{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"products":{"reference-bonus":{"_type":"localeString","en":"Offer a reference bonus","ru":"Предложить бонус за референс"},"configurator":{"ru":"Конфигуратор","_type":"localeString","en":"Configurator"},"i-sell-it":{"ru":"I sell it","_type":"localeString","en":"I sell it"},"i-use-it":{"ru":"I use it","_type":"localeString","en":"I use it"},"roi-calculator":{"ru":"ROI-калькулятор","_type":"localeString","en":"ROI-calculator"},"selling":{"_type":"localeString","en":"Selling","ru":"Продают"},"using":{"en":"Using","ru":"Используют","_type":"localeString"},"sort-title-asc":{"_type":"localeString","en":"From A to Z","ru":"От А до Я"},"supplier-popover":{"en":"supplier","ru":"поставщик","_type":"localeString"},"implementation-popover":{"ru":"внедрение","_type":"localeString","en":"deployment"},"vendor-popover":{"en":"vendor","ru":"производитель","_type":"localeString"},"sort-title-desc":{"ru":"от Я до А","_type":"localeString","en":"From Z to A"},"sort-rating-asc":{"_type":"localeString","en":"Rating ascending","ru":"По возрастанию рейтинга"},"sort-rating-desc":{"ru":"По убыванию рейтинга","_type":"localeString","en":"Rating descending"},"sort-discount-asc":{"_type":"localeString","en":"Rebate ascending","ru":"По возрастанию скидки"},"sort-discount-desc":{"ru":"По убыванию скидки","_type":"localeString","en":"Rebate descending"},"i-use-it-popover":{"ru":"Внесите свое внедрение и получите бонус от ROI4CIO или поставщика.","_type":"localeString","en":"Make your introduction and get a bonus from ROI4CIO or the supplier."},"details":{"en":"Details","ru":"Детальнее","_type":"localeString"},"rebate-for-poc":{"_type":"localeString","en":"Bonus 4 POC","ru":"Бонус 4 POC"},"rebate":{"ru":"Бонус","_type":"localeString","en":"Bonus"},"vendor-verified":{"ru":"Поставщик потверждён","_type":"localeString","en":"Vendor verified"},"program-sends-data":{"en":"Program sends data","_type":"localeString"},"learn-more-btn":{"en":"Learn more","ru":"Узнать больше","_type":"localeString"},"categories-popover":{"ru":"категории","_type":"localeString","en":"categories"},"sort-popular-asc":{"ru":"По возростанию популярности","_type":"localeString","en":"Popular ascending"},"sort-popular-desc":{"_type":"localeString","en":"Popular descending","ru":"По убыванию популярности"},"no-results":{"ru":"По вашему запросу ничего не найдено, попробуйте изменить запрос.","_type":"localeString","en":"No results found. We didn't find any results with the filter you selected."},"login":{"en":"Login","de":"Einloggen","ru":"Войти","_type":"localeString"},"register":{"de":"Registrieren","ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"auth-message":{"de":"Sie müssen sich registrieren oder anmelden","ru":"Вам нужно зарегистрироваться или войти.","_type":"localeString","en":"You need to register or login."},"add-to-comparison":{"en":"Add to comparison","ru":"Добавить в сравнение","_type":"localeString"},"added-to-comparison":{"ru":"Добавлено в сравнения","_type":"localeString","en":"Added to comparison"},"items-found":{"ru":"Продуктов найдено","_type":"localeString","en":"Products found"},"sort-sales-desc":{"_type":"localeString","en":"By sale","ru":"По продаже"},"sort-purchases-desc":{"en":"By purchase","ru":"По покупке","_type":"localeString"},"product-supplier":{"_type":"localeString","en":"Product supplier","ru":"Поставщик продукта"},"product-vendor":{"_type":"localeString","en":"Product producer","ru":"Производитель продукта"},"products-fetching-error":{"en":"An error has occurred. Please reload the page.","ru":"Произошла ошибка. Перезагрузите пожалуйста страницу.","_type":"localeString"}},"header":{"help":{"ru":"Помощь","_type":"localeString","en":"Help","de":"Hilfe"},"how":{"ru":"Как это работает","_type":"localeString","en":"How does it works","de":"Wie funktioniert es"},"login":{"de":"Einloggen","ru":"Вход","_type":"localeString","en":"Log in"},"logout":{"_type":"localeString","en":"Sign out","ru":"Выйти"},"faq":{"de":"FAQ","ru":"FAQ","_type":"localeString","en":"FAQ"},"references":{"ru":"Мои запросы","_type":"localeString","en":"Requests","de":"References"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find-it-product":{"en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта","_type":"localeString"},"autoconfigurator":{"en":" Price