and run the computer saves space inside the switching cabinet, money, as additional hardware is not required, and energy, which also reduces industrial waste heat. The device establishes the connection into the internet or to the control center. The programs in the sandbox use this connection. The configuration of the connection to the internet or to the control center can be set comfortably via the web interface.\r\n<span style=\"font-weight: bold;\">Which things can you NOT do with the sandbox?</span>\r\nAll the things that do require root permissions on the device.\r\nIt is not possible to execute commands or programs, which require root rights. Examples for such commands or programs are the raw connections (like ICMP - "ping"). This ensures that the device doesn't interfere with its tasks.\r\n<span style=\"font-weight: bold;\">Which hardware interfaces are available in the sandbox?</span>\r\nSerial interface, Ethernet of the LAN connection (4-port-switch), WAN connection depending on the make of the device (LAN, GPRS, EDGE, UMTS, PSTN and ISDN).\r\nVia the web interface, you can assign the serial interface to be used by applications in the sandbox. If assigned to the sandbox, the serial interface is not available for the device. In this case, neither serial-Ethernet-gateway nor the connection of a further, redundant communication device will be possible. The LAN, as well as the WAN connection, can be used in the way they are configured for the device. Network settings can be configured via the web interface and not via the sandbox. Depending on the configuration and the type of the device also the sandbox can communicate in various ways via LAN, GPRS, EDGE, UMTS, PSTN or ISDN.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon-sandbox.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3449,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/McAfee__logo_.jpg","logo":true,"scheme":false,"title":"McAfee Complete Data Protection","vendorVerified":1,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":110,"alias":"mcafee-complete-data-protection","companyTitle":"McAfee","companyTypes":["vendor"],"companyId":184,"companyAlias":"mcafee","description":"<span style=\"color: rgb(97, 97, 97); \">Secure your confidential data with an enterprise-grade security solution that is FIPS 140-2 and Common Criteria EAL2+ certified, and accelerated with the Intel® Advanced Encryption Standard—New Instructions (Intel AES-NI) set. McAfee Complete Data Protection uses drive encryption combined with strong access control via two-factor pre-boot authentication to prevent unauthorized access to confidential data on endpoints, including desktops, virtual desktop infrastructure (VDI) workstations, laptops, Microsoft Windows tablets, USB drives, and more.<br /></span>\r\n<span style=\"color: rgb(97, 97, 97); \"><span style=\"font-weight: bold;\">Key Features</span><br />■ Drive encryption<br />■ File and removable media protection<br />■ Management of native encryption<br /><br /><span style=\"font-weight: bold;\">Key Advantages</span><br />■ Stop data loss initiated by sophisticated malware that hijacks sensitive and personal information.<br />■ Secure data when it’s stored on desktops, laptops, tablets, and cloud storage.<br />■ Manage Apple FileVault and Microsoft BitLocker native encryption on endpoints directly from McAfee ePO software.<br />■ Communicate with and take control of your endpoints at the hardware level, whether they are powered off, disabled, or encrypted to halt desk-side visits and endless helpdesk calls due to security incidents, outbreaks, or forgotten encryption passwords.<br />■ Prove compliance with advanced reporting and auditing capabilities and monitor events and generate detailed reports that show auditors and other stakeholders your compliance with internal and regulatory privacy requirements.<br /></span>","shortDescription":"McAfee Complete Data Protection is a comprehensive endpoint encryption solution","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":3,"sellingCount":15,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"McAfee Complete Data Protection","keywords":"","description":"<span style=\"color: rgb(97, 97, 97); \">Secure your confidential data with an enterprise-grade security solution that is FIPS 140-2 and Common Criteria EAL2+ certified, and accelerated with the Intel® Advanced Encryption Standard—New Instructions (Intel AES-NI)","og:title":"McAfee Complete Data Protection","og:description":"<span style=\"color: rgb(97, 97, 97); \">Secure your confidential data with an enterprise-grade security solution that is FIPS 140-2 and Common Criteria EAL2+ certified, and accelerated with the Intel® Advanced Encryption Standard—New Instructions (Intel AES-NI)","og:image":"https://old.roi4cio.com/fileadmin/user_upload/McAfee__logo_.jpg"},"eventUrl":"","translationId":3450,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6267,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SafeLogic.jpg","logo":true,"scheme":false,"title":"SafeLogic CryptoComply","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"safelogic-cryptocomply","companyTitle":"SafeLogic","companyTypes":["vendor"],"companyId":8926,"companyAlias":"safelogic","description":"CryptoComply is a family of standards-based “Drop-in Compliance” cryptographic engines designed for use in servers, workstations, Cloud, appliances, and mobile devices. SafeLogic’s modules deliver core cryptographic functions to these platforms and feature robust algorithm support, including Suite B algorithms. CryptoComply modules offload secure key management, data integrity, data at rest encryption, and secure communications to a trusted implementation. As a FIPS 140-2 validated module, CryptoComply can be deployed quickly to meet various needs and requirements. \r\n<div style=\"text-align:center;\"><b>Features</b>\r\n<b>Cross-Platform API </b>\r\nCryptoComply delivers a single code library to support cross-operating system platforms. The same library can be used in applications across a variety of operating system platforms with the same programmatic interface while maintaining the FIPS 140-2 certification. CryptoComply accomplishes this by maintaining the same code base across multiple FIPS 140-2 validations. \r\n<b>Open Source Compatibility </b>\r\nCryptoComply is now available as a direct, drop-in replacement for OpenSSL, BoringSSL/BoringCrypto, JCE (Java Cryptographic Extension) providers such as Bouncy Castle, SunJCE, and RSA J-SAFE [see CryptoComply for Java], Network Security Services [see CryptoComply for NSS], and Libgcrypt [see CryptoComply for Libgcrypt]. For an architectural review and to confirm full compatibility, please contact us. \r\n<b>RapidCert Validation </b>\r\nSafeLogic reduces the time required for FIPS 140 validation by as much as 90% when the CryptoComply module is deployed as a replacement for non-validated software. FIPS 140-2 validations can take over 12 months, but with CryptoComply and the RapidCert process, time-to-compliance can be dramatically reduced. Our target is 8 weeks from start to finish with zero additional effort required from the customer. \r\n<b>Extended Compliance </b>\r\nCryptoComply provides meets the algorithm and key length mandates to support the latest guidance for FIPS 140-2, CNSA and Suite B compliance. Contact us with specific requirements. \r\n<b>Meet Compliance Requirements Instantly </b>\r\nCryptoComply modules are drop-in replacements for the low-level cryptographic libraries underlying TLS/SSL functions. Developers merely have to build their code to point to the CryptoComply APIs, so that the calls made by the TLS/SSL stack code are handled by CryptoComply. Because CryptoComply has already completed FIPS 140-2 validation, products that deploy CryptoComply can accurately claim FIPS 140-2 compliance immediately. \r\n<b>Manage Costs and Time </b>\r\nFIPS 140-2 validations can take well over a year to complete and costs have escalated dramatically, especially as the number of supported platforms increases. In the dynamic IT security business, these delays and costs can magnify competitive and customer demand pressures. CryptoComply provides instant FIPS 140-2 compliance because the modules have already undergone the validation process. Licensing other third-party modules can cost hundreds of thousands of dollars per year and don’t even include validation. With SafeLogic, customers will enjoy greatly reduced licensing and maintenance costs.\r\n<b>Eliminate Wasted Effort </b>\r\nValidations on a per product basis wastes time, money and effort. Save valuable resources by incorporating CryptoComply into multiple products or multiple product lines. Moreover, because CryptoComply is centrally maintained by SafeLogic, on-going support costs are greatly reduced and duplication of effort is eliminated. CryptoComply validations support a wide variety of operating system platforms and SafeLogic’s aggressive certification roadmap ensures that as new operating system versions are made available, CryptoComply FIPS 140-2 validations will be kept up-to-date.