calculator","ru":"Калькулятор цены","_type":"localeString"},"comparison-matrix":{"_type":"localeString","en":"Comparison Matrix","ru":"Матрица сравнения"},"roi-calculators":{"_type":"localeString","en":"ROI calculators","ru":"ROI калькуляторы"},"b4r":{"_type":"localeString","en":"Bonus for reference","ru":"Бонус за референс"},"business-booster":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"catalogs":{"en":"Catalogs","ru":"Каталоги","_type":"localeString"},"products":{"_type":"localeString","en":"Products","ru":"Продукты"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"categories":{"_type":"localeString","en":"Categories","ru":"Категории"},"for-suppliers":{"ru":"Поставщикам","_type":"localeString","en":"For suppliers"},"blog":{"ru":"Блог","_type":"localeString","en":"Blog"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"ru":"Мой кабинет","_type":"localeString","en":"My account"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"comparison-deletion":{"_type":"localeString","en":"Deletion","ru":"Удаление"},"comparison-confirm":{"en":"Are you sure you want to delete","ru":"Подтвердите удаление","_type":"localeString"},"search-placeholder":{"_type":"localeString","en":"Enter your search term","ru":"Введите поисковый запрос"},"my-profile":{"_type":"localeString","en":"My profile","ru":"Мои данные"},"about":{"en":"About Us","_type":"localeString"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"en":"Roi4Presenter","_type":"localeString"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"en":"Find IT product","_type":"localeString"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"_type":"localeString","en":"Create an avatar for the event"},"catalogs_new":{"_type":"localeString","en":"Products"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"_type":"localeString","en":"Our IT Catalogs"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"_type":"localeString","en":"Our Products"},"it_it_catalogs":{"en":"IT catalogs","_type":"localeString"}},"footer":{"copyright":{"de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString","en":"All rights reserved"},"company":{"ru":"О компании","_type":"localeString","en":"My Company","de":"Über die Firma"},"about":{"en":"About us","de":"Über uns","ru":"О нас","_type":"localeString"},"infocenter":{"de":"Infocenter","ru":"Инфоцентр","_type":"localeString","en":"Infocenter"},"tariffs":{"de":"Tarife","ru":"Тарифы","_type":"localeString","en":"Subscriptions"},"contact":{"de":"Kontaktiere uns","ru":"Связаться с нами","_type":"localeString","en":"Contact us"},"marketplace":{"en":"Marketplace","de":"Marketplace","ru":"Marketplace","_type":"localeString"},"products":{"en":"Products","de":"Produkte","ru":"Продукты","_type":"localeString"},"compare":{"de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare"},"calculate":{"en":"Calculate the cost","de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString"},"get_bonus":{"_type":"localeString","en":"Bonus for reference","de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс"},"salestools":{"ru":"Salestools","_type":"localeString","en":"Salestools","de":"Salestools"},"automatization":{"de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов","_type":"localeString","en":"Settlement Automation"},"roi_calcs":{"en":"ROI calculators","de":"ROI-Rechner","ru":"ROI калькуляторы","_type":"localeString"},"matrix":{"en":"Comparison matrix","de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString"},"b4r":{"_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference","ru":"Rebate 4 Reference"},"our_social":{"en":"Our social networks","de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети","_type":"localeString"},"subscribe":{"en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString"},"subscribe_info":{"_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews","ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта"},"policy":{"en":"Privacy Policy","ru":"Политика конфиденциальности","_type":"localeString"},"user_agreement":{"en":"Agreement","ru":"Пользовательское соглашение ","_type":"localeString"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find":{"en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта","_type":"localeString"},"quote":{"en":"Price calculator","ru":"Калькулятор цены","_type":"localeString"},"boosting":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"4vendors":{"en":"4 vendors","ru":"поставщикам","_type":"localeString"},"blog":{"en":"blog","ru":"блог","_type":"localeString"},"pay4content":{"en":"we pay for content","ru":"платим за контент","_type":"localeString"},"categories":{"ru":"категории","_type":"localeString","en":"categories"},"showForm":{"ru":"Показать форму","_type":"localeString","en":"Show form"},"subscribe__title":{"en":"We send a digest of actual news from the IT world once in a month!","ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString"},"subscribe__email-label":{"ru":"Email","_type":"localeString","en":"Email"},"subscribe__name-label":{"_type":"localeString","en":"Name","ru":"Имя"},"subscribe__required-message":{"_type":"localeString","en":"This field is required","ru":"Это поле обязательное"},"subscribe__notify-label":{"en":"Yes, please, notify me about news, events and propositions","ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString"},"subscribe__agree-label":{"ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data"},"subscribe__submit-label":{"en":"Subscribe","ru":"Подписаться","_type":"localeString"},"subscribe__email-message":{"en":"Please, enter the valid email","ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"ru":"Имя Фамилия","_type":"localeString","en":"Last, first name"},"subscribe__success":{"ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString","en":"You are successfully subscribed! Check you mailbox."},"subscribe__error":{"ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString","en":"Subscription is unsuccessful. Please, try again later."},"roi4presenter":{"ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter","de":"roi4presenter"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"ru":"Главная","_type":"localeString","en":"Home"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"_type":"localeString","en":"Products","ru":"Продукты"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"registration":{"ru":"Регистрация","_type":"localeString","en":"Registration"},"b2b-platform":{"ru":"Портал для покупателей, поставщиков и производителей ИТ","_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers"}},"comment-form":{"title":{"_type":"localeString","en":"Leave comment","ru":"Оставить комментарий"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"en":"Last name","ru":"Фамилия","_type":"localeString"},"company":{"_type":"localeString","en":"Company name","ru":"Компания"},"position":{"en":"Position","ru":"Должность","_type":"localeString"},"actual-cost":{"_type":"localeString","en":"Actual cost","ru":"Фактическая стоимость"},"received-roi":{"ru":"Полученный ROI","_type":"localeString","en":"Received ROI"},"saving-type":{"en":"Saving type","ru":"Тип экономии","_type":"localeString"},"comment":{"ru":"Комментарий","_type":"localeString","en":"Comment"},"your-rate":{"en":"Your rate","ru":"Ваша оценка","_type":"localeString"},"i-agree":{"_type":"localeString","en":"I agree","ru":"Я согласен"},"terms-of-use":{"_type":"localeString","en":"With user agreement and privacy policy","ru":"С пользовательским соглашением и политикой конфиденциальности"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"en":"{NAME} is required filed","ru":"{NAME} - это обязательное поле","_type":"localeString"}},"maintenance":{"title":{"ru":"На сайте проводятся технические работы","_type":"localeString","en":"Site under maintenance"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}},"filters":{"from":{"ru":"от","_type":"localeString","en":"from"},"to":{"ru":"до","_type":"localeString","en":"to"},"filter-price-title":{"ru":"Фильтр по цене","_type":"localeString","en":"Filter by price"},"view-type-label":{"ru":"Вид","_type":"localeString","en":"View"},"sort-type-label":{"en":"Sorting","ru":"Сортировка","_type":"localeString"},"category":{"en":"Category","ru":"Категория","_type":"localeString"},"follow":{"en":"Follow","ru":"Следить","_type":"localeString"},"add-product":{"ru":"Добавить продукт","_type":"localeString","en":"Add Product"},"show-all":{"ru":"Показать все","_type":"localeString","en":"Show all"},"filter-toggle":{"_type":"localeString","en":"Filter","ru":"Фильтр"},"clear-button":{"ru":"Очистить","_type":"localeString","en":"Сlear"},"delivery-type-field":{"ru":"Тип поставки","_type":"localeString","en":"Delivery