\r\n<b>Maintain Validation Status </b>\r\nWith FIPS 140-2 validations, any changes to a traditional module may force re-validation. Additional platform support may also require a re-validation. Discovered vulnerabilities in the module code could force a re-validation. CryptoComply contains only the core cryptographic functions, ensuring that only the most critical, security-relevant changes will necessitate re-validation. While CryptoComply has been designed to isolate the validation to only the key functions, SafeLogic will continue to stringently maintain validations to support technology changes and new security threats.","shortDescription":"CryptoComply is a family of standards-based “Drop-in Compliance” cryptographic engines designed for use in servers, workstations, Cloud, appliances, and mobile devices","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"SafeLogic CryptoComply","keywords":"","description":"CryptoComply is a family of standards-based “Drop-in Compliance” cryptographic engines designed for use in servers, workstations, Cloud, appliances, and mobile devices. SafeLogic’s modules deliver core cryptographic functions to these platforms and feature ro","og:title":"SafeLogic CryptoComply","og:description":"CryptoComply is a family of standards-based “Drop-in Compliance” cryptographic engines designed for use in servers, workstations, Cloud, appliances, and mobile devices. SafeLogic’s modules deliver core cryptographic functions to these platforms and feature ro","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SafeLogic.jpg"},"eventUrl":"","translationId":6266,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6271,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SaltDNA.png","logo":true,"scheme":false,"title":"SaltDNA SaltLEGAL","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"saltdna-saltlegal","companyTitle":"SaltDNA","companyTypes":["vendor"],"companyId":8927,"companyAlias":"saltdna","description":"<b>Secure Legal Communications </b>\r\nMobile communications present major privacy challenges for the legal industry. Client-attorney privileged discussions, mergers/acquisitions details and legal strategy are just a few examples of mobile communications that have been intercepted and reported on in the news. \r\nHistorically there have been many cases of cyber attacks within the legal industry. For example, in 2016, 48 elite law firms suffered cyber hacks to their security systems, which was reportedly due to the use of consumer applications and online services used for communications and sharing legal documentation. The consequences in cases such as this is significant for a law firm and its clients. \r\n<ul> <li>Technology used by magic circle law firms globally. </li> <li>Allows for lawyer-client communications on chosen matters. </li> <li>Clients only have access to allocated lawyers. </li> <li>Integrations with internal DMS systems. </li> <li>Control how clients' data is stored. </li> <li>Secure messages, calls & document transfer between lawyer & clients. </li> </ul>\r\n<b>Features:</b>\r\n<i>Secure Messaging </i>\r\nOur solution offers users private real-time messaging and group chat functionality to their colleagues or clients in relation to specific legal matters. \r\n<i>Secure Conferencing </i>\r\nWe offer secure one-to-one calls and conferencing allowing up to 16 participants at any one time. All VoIP calls are encrypted and secure in any region. \r\n<i>In-App Restrictions </i>\r\nAdministrators can restrict the capability of users to take screenshots within the app. They can also enforce additional app pin to be set, as well as an 'auto-burn' timer. \r\n<i>Deployment Options </i>\r\nAvailable as a hosted service or as an on-premise installation within private infrastructure. \r\n<i>Message Broadcasts </i>\r\nPush out live alerts to large groups of users within an organisation. Share messages, images & documents. \r\n<i>Closed Contacts </i>\r\nOrganisations can manage the communication channels within their company. They control who speaks to who as user's contacts aren't linked to their personal device. ","shortDescription":"Protecting Privileged Conversations","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"SaltDNA SaltLEGAL","keywords":"","description":"<b>Secure Legal Communications </b>\r\nMobile communications present major privacy challenges for the legal industry. Client-attorney privileged discussions, mergers/acquisitions details and legal strategy are just a few examples of mobile communications that ha","og:title":"SaltDNA SaltLEGAL","og:description":"<b>Secure Legal Communications </b>\r\nMobile communications present major privacy challenges for the legal industry. Client-attorney privileged discussions, mergers/acquisitions details and legal strategy are just a few examples of mobile communications that ha","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SaltDNA.png"},"eventUrl":"","translationId":6270,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":375,"title":"Mobile Enterprise Security","alias":"mobile-enterprise-security","description":" Because mobile devices are easily lost or stolen, data on those devices is vulnerable. Enterprise mobility management is a set of systems intended to prevent unauthorized access to enterprise applications and/or corporate data on mobile devices. These can include password protection, encryption and/or remote wipe technology, which allows an administrator to delete all data from a misplaced device. With many systems, security policies can be centrally managed and enforced. Such device management systems are programmed to support and cooperate with the application programming interfaces (APIs) from various device makers to increase security compliance.\r\nThe data transfer between mobile device and the enterprise should always be encrypted, for example through a VPN tunnel or over HTTPS.\r\nMobile devices in companies with "bring your own device" (BYOD) policies are often used both personally and professionally. In these cases, corporate IT has less control over whether malware is on the device and what damage may be caused to corporate data. Apart from careful user behavior - data storage on the mobile device should be limited and centrally organized.","materialsDescription":" <span style=\"font-weight: bold;\">What is mobile security?</span>\r\nMobile security refers to the set of technologies and practices that aim to protect mobile devices against operating system vulnerabilities, network and app attacks, or mobile malware. Technologies such as enterprise mobility management (EMM) solutions manage compliance policies and issues relating to device privilege or loss.\r\n<span style=\"font-weight: bold;\">What are mobile security threats?</span>\r\nMobile security threats are vulnerabilities or attacks that attempt to compromise your phone's operating system, internet connection, Wi-Fi and Bluetooth connections, or apps. Smartphones possess very different behaviors and capabilities compared to PCs or laptops and need to be equipped to detect attacks specific to mobile devices. Mobile devices contain unique functions and behaviors making traditional IT security solutions ineffective for securing mobile devices. One of the primary differences in how mobile devices are different from PCs and laptops is administration privileges. There are several administrators for a PC or laptop making it simple for corporate IT to install security software and monitor computers for problems. On mobile devices, the administration is handled by the device owner. The device owner is the only one that can install apps or allow other management profiles on the device. This means the burden of securing the mobile device and its data falls entirely on the user--who may not have the time or expertise to provide proper mobile device security.\r\n<span style=\"font-weight: bold;\">Why is mobile security important?</span>\r\nMobile security is very important since our mobile device is now our primary computing device. On average, users spend more than 5 hours each day on a mobile device conducting company and personal business. The shift in device usage habits has also moved the prime target for hackers from PCs to our mobile devices. Since mobile devices are now a prime target, we need to secure them and arm them with threat detection and malware protection just like PCs. Smartphones are able to circumvent traditional security controls, and typically represent a massive blind spot for IT and security teams. Hackers know this, which no doubt contributed to the number of smartphone attacks recorded between January and July 2016. The number of attacks nearly doubled compared to the last six months of 2015. During that same time period, smartphones accounted for 78% of all mobile network infections.\r\n<span style=\"font-weight: bold;\">Which mobile security is best for enterprises?</span>\r\nThere are a number of mobile security solutions available on the market, but identifying which mobile security is best for enterprises entails using specific criteria. As is often the case, solutions designed for consumers and end-users may not be as robust, full-featured, reliable and scalable as solutions designed specifically for the enterprise. In particular, mobile security solutions that are suitable for enterprise use should include scalability, autonomous functionality, machine learning, on-device operation, and protection from zero-day threats. Enterprises also need to consider flexible deployment models to take advantage of existing infrastructure or cloud computing environments.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Mobile_Enterprise_Security.png"},{"id":856,"title":"Secure Communications","alias":"secure-communications","description":" <span style=\"font-weight: bold;\">Secure communication</span> is when two entities are communicating and do not want a third party to listen in. For that, they need to communicate in a way not susceptible to eavesdropping or interception. Secure communication includes means by which people can share information with varying degrees of certainty that third parties cannot intercept what was said. Other than spoken face-to-face communication with no possible eavesdropper, it is probably safe to say that no communication is guaranteed secure in this sense, although practical obstacles such as legislation, resources, technical issues (interception and encryption), and the sheer volume of communication serve to limit surveillance.