type"},"product-categories-field":{"en":"product categories","ru":"категориz продуктаhjle","_type":"localeString"},"providers-field":{"ru":"Поставщик, производитель","_type":"localeString","en":"Providers"},"business-tasks-field":{"ru":"Бизнес задачи","_type":"localeString","en":"Business tasks"},"problems-field":{"ru":"Проблемы","_type":"localeString","en":"Problems"},"with-discounts-checkbox":{"ru":"Со скидками","_type":"localeString","en":"With discounts"},"expert-price-checkbox":{"ru":"Конфигуратор","_type":"localeString","en":"Configurator"},"roi-calculator-checkbox":{"en":"ROI-calculator","ru":"ROI-калькулятор","_type":"localeString"},"apply-filter-button":{"ru":"Применить фильтр","_type":"localeString","en":"Apply filter"},"sorting-toggle":{"ru":"Сортировка","_type":"localeString","en":"Sorting"},"show-all-button":{"en":"Show all","ru":"Показать все","_type":"localeString"},"suggest-product-button":{"ru":"Предложить продукт","_type":"localeString","en":"Suggest product"},"with-projects-label":{"_type":"localeString","en":"With deployments","ru":"С внедрениями"},"bonus-4-reference":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus 4 Reference"},"product-categories":{"ru":"Категории продуктов","_type":"localeString","en":"Product Categories"},"countries":{"en":"Countries","ru":"Страны","_type":"localeString"},"seller":{"_type":"localeString","en":"Seller","ru":"Продавец"},"vendors":{"ru":"Производители продуктов пользователя","_type":"localeString","en":"User products vendors"},"suppliers":{"ru":"Поставщики пользователя","_type":"localeString","en":"User suppliers"},"business-process":{"en":"Problems","ru":"Проблемы","_type":"localeString"},"business-objectives":{"ru":"Бизнес задачи","_type":"localeString","en":"Business tasks"},"branch":{"_type":"localeString","en":" Branch","ru":"Отрасль"},"users":{"en":"Users","ru":"Пользователи","_type":"localeString"},"status":{"ru":"Статус","_type":"localeString","en":"Status"},"info-source":{"en":"Info source","ru":"Информационный ресурс","_type":"localeString"},"with-reference-checkbox":{"en":"With reference","ru":"С референсами","_type":"localeString"},"show-deal-checkbox":{"ru":"Показывать сделки с noname","_type":"localeString","en":"Show deal with noname"},"roi-checkbox":{"ru":"ROI","_type":"localeString","en":"ROI"},"problems":{"en":"Problems","ru":"Проблемы","_type":"localeString"},"find":{"ru":"Выполнить поиск","_type":"localeString","en":"Find"},"deal-date":{"en":"Date","ru":"Дата","_type":"localeString"},"try-button":{"ru":"Попробовать AI (Beta)","_type":"localeString","en":"Try AI (Beta)"},"hide":{"_type":"localeString","en":"Hide","ru":"Скрыть"},"company-size":{"ru":"Размер компании","_type":"localeString","en":"Company size"},"add-company":{"ru":"Добавить компанию","_type":"localeString","en":"Add company"},"add-implementation":{"en":"Add deployment","ru":"Добавить внедрение","_type":"localeString"},"sort-title-asc":{"ru":"От А до Я","_type":"localeString","en":"From A to Z"},"sort-title-desc":{"ru":"От Я до А","_type":"localeString","en":"From Z to A"},"sellers-field":{"ru":"Поставщики, Производители","_type":"localeString","en":"Sellers"},"supply-types":{"ru":"Тип поставки","_type":"localeString","en":"Supply type"},"with-comments-checkbox":{"en":"With comments","ru":"С комментариями","_type":"localeString"},"supplier":{"_type":"localeString","en":"Supplier","ru":"Поставщик"},"vendor":{"_type":"localeString","en":"Vendor","ru":"Производитель"},"user":{"en":"User","ru":"Пользователь","_type":"localeString"},"company-type":{"ru":"Тип компании","_type":"localeString","en":"Company type"},"partners-field":{"ru":" Партнеры","_type":"localeString","en":"Partners"},"customers":{"_type":"localeString","en":"Customers","ru":"Покупатели"},"product-supplier":{"en":"Product supplier","ru":"Поставщик продукта","_type":"localeString"},"product-vendor":{"en":"Product vendor","ru":"Производитель продукта","_type":"localeString"},"implementation-date":{"ru":"Дата внедрения","_type":"localeString","en":"Deployment date"},"canceled":{"en":"Canceled","ru":"Отменено","_type":"localeString"},"deal-canceled":{"ru":"Сделка отменена","_type":"localeString","en":"Deal canceled"},"deal-closed":{"ru":"Сделка закрыта","_type":"localeString","en":"Deal closed"},"deal-in-progress":{"ru":"Сделка в процессе","_type":"localeString","en":"Deal in progress"},"deal-is-planned":{"_type":"localeString","en":"Deal is planned","ru":"Сделка планируется"},"finished":{"ru":"Завершено","_type":"localeString","en":"Finished"},"in-process":{"_type":"localeString","en":"In Process","ru":"Ведется"},"planned":{"_type":"localeString","en":"Planned","ru":"Планируется"},"proof-of-concept":{"ru":"Пилотный проект","_type":"localeString","en":"Proof of concept"},"stopped":{"_type":"localeString","en":"Stopped","ru":"Остановлено"},"competencies":{"ru":"Компетенции","_type":"localeString","en":"Competencies"}}},"translationsStatus":{"products":"success","filters":"success"},"sections":{"products-text-block":{"label":"catalog-products-text-block","body":{"en":[{"markDefs":[],"children":[{"_type":"span","marks":[],"text":"The ROI4CIO Product Catalog is a database of business software, hardware, and IT services. Using filters, select IT products by category, supplier or vendor, business tasks and problems. Find the right business solutions by using a neural network search based on the results of deployment products in other companies.","_key":"8bebcfb349550"}],"_type":"block","style":"normal","_key":"8bebcfb34955"}],"ru":[{"children":[{"_type":"span","marks":[],"text":"Каталог продуктов ROI4CIO - это база данных программного обеспечения, оборудования и ИТ-услуг для бизнеса. С помощью фильтров, подбирайте ИТ-продукты по категории, поставщику или производителю, бизнес-задачам, проблемам, наличию ROI калькулятора или калькулятора цены. Находите подходящие решения для бизнеса, воспользовавшись нейросетевым поиском, основанным на результатах внедрения софта в других компаниях.","_key":"28241882db7a0"}],"_type":"block","style":"normal","_key":"28241882db7a","markDefs":[]}],"_type":"localeBlock"}}},"sectionsStatus":{"products-text-block":"success"},"pageMetaData":{"products":{"title":{"_type":"localeString","en":"ROI4CIO: Products","ru":"ROI4CIO: Продукты"},"meta":[{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"},{"name":"og:type","content":"website"}],"translatable_meta":[{"name":"og:title","translations":{"ru":"Продукты","_type":"localeString","en":"Products"}},{"name":"description","translations":{"en":"Description","ru":"Лучшие приложения и it услуги для бизнеса. Выбор по видам программного обеспечения, бизнес-задачам и проблемам. Расчет стоимости лицензионного ПО, ROI","_type":"localeString"}},{"translations":{"ru":"Лучшие приложения и it услуги для бизнеса. Выбор по видам программного обеспечения, бизнес-задачам и проблемам. Расчет стоимости лицензионного ПО, ROI","_type":"localeString","en":"The best applications and it services for business. Choice by type of software, business tasks and problems. Calculation of the cost of licensed software, ROI"},"name":"og:description"},{"name":"keywords","translations":{"en":"keyword","ru":"каталог, программное обеспечение, софт, ит услуги","_type":"localeString"}},{"translations":{"ru":"Продукты","_type":"localeString","en":"Products"},"name":"title"}]}},"pageMetaDataStatus":{"products":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{"amazon-lightsail":{"id":1240,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Amazon_Lightsail.png","logo":true,"scheme":false,"title":"Amazon Lightsail","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":4,"alias":"amazon-lightsail","companyTitle":"Amazon Web Services","companyTypes":["supplier","vendor"],"companyId":176,"companyAlias":"amazon-web-services","description":"Amazon Lightsail is an Amazon cloud service that offers bundles of cloud computing power and memory for new or less experienced cloud users.\r\nAmazon Lightsail is the easiest way to get started with AWS for developers who just need virtual private servers. Lightsail includes everything you need to launch your project quickly - a virtual machine, a managed database, SSD-based storage, data transfer, DNS management, and a static IP - for a low, predictable price. You manage those Lightsail servers through the Lightsail console or by using the API or command-line interface (CLI).\r\nThe Lightsail API Reference describes the API actions, data types, and exceptions for working with Lightsail programmatically. We also provide the Lightsail SDK for download for Java, Python, Ruby, PHP, .NET (C#), Go, JavaScript (Node