\r\nWith many communications taking place over long distances and mediated by technology, and increasing awareness of the importance of interception issues, technology, and its compromise are at the heart of this debate.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Encryption</span></span> is a method in which data is rendered hard to read by an unauthorized party. Since encryption methods are created to extremely hard to break, many communication methods either use deliberately weaker encryption than possible or have backdoors inserted to permit rapid decryption. In some cases, government authorities have required backdoors to be installed in secret. Many methods of encryption are also subject to "man in the middle" attack whereby a third party who can 'see' the establishment of the secure communication is made privy to the encryption method, this would apply for example to the interception of computer use at an ISP. Provided it is correctly programmed, sufficiently powerful, and the keys not intercepted, encryption would usually be considered secure.\r\nEncryption can be implemented in a way that requires the use of encryption, i.e. if encrypted communication is impossible then no traffic is sent, or opportunistically. Opportunistic encryption is a lower security method to generally increase the percentage of generic traffic which is encrypted. This is analogous to beginning every conversation with "Do you speak Navajo?" If the response is affirmative, then the conversation proceeds in Navajo, otherwise, it uses the common language of the two speakers. This method does not generally provide authentication or anonymity but it does protect the content of the conversation from eavesdropping.\r\nAn Information-theoretic security technique known as physical layer encryption ensures that a wireless communication link is provably secure with communications and coding techniques.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Steganography</span></span> ("hidden writing") is also the means by which data can be hidden within other more innocuous data. Thus a watermark proving ownership embedded in the data of a picture, in such a way it is hard to find or remove unless you know how to find it. Or, for communication, the hiding of important data (such as a telephone number) in apparently innocuous data (an MP3 music file). An advantage of steganography is plausible deniability, that is unless one can prove the data is there (which is usually not easy), it is deniable that the file contains any.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Identity-based networks</span></span> are one of the tools to obtain security. Unwanted or malicious behavior is possible on the web since the internet is inherently anonymous. True identity-based networks replace the ability to remain anonymous and are inherently more trustworthy since the identity of the sender and recipient are known. (The telephone system is an example of an identity-based network.)\r\nRecently, <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">anonymous networking</span></span> also has been used to secure communications. In principle, a large number of users running the same system can have communications routed between them in such a way that it is very hard to detect what the complete message is, which user sent it, and where it is ultimately coming from or going to. Examples are Crowds, Tor, I2P, Mixminion, various anonymous P2P networks, and others.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Anonymous communication devices</span></span> are also one of the tools to obtain security. In theory, an unknown device would not be noticed, since so many other devices are in use. This is not altogether the case in reality, due to the presence of systems such as Carnivore and Echelon, which can monitor communications over entire networks and the fact that the far end may be monitored as before. Examples include payphones, Internet cafes, etc.\r\nPrograms offering more security are <span style=\"font-weight: bold;\">secure instant messaging, VoIP, secure email, IRC and webchat,</span> and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What are the types of security?</span>\r\nSecurity can be broadly categorized under the following headings, with examples:\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">1. Hiding the content or nature of a communication</span></span>\r\n<ul><li><span style=\"font-style: italic; \">Code</span> – a rule to convert a piece of information (for example, a letter, word, phrase, or gesture) into another form or representation (one sign into another sign), not necessarily of the same type. In communications and information processing, encoding is the process by which information from a source is converted into symbols to be communicated. Decoding is the reverse process, converting these code symbols back into information understandable by a receiver. One reason for coding is to enable communication in places where ordinary spoken or written language is difficult or impossible. For example, semaphore, where the configuration of flags held by a signaler or the arms of a semaphore tower encodes parts of the message, typically individual letters, and numbers. Another person standing a great distance away can interpret the flags and reproduce the words sent.</li><li><span style=\"font-style: italic; \">Encryption</span></li><li><span style=\"font-style: italic; \">Steganography</span></li><li><span style=\"font-style: italic; \">Identity-Based</span></li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">2. Hiding the parties to a communication – preventing identification, promoting anonymity</span></span>\r\n<ul><li>"Crowds" and similar anonymous group structures – it is difficult to identify who said what when it comes from a "crowd"</li><li>Anonymous communication devices – unregistered cellphones, Internet cafes</li><li>Anonymous proxies</li><li>Hard to trace routing methods – through unauthorized third-party systems, or relays</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">3. Hiding the fact that communication takes place</span></span>\r\n<ul><li>"Security by obscurity" – similar to a needle in a haystack</li><li>Random traffic – creating random data flow to make the presence of genuine communication harder to detect and traffic analysis less reliable</li></ul>\r\nEach of the three is important, and depending on the circumstances any of these may be critical. For example, if a communication is not readily identifiable, then it is unlikely to attract attention for identification of parties, and the mere fact communication has taken place (regardless of content) is often enough by itself to establish an evidential link in legal prosecutions. It is also important with computers, to be sure where the security is applied, and what is covered.\r\n<span style=\"font-weight: bold; \">What are the methods used to "break" security?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Bugging</span></span>\r\nThe placing covertly of monitoring and/or transmission devices either within the communication device, or in the premises concerned.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Computers (general)</span></span>\r\nAny security obtained from a computer is limited by the many ways it can be compromised – by hacking, keystroke logging, backdoors, or even in extreme cases by monitoring the tiny electrical signals given off by keyboard or monitors to reconstruct what is typed or seen (TEMPEST, which is quite complex).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Laser audio surveillance</span></span>\r\nSounds, including speech, inside rooms, can be sensed by bouncing a laser beam off a window of the room where a conversation is held and detecting and decoding the vibrations in the glass caused by the sound waves.\r\n<span style=\"font-weight: bold; \">What are the systems offering partial security?</span>\r\n<span style=\"font-weight: bold; \">Anonymous cellphones.</span> Cellphones can easily be obtained, but are also easily traced and "tapped". There is no (or only limited) encryption, the phones are traceable – often even when switched off – since the phone and SIM card broadcast their International Mobile Subscriber Identity (IMSI). It is possible for a cellphone company to turn on some cellphones when the user is unaware and use the microphone to listen in on you, and according to James Atkinson, a counter-surveillance specialist cited in the same source, "Security-conscious corporate executives routinely remove the batteries from their cell phones" since many phones' software can be used "as-is", or modified, to enable transmission without user awareness and the user can be located within a small distance using signal triangulation and now using built-in GPS features for newer models. Transceivers may also be defeated by jamming or Faraday cage.\r\nSome cellphones (Apple's iPhone, Google's Android) track and store users' position information so that movements for months or years can be determined by examining the phone.\r\n<span style=\"font-weight: bold; \">Landlines.</span> Analog landlines are not encrypted, it lends itself to being easily tapped. Such tapping requires physical access to the line which can be easily obtained from a number of places, e.g. the phone location, distribution points, cabinets and the exchange itself. Tapping a landline in this way can enable an attacker to make calls that appear to originate from the tapped line.\r\n<span style=\"font-weight: bold;\">Anonymous Internet.</span> Using a third-party system of any kind (payphone, Internet cafe) is often quite secure, however, if that system is used to access known locations (a known email account or 3rd party) then it may be tapped at the far end, or noted, and this will remove any security benefit obtained. Some countries also impose mandatory registration of Internet cafe users.\r\nAnonymous proxies are another common type of protection, which allows one to access the net via a third party (often in a different country) and make tracing difficult. Note that there is seldom any guarantee that the plaintext is not tappable, nor that the proxy does not keep its own records of users or entire dialogs. As a result, anonymous proxies are a generally useful tool but may not be as secure as other systems whose security can be better assured. Their most common use is to prevent a record of the originating IP, or address, being left on the target site's own records. Typical anonymous proxies are found at both regular websites such as Anonymizer.com and spynot.com, and on proxy sites which maintain up to date lists of large numbers of temporary proxies in operation.\r\nA recent development on this theme arises when wireless Internet connections ("Wi-Fi") are left in their unsecured state. The effect of this is that any person in range of the base unit can piggyback the connection – that is, use it without the owner being aware. Since many connections are left open in this manner, situations where piggybacking might arise (willful or unaware) have successfully led to a defense in some cases, since it makes it difficult to prove the owner of the connection was the downloader or had knowledge of the use to which unknown others might be putting their connection. An example of this was the Tammie Marson case, where neighbors and anyone else might have been the culprit in the sharing of copyright files. Conversely, in other cases, people deliberately seek out businesses and households with unsecured connections, for illicit and anonymous Internet usage, or simply to obtain free bandwidth.\r\n<span style=\"font-weight: bold;\">Programs offering more security.</span>\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Secure instant messaging</span></span> – Some instant messaging clients use end-to-end encryption with forwarding secrecy to secure all instant messages to other users of the same software. Some instant messaging clients also offer end-to-end encrypted file transfer support and group messaging.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">VoIP</span></span> – Some VoIP clients implement ZRTP and SRTP encryption for calls.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Secure email</span></span> – some email networks are designed to provide encrypted and/or anonymous communication. They authenticate and encrypt on the users own computer, to prevent transmission of plain text, and mask the sender and recipient. Mixminion and I2P-Bote provide a higher level of anonymity by using a network of anonymizing intermediaries, similar to how Tor works, but at a higher latency.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">IRC and webchat</span></span> – Some IRC clients and systems use client-to-server encryption such as SSL/TLS. This is not standardized.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/diseno-plano-de-icon.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6534,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/TokenOne.png","logo":true,"scheme":false,"title":"TokenOne","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"tokenone","companyTitle":"TokenOne","companyTypes":["vendor"],"companyId":6729,"companyAlias":"tokenone","description":"TokenOne allows users to verify their real world credentials and identity, register their phone as a token and create a secure and secret PIN. A user can complete all necessary steps in a way that enables an organisation to meet both identity proofing and legal compliance requirements. Users can also add credentials as required by an organisation’s business rules. \r\n<b>Technology Overview </b>\r\n<i>Patented Technology </i>\r\nBased on principles of industry recognised uncrackable form of encryption (One-Time Pad). \r\n<i>No Algorithms </i>\r\nEnsures TokenOne is not vulnerable to someone cracking an algorithm and compromising multiple accounts and all the reliant services and infrastructure. \r\n<i>Self Management </i>\r\nUsers register their device as a true and unique token and create their own PIN. Ongoing management of both is also done by the user. \r\n<i>Authentication </i>\r\nSecure and simple by proving the presence of the device and mentally scrambling the PIN. \r\n<i>Genuine strong 2FA </i>\r\nAs both factors are strong, TokenOne proves the presence of the device AND the user and is one of the few mass market authentication solutions where both factors are strong. \r\n<i>PIN never revealed </i>\r\nThe user knows their PIN which is never entered or revealed to anyone, not even to TokenOne or the service the user is accessing. \r\n<b>Strong Two-Factor Authentication in Three Easy Steps </b>\r\n<ol> <li>Download the App</li> <li>Scan QR code and Register </li> <li>Encode your secret PIN</li> </ol>","shortDescription":"Highest Security At Scale","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"TokenOne","keywords":"","description":"TokenOne allows users to verify their real world credentials and identity, register their phone as a token and create a secure and secret PIN. A user can complete all necessary steps in a way that enables an organisation to meet both identity proofing and leg","og:title":"TokenOne","og:description":"TokenOne allows users to verify their real world credentials and identity, register their phone as a token and create a secure and secret PIN. A user can complete all necessary steps in a way that enables an organisation to meet both identity proofing and leg","og:image":"https://old.roi4cio.com/fileadmin/user_upload/TokenOne.png"},"eventUrl":"","translationId":6534,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":848,"title":"Multi-factor authentication","alias":"multi-factor-authentication","description":" Multi-factor authentication (MFA) is an authentication method in which a computer user is granted access only after successfully presenting two or more pieces of evidence (or factors) to an authentication mechanism: knowledge (something the user and only the user knows), possession (something the user and only the user has), and inherence (something the user and only the user is).\r\nTwo-factor authentication (also known as 2FA) is a type, or subset, of multi-factor authentication. It is a method of confirming users' claimed identities by using a combination of two different factors: 1) something they know, 2) something they have, or 3) something they are.\r\nA good example of two-factor authentication is the withdrawing of money from an ATM; only the correct combination of a bank card (something the user possesses) and a PIN (something the user knows) allows the transaction to be carried out.\r\nTwo other examples are to supplement a user-controlled password with a one-time password (OTP) or code generated or received by an authenticator (e.g. a security token or smartphone) that only the user possesses.\r\nTwo-step verification or two-step authentication is a method of confirming a user's claimed identity by utilizing something they know (password) and a second factor other than something they have or something they are. An example of a second step is the user repeating back something that was sent to them through an out-of-band mechanism. Or, the second step might be a six digit number generated by an app that is common to the user and the authentication system.","materialsDescription":" <span style=\"font-weight: bold;\">What is MFA?</span>\r\nMulti-factor authentication (MFA) combines two or more independent authentication factors. For example, suppose your website required your clients to enter something only they would know upon login (password), something they have (like a one-time smartphone authentication token provided by special software), and a biometric identifier (like a thumbprint). It is pretty hard for a mortgage cyber-attacker to have all three of those items, especially the biometric identifier.\r\n<span style=\"font-weight: bold;\">Why do I need MFA? What are the benefits?</span>\r\nPasswords are becoming increasingly easy to compromise. They can be stolen, “phished”, guessed, and hacked. New technology and hacking techniques combined with the limited pool of passwords most people use for multiple accounts increases vulnerability.\r\n<span style=\"font-weight: bold;\">How does MFA work?</span>\r\nMulti-factor authentication throws a few roadblocks in the hacker's pathway. Location factors are one way for a security system to identify a person's identity. For example, work schedules and location can determine whether a user is who he says he is. Time is another example of a security layer. If a person uses his phone at a job in the US, it is physically impossible for him to use it again from Europe 15 minutes later. These are especially helpful in online bank fraud and, by extension, mortgage company fraud.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Multi-factor_authentication.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3725,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/cspi.png","logo":true,"scheme":false,"title":"CSPi Aria Software Defined Security","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"cspi-aria-software-defined-security","companyTitle":"CSPi","companyTypes":["supplier","vendor"],"companyId":5651,"companyAlias":"cspi","description":"The <b>ARIA SDS</b> platform is a radically different approach to comprehensive network and data security as it employs capabilities normally only found in carrier-class or military-grade architectures. When deployed on available optional hardware offerings it provides the high-availability and fast failover and service-level assurance features demanded in a carrier-class infrastructure. It also uses military communication techniques to protect from penetration and administrative eavesdropping from set-up through operation. Yet, even with this added layer of functionality, the deployment and overall platform management is simple as it is handled through advanced zero-touch provisioning techniques.\r\n<b>How It Works</b>\r\nThe ARIA Software-Defined Security (SDS) platform can secure and encrypt containers and/or VMs as they spawn on-premise, private data centers or public cloud instances.\r\nThe ARIA software automatically applies the organization’s appropriate contextually aware security policies. Additionally, the ARIA Orchestrator automatically discovers the SDSi and manages the application of the appropriate type and level of security services upon deployment.\r\nThe central execution, across an entire organization, using a single pane of glass, ensures the desired access controls, micro-segmentation, encryption service types and levels, and other service techniques are correctly applied – no matter where the applications are running – whether it’s on premises, in the public cloud, or anywhere in between.\r\n<b>Benefits:</b>\r\n<b>Achieve SecDevOps</b>\r\nBalance the InfoSec requirement to maintain the consistent application of security policies and data protection with the desire of application developers for more agile and flexible DevOps practices. With ARIA, developers can simply select and connect to their applications for complete encryption.\r\n<b>Gain a Cost-effective, End-to-End Security Solution</b>\r\nThe ARIA software defined security solution works with any enterprise infrastructure, is easy to deploy, and costs up to ten times less than other server host-based encryption solutions. Organizations that run critical security functions on the Myricom ARC Series SIA (versus the server processor) can expect cost savings in the need for fewer server upgrades and lower power consumption, while also achieving increased application performance.\r\n<b>Secure Data at Rest, in Motion and in Use</b>\r\nIt’s not good enough to protect stored data. You must also have a solution for when it moves across the network, when it is accessed and used. ARIA applies the appropriate encryption policies by application, device, or data type – under any use and at any time.\r\n<b>Improve Application and Server Performance</b>\r\nAdvanced security functions like encryption, micro-segmentation, or tokenization are CPU-intensive and, if run through local servers, may cause an unacceptable delay in application performance. The ARIA platform runs seamlessly with the Myricom ARC Series SIA, making it the ideal choice for server off-load. In addition the SIA serves as a zone of trust for keys, making them impenetrable to breaches.","shortDescription":"CSPi is delivering portfolio of products and consulting solutions singularly focused on securing their customers critical business assets","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":10,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"CSPi Aria Software Defined Security","keywords":"","description":"The <b>ARIA SDS</b> platform is a radically different approach to comprehensive network and data security as it employs capabilities normally only found in carrier-class or military-grade architectures. When deployed on available optional hardware offerings it","og:title":"CSPi Aria Software Defined Security","og:description":"The <b>ARIA SDS</b> platform is a radically different approach to comprehensive network and data security as it employs capabilities normally only found in carrier-class or military-grade architectures. When deployed on available optional hardware offerings it","og:image":"https://old.roi4cio.com/fileadmin/user_upload/cspi.png"},"eventUrl":"","translationId":3724,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6557,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Trustifi.png","logo":true,"scheme":false,"title":"Trustifi Enterprise Email Encryption","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"trustifi-enterprise-email-encryption","companyTitle":"Trustifi, LLC","companyTypes":["supplier","vendor"],"companyId":5848,"companyAlias":"trustifi-llc","description":"<b>Protect your corporation from advanced cyber threats with business email encryption services </b>\r\nTrustifi protects enterprise organizations against spam, phishing and spoofing schemes, ransomware and other malware, and sophisticated business email compromise (BEC) fraud threats. Phishing schemes are increasingly hard to detect, and the cost to businesses can be millions of dollars annually. Having enterprise email encryption software to protect sensitive information is a must in the corporate environment. Sending a secure email ensures data loss prevention for your business. Using the S/MIME and transport layer security technologies, Trustifi's encryption capabilities are the best that any encryption software company has to offer to protect your email infrastructure. \r\n<ul> <li>Virus detection, prevention, protection, and alerting users </li> <li>Fraud protection </li> <li>Whitelisting and blacklisting options </li> <li>Prevent phishing attacks </li> <li>Protect against a data breach </li> </ul>\r\n<b>Prevent corporate email data loss and accidental leaks </b>\r\nAlong with the most secure encryption available, Trustifi provides visibility and transparency with patented Postmarked certified delivery that’s fully compliant with federal communication privacy laws. Trustifi tracks all enterprise email communications, providing answers to the most important questions: Was it delivered? When? Where? Who opened it? And on what device? Trustifi offers many email security features that integrate with your existing email. Many consider Trustifi to be the best enterprise email encryption solution on the market. \r\n<ul> <li>100% compliant with federal communication privacy laws, including HIPAA/HITECH, PII, GDPR, FSA, FINRA, LGPD, CCPA, and more </li> <li>Know in real time when emails have been received, opened, and read with certified delivery and tracking </li> <li>Two-factor authentication on the recipient (even without registering) </li> </ul>\r\n<b>Easily send and receive encrypted corporate emails </b>\r\nOne button click is all it takes to send a fully secure, NSA-grade enterprise encrypted email that’s easily opened by the recipient. Send encrypted emails enabled to be returned securely, for complete two-way encrypted communication. And do it from any device in your business. \r\n<ul> <li>NSA-grade encryption, with full inbound and outbound protection </li> <li>Secure mobile relay </li> <li>Advanced options like recalling, blocking, modifying, and setting expirations for already sent and delivered emails </li> </ul>","shortDescription":"Safeguard your corporate email and stop targeted cyber threats with our corporate email security solutions\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Trustifi Enterprise Email Encryption","keywords":"","description":"<b>Protect your corporation from advanced cyber threats with business email encryption services </b>\r\nTrustifi protects enterprise organizations against spam, phishing and spoofing schemes, ransomware and other malware, and sophisticated business email comprom","og:title":"Trustifi Enterprise Email Encryption","og:description":"<b>Protect your corporation from advanced cyber threats with business email encryption services </b>\r\nTrustifi protects enterprise organizations against spam, phishing and spoofing schemes, ransomware and other malware, and sophisticated business email comprom","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Trustifi.png"},"eventUrl":"","translationId":6557,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":483,"title":"Messaging Security","alias":"messaging-security","description":"<span style=\"font-weight: bold; \">Messaging security</span> is a subcategory of <span style=\"font-style: italic; \">unified threat management (UTM) </span>focused on securing and protecting an organization’s communication infrastructure. Communication channels can include email software, messaging apps, and social network IM platforms. This extra layer of security can help secure devices and block a wider range of viruses or malware attacks.\r\nMessaging security helps to ensure the confidentiality and authenticity of an organization’s communication methods. Confidentiality refers to making sure only the intended recipients are able to read the messages and authenticity refers to making sure the identity of each sender or recipient is verified.\r\nOftentimes, attackers aim to gain access to an entire network or system by infiltrating the messaging infrastructure. Implementing proper data and message security can minimize the chance of data leaks and identity theft.\r\n<span style=\"color: rgb(97, 97, 97); \">Encrypted messaging (also known as secure messaging) provides end-to-end encryption for user-to-user text messaging. Encrypted messaging prevents anyone from monitoring text conversations. Many encrypted messenger apps also offer end-to-end encryption for phone calls made using the apps, as well as for files that are sent using the apps.</span>\r\nTwo modern methods of encryption are the <span style=\"font-style: italic; \">Public Key (Asymmetric)</span> and the <span style=\"font-style: italic; \">Private Key (Symmetric</span>) methods. While these two methods of encryption are similar in that they both allow users to encrypt data to hide it from the prying eyes of outsiders and then decrypt it for viewing by an authorized party, they differ in how they perform the steps involved in the process.\r\n<span style=\"font-weight: bold; \">Email</span> security message can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send. \r\n<span style=\"font-weight: bold;\">Encrypted messaging systems </span>must be encrypted end-to-end, so that even the service provider and its staff are unable to decipher what’s in your communications. Ideal solutions is “server-less” encrypted chat where companies won’t store user information anywhere.\r\nIn a more general sense, users of unsecured public Wi-Fi should also consider using a <span style=\"font-weight: bold;\">Virtual Private Network </span>(VPN) application, to conceal their identity and location from Internet Service Providers (ISPs), higher level surveillance, and the attentions of hackers.","materialsDescription":"<h1 class=\"align-center\"> What is messaging security?</h1>\r\nMessaging Security is a program that provides protection for companies' messaging infrastructure. The programs include IP reputation-based anti-spam, pattern-based anti-spam, administrator-defined block/allow lists, mail antivirus, zero-hour malware detection, and email intrusion prevention.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Six Dimensions of Comprehensive Messaging Security</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">IP-Reputation Anti-spam.</span> It checks each email connection request with a database of IP addresses to establish whether a sender is a legitimate or known spam sender and malware. If a sender is recognized it undesirable the messaging Security program drops the connection before the message is accepted.</li><li><span style=\"font-weight: bold; \">Pattern-based anti-spam</span> utilizes a proprietary algorithm to establish a fingerprint-like signature of email messages. When a message comes in, its pattern is calculated and checked against a database to determine if the message matches a known email pattern. </li><li><span style=\"font-weight: bold; \">Block/Allow List Anti-spam.</span> Administrators can create a list of IP addresses or domains that they would like to either block or allow. This method ensures that trusted sources are explicitly allowed and unwanted sources are explicitly denied access.</li><li><span style=\"font-weight: bold; \">Mail Antivirus.</span> This layer of protection blocks a wide range of known viruses and malware attacks.</li><li><span style=\"font-weight: bold; \">Zero-Hour Malware Protection.</span> By analyzing large numbers of messages, outbreaks are detected along with their corresponding messages. These message patterns are then flagged as malicious, giving information about a given attack.</li><li><span style=\"font-weight: bold; \">SmartDefense Email IPS.</span> The messaging security program utilizes SmartDefense Email IPS to stop attacks targeting the messaging infrastructure. </li></ul>\r\n<h1 class=\"align-center\">What are Signal, Wire and LINE messenger security apps like ?</h1>\r\n<p class=\"align-left\">Secure private messenger is a messaging application that emphasizes the privacy and of users using encryption and service transparency. While every modern messenger system is using different security practices (most prominently SSL/HTTPS) - the difference between secure and classic messengers is what we don’t know in the scope of implementation and approach to user data. </p>\r\n<p class=\"align-left\">Message access control and secure messengers evolved into a distinct category due to the growing awareness that communication over the internet is accessible by third parties, and reasonable concerns that the messages can be used against the users.</p>\r\n<h1 class=\"align-center\">Why secure communication is essential for business?</h1>\r\n<p class=\"align-left\">In the context of business operation, communication is a vital element of maintaining an efficient and dynamic working process. It lets you keep everything up to date and on the same page. And since many things are going on at the same time - tools like messengers are one of the many helpers that make the working day a little more manageable.</p>\r\n<p class=\"align-left\">Some of the information, like employee and customer data, proprietary information, data directly linked to business performance or future projections, may be strictly under a non-disclosure agreement. Without proper text message authentication in information security or encryption, it remains vulnerable to exposure. The chances are slim, but the possibility remains. </p>\r\n<p class=\"align-left\">And there are people interested in acquiring that sensitive information, people who like to play dirty because getting a competitive advantage is a decent motivation to go beyond the law. And when private conversations leak, especially the business-related ones - the impact is comparable with the Titanic hitting an iceberg. </p>\r\n<p class=\"align-left\">Encrypted massages in messenger prevents this from happening.</p>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Messaging_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6321,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/segulink.png","logo":true,"scheme":false,"title":"Segusoft Segulink","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"segusoft-segulink","companyTitle":"Segusoft","companyTypes":["vendor"],"companyId":8291,"companyAlias":"segusoft","description":"<div style=\"align-text:center;\">Trusted Data Exchange for your Business. \r\n<ul> <li>End-to-end encryption. Your files and messages are securely encrypted, before they leave your device. Only the recipient can decrypt the data. </li> <li>For files and messages. Protect an arbitrary number of files - without size limits. You may also only encrypt your message. </li> <li>Traceable and controlled. Compliance for your data exchange: Keep track of what was sent and received. </li> <li>With your account. Authenticate yourself with your already existing accounts. You don't have to memorize an additional password! </li> <li>In the Hybrid Cloud. Use your business storage or your preferred cloud storage providers for exchanging encrypted files and messages. </li> <li>Or directly! You can also transfer your files and messages directly - without any intermediate storage. Simply from App-to-App. </li> </ul>\r\n<b>Why Segulink?</b>\r\n<ul> <li>Easy handling. Use your dashboard for an overview about which files have been sent to you, or what you have sent to other participants. Directly go to your inbox, the key management or get a summary about former activities in the reporting center. </li> <li>Ad-hoc data exchange. Your employees and business partners are able to exchange files and messages, even without registration with SEGULINK. Every authenticated user has an individual upload area for business partners. </li> <li>Keep control even after sending. Define exchange rules, e.g. how often a message can be downloaded, when a message is obsolete or that the recipient can only view the transferred documents inside the SEGULINK application (for PDF documents). </li> </ul>","shortDescription":"Trusted Data Exchange for your Business\r\n\r\n\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Segusoft Segulink","keywords":"","description":"<div style=\"align-text:center;\">Trusted Data Exchange for your Business. \r\n<ul> <li>End-to-end encryption. Your files and messages are securely encrypted, before they leave your device. Only the recipient can decrypt the data. </li> <li>For files and messages.","og:title":"Segusoft Segulink","og:description":"<div style=\"align-text:center;\">Trusted Data Exchange for your Business. \r\n<ul> <li>End-to-end encryption. Your files and messages are securely encrypted, before they leave your device. Only the recipient can decrypt the data. </li> <li>For files and messages.","og:image":"https://old.roi4cio.com/fileadmin/user_upload/segulink.png"},"eventUrl":"","translationId":6321,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":24,"title":"DLP - Data Leak Prevention","alias":"dlp-data-leak-prevention","description":"Data leak prevention (DLP) is a suite of technologies aimed at stemming the loss of sensitive information that occurs in enterprises across the globe. By focusing on the location, classification and monitoring of information at rest, in use and in motion, this solution can go far in helping an enterprise get a handle on what information it has, and in stopping the numerous leaks of information that occur each day. DLP is not a plug-and-play solution. The successful implementation of this technology requires significant preparation and diligent ongoing maintenance. Enterprises seeking to integrate and implement DLP should be prepared for a significant effort that, if done correctly, can greatly reduce risk to the organization. Those implementing the solution must take a strategic approach that addresses risks, impacts and mitigation steps, along with appropriate governance and assurance measures.","materialsDescription":" <span style=\"font-weight: bold;\">How to protect the company from internal threats associated with leakage of confidential information?</span>\r\nIn order to protect against any threat, you must first realize its presence. Unfortunately, not always the management of companies is able to do this if it comes to information security threats. The key to successfully protecting against information leaks and other threats lies in the skillful use of both organizational and technical means of monitoring personnel actions.\r\n<span style=\"font-weight: bold;\">How should the personnel management system in the company be organized to minimize the risks of leakage of confidential information?</span>\r\nA company must have a special employee responsible for information security, and a large department must have a department directly reporting to the head of the company.\r\n<span style=\"font-weight: bold;\">Which industry representatives are most likely to encounter confidential information leaks?</span>\r\nMore than others, representatives of such industries as industry, energy, and retail trade suffer from leaks. Other industries traditionally exposed to leakage risks — banking, insurance, IT — are usually better at protecting themselves from information risks, and for this reason they are less likely to fall into similar situations.\r\n<span style=\"font-weight: bold;\">What should be adequate measures to protect against leakage of information for an average company?</span>\r\nFor each organization, the question of protection measures should be worked out depending on the specifics of its work, but developing information security policies, instructing employees, delineating access to confidential data and implementing a DLP system are necessary conditions for successful leak protection for any organization. Among all the technical means to prevent information leaks, the DLP system is the most effective today, although its choice must be taken very carefully to get the desired result. So, it should control all possible channels of data leakage, support automatic detection of confidential information in outgoing traffic, maintain control of work laptops that temporarily find themselves outside the corporate network...\r\n<span style=\"font-weight: bold;\">Is it possible to give protection against information leaks to outsourcing?</span>\r\nFor a small company, this may make sense because it reduces costs. However, it is necessary to carefully select the service provider, preferably before receiving recommendations from its current customers.\r\n<span style=\"font-weight: bold;\">What data channels need to be monitored to prevent leakage of confidential information?</span>\r\nAll channels used by employees of the organization - e-mail, Skype, HTTP World Wide Web protocol ... It is also necessary to monitor the information recorded on external storage media and sent to print, plus periodically check the workstation or laptop of the user for files that are there saying should not.\r\n<span style=\"font-weight: bold;\">What to do when the leak has already happened?</span>\r\nFirst of all, you need to notify those who might suffer - silence will cost your reputation much more. Secondly, you need to find the source and prevent further leakage. Next, you need to assess where the information could go, and try to somehow agree that it does not spread further. In general, of course, it is easier to prevent the leakage of confidential information than to disentangle its consequences.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Leak_Prevention.png"},{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":858,"title":"Secure File Sharing","alias":"secure-file-sharing","description":" Secure file sharing is the process of sharing one or more files securely or privately.\r\nIt enables sharing files between different users/organizations confidentially and/or within a protected mode, secure from intruders or unauthorized users.\r\nSecure file sharing is also known as protected file sharing.\r\nSecure file sharing is generally performed by encrypting the file, either before sharing or when being transmitted over the network. This is done through an encryption algorithm. The file can be shared within a local network or over a standard Internet connection. Secure file sharing can also be done through a private network connection such as a VPN.\r\nMost file-sharing services or software enable secure file sharing by restricting access to the file, such as only granting authorized personnel rights to access, view and download the file.","materialsDescription":" <span style=\"font-weight: bold; \">What is file-sharing security?</span>\r\nFile sharing has grown in popularity and frequency as people work remotely and enterprises move to the cloud. However, any time employees use technology to share files between devices, there are security risks involved. File-sharing can introduce risks of malware infection, hacking, and loss or exposure of sensitive information. Without proper security measures in place, the benefits of file sharing can be significantly outweighed by the potential for exposing your company’s sensitive data to new security threats.\r\n<span style=\"font-weight: bold; \">What Are The Pros and Cons of File Sharing?</span>\r\nThere are a number of factors to keep in mind before you start actively file sharing.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Pros:</span></span>\r\n<ul><li>It allows you to transfer large files over a network connection.</li><li>It makes it easier to collaborate with other people across the globe.</li><li>It reduces the need to maintain a central file server that is always online.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cons:</span></span>\r\n<ul><li>The amount of bandwidth required can be costly.</li><li>Hard to trace what happens to a file after it is shared publicly.</li><li>Higher risk of acquiring a virus or other type of malware from a remote file.</li></ul>\r\n<span style=\"font-weight: bold; \">What are file-sharing stats?</span>\r\nWhen the topic of file-sharing comes up, most people recall the days of tools like Napster which became popular methods for illegally transferring music content around the internet in the ’90s. Today, however, file sharing is a key function for many businesses and other use cases.\r\n<ul><li>39% of business data that is uploaded to the cloud is used for file-sharing purposes.</li><li>The average company shares files with over 800 different online domains, which includes partners and vendors.</li><li>About 60% of files uploaded to a file sharing service are never actually shared with other people and are instead used as a backup copy.</li><li>About 70% of shared files are spread to only internal users in an organization.</li></ul>\r\n<span style=\"font-weight: bold; \">Secure file-sharing for businesses</span>\r\nSome of the best practices when it comes to ensuring your file-sharing sessions are secure at all times.\r\n<ul><li>Pick a service that offers <span style=\"font-weight: bold; \">end-to-end encryption.</span> This protects you from external hackers and also prevents the host itself from viewing your data.</li><li>Always <span style=\"font-weight: bold; \">double-check permission settings.</span> Most services allow for a public sharing option, but that means that anyone with the right link can obtain your files.</li><li>Run <span style=\"font-weight: bold; \">audits on your files</span> to see who is accessing them. If a file is no longer needed, remove it from your cloud system entirely.</li></ul>\r\n<span style=\"font-weight: bold;\">What are the types of file sharing?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">File Transfer Protocol (FTP)</span></span>\r\nFTP was one of the first methods invented for moving data across networks and it remains very popular today thanks to its reliability and efficiency. FTP actions can be run through a command prompt window or a tool with a user interface. All it requires is for you to specify the source file you want to move and the destination where it should be placed.\r\n<ul><li><span style=\"font-weight: bold;\">Great for:</span> Large files, unusual file types, or legacy data.</li><li><span style=\"font-weight: bold;\">Example programs:</span> FileZilla, Telnet, WinSCP.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Peer to Peer (P2P)</span></span>\r\nThe purpose of a P2P file transfer is to remove the need for a central server that hosts the data. Instead, individual clients connect to a distributed network of peers and complete the file transfers over their own network connections. P2P might eventually be used to create an unstoppable TOR. Whether or not The Onion Router (TOR) is a truly P2P environment depends on many factors, but its popularity in creating a more secure online connection is unquestioned.\r\n<ul><li><span style=\"font-weight: bold;\">Great for:</span> Sharing files with a small group of people, files that are unavailable in public repositories.</li><li><span style=\"font-weight: bold;\">Example programs:</span> Limewire, Gnutella, BearShare.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Cloud Services</span></span>\r\nWith a cloud file sharing service, one user uploads their data to a central repository and then other users can download the files to their own devices. All data is hosted by a third party provider, although users can specify what types of permission levels to put on the files.\r\n<ul><li><span style=\"font-weight: bold;\">Great for:</span> Fast sharing of files, creating backups of data.</li><li><span style=\"font-weight: bold;\">Example programs:</span> Dropbox, Box, OneDrive, iCloud.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Email Providers</span></span>\r\nSome people don’t realize that email can actually function as a file transfer system. Every time you attach a document to an outgoing message, you are initiating a transfer of that data over the open internet.\r\n<ul><li><span style=\"font-weight: bold;\">Great for:</span> Small files, data that need explanation.</li><li><span style=\"font-weight: bold;\">Example programs:</span> Gmail, Outlook, Yahoo! Mail.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Removable Storage</span></span>\r\nWhen no network-based option will fulfill your needs, you can always rely on a physical drive to serve as your file transfer operation. This means you are literally copying data to a USB flash drive or external hard drive and plugging that device into the destination computer.\r\n<ul><li><span style=\"font-weight: bold;\">Great for:</span> Massive files, sensitive data.</li><li><span style=\"font-weight: bold;\">Example programs:</span> USB thumb drives or external hard drives.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/sharefiledocumentcopying-icon.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6343,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Senetas.png","logo":true,"scheme":false,"title":"Senetas CV1000","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"senetas-cv1000","companyTitle":"Senetas","companyTypes":["vendor"],"companyId":8292,"companyAlias":"senetas","description":"Scalable to thousands of end-points, the CV1000 is a software application of the trusted high-assurance Senetas CN Series hardware encryption appliances. The CV1000 delivers cost effective policy-based multi-Layer data protection at up to 5Gbps. \r\n<b>Key Benefits:</b>\r\n<ul> <li>The CV1000 enables adoption of a virtualised encryption solution that does not compromise on security or network and application performance</li> <li>Instant scalability to match the scale and flexibility of virtual and software-defined networks </li> <li>No requirement to deploy large numbers of hardware encryption devices to achieve highscale implementation of network encryption</li> <li>The CV1000 encryption security and key management model is optimised for strong and effective encryption security</li> <li>Through Transport Independent Mode, the CV1000 is suited to a multi-Layer network environment</li> <li>Competitively, the CV1000 delivers up to 30% network performance benefit over other solutions</li> <li>Ease of deployment with centralised, ‘zerotouch’ provisioning</li> <li>100% interoperability with Senetas CN Series encryptors </li> <li>As a software implementation of the Senetas high-assurance encryption platform, the CV1000 provides a flexible, cost-effective way to encrypt all the way to the virtual edge</li> <li>Data centre service providers identified the CV1000 as an optimal solution; providing strong and effective encryption security among devices within the data centre itself</li> </ul>","shortDescription":"Virtualised Encryption, Real-World Security and Performance\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Senetas CV1000","keywords":"","description":"Scalable to thousands of end-points, the CV1000 is a software application of the trusted high-assurance Senetas CN Series hardware encryption appliances. The CV1000 delivers cost effective policy-based multi-Layer data protection at up to 5Gbps. \r\n<b>Key Benef","og:title":"Senetas CV1000","og:description":"Scalable to thousands of end-points, the CV1000 is a software application of the trusted high-assurance Senetas CN Series hardware encryption appliances. The CV1000 delivers cost effective policy-based multi-Layer data protection at up to 5Gbps. \r\n<b>Key Benef","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Senetas.png"},"eventUrl":"","translationId":6343,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3788,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/infosec_global.png","logo":true,"scheme":false,"title":"Infosec Global AgileScan","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"infosec-global-agilescan","companyTitle":"Infosec Global","companyTypes":["supplier","vendor"],"companyId":5963,"companyAlias":"infosec-global","description":"<b>AgileScan</b> is a cryptographic security management solution that quickly, easily, and automatically generates an inventory of certificates, keys and cryptographic mechanisms found in software and systems across the enterprise. It pro-actively hunts for hidden risks and vulnerabilities. AgileScan accelerates cryptographic compliance and post-quantum readiness for Enterprises, Governments, and Technology Providers.\r\n<b>Features:</b>\r\n<b>Certificates | Analysis</b>\r\nAgileScan inventories and analyses certificates embedded within applications, infrastructure, servers and network to:\r\n<ul> <li>Prevent downtime of an infrastructure by detecting <b>expiring certificates</b></li> <p> </p> <li>Prevent data breach by detecting<b> in-secure or fraudulent certificates </b></li> <p> </p> <li>Prevent compliance breach by detecting <b>non-compliant certificate</b></li> <p> </p> </ul>\r\n<b>Keys | Analysis</b>\r\nAgileScan inventories and analyses cryptographic keys embedded within applications, infrastructure, servers and network to:\r\n<ul> <li>Prevent data breach by detecting<b> insecure or weak private keys</b></li> <p> </p> <li>Prevent key disclosure by detecting<b> insecure key storage</b></li> <p> </p> <li>Prevent compliance breach by detecting use of<b> noncompliant private keys</b></li> <p> </p> </ul>\r\n<b>Cryptographic | Analysis</b>\r\nAgileScan inventories and analyses cryptographic mechanisms present within applications, infrastructure, servers and network to:\r\n<ul> <li>Prevent data breach by detecting <b> vulnerable cryptographic libraries </b></li> <p> </p> <li>Prevent compliance breach by detecting<b> non-compliant algorithms (e.g. SHA1)</b></li> <p> </p> <li>Support quantum-safe transition by detecting<b> quantum vulnerable algorithms </b></li> <p> </p> </ul>\r\n<b>Key benefits:</b>\r\n<b>Deliver Unique Information</b>\r\nAgileScan delivers unique information about certificates, keys and cryptography present within a digital infrastructure or embedded within applications.\r\n<b>Enhance Cyber Resilience</b>\r\nAgileScan detects hidden certificates, keys and cryptographic vulnerabilities that leave companies at risk and that can be exploited by attackers. \r\n<b>Prevent Infrastructure Downtime</b>\r\nAgileScan detects embedded certificates that are expiring and that can lead to unanticipated downtime of sensitive infrastructure or services.\r\n<b>Verify Compliance with Standards</b>\r\nAgileScan automates compliance controls required by industry specific regulations and continuously verifies usage of state-of-the-art mechanisms.\r\n<b>Prepare for Quantum Transition</b>\r\nAgileScan enables organizations to prepare their transition to new cryptographic standards (e.g. Post-Quantum) by mapping presence of cryptography\r\n<b>Leverage Leading-Edge Detection</b>\r\nAgileScan has unique capabilities to detect certificates, keys and cryptography within byte code independently from coding language and without source code.\r\n<b>Integrate Infrastructure </b>\r\nAgileScan integrates with different enterprise systems including Continuous Integration (CI), SIEM and any other system via API and webservices. \r\n<b>Ensure Minimal Operational Impact</b>\r\nAgileScan uses a lightweight scanning approach to minimize impact on operations and ensure seamless deployment through standard automation tools.","shortDescription":"Uncovering Certificates, Keys and Cryptography","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":18,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Infosec Global AgileScan","keywords":"","description":"<b>AgileScan</b> is a cryptographic security management solution that quickly, easily, and automatically generates an inventory of certificates, keys and cryptographic mechanisms found in software and systems across the enterprise. It pro-actively hunts for hi","og:title":"Infosec Global AgileScan","og:description":"<b>AgileScan</b> is a cryptographic security management solution that quickly, easily, and automatically generates an inventory of certificates, keys and cryptographic mechanisms found in software and systems across the enterprise. It pro-actively hunts for hi","og:image":"https://old.roi4cio.com/fileadmin/user_upload/infosec_global.png"},"eventUrl":"","translationId":3787,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":["Shortage of inhouse software developers","Shortage of inhouse IT resources","High costs of IT personnel","Shortage of inhouse IT engineers"],"materials":[],"useCases":[],"best_practices":[],"values":["Reduce Costs","Ensure Security and Business Continuity"],"implementations":[],"presenterCodeLng":"","productImplementations":[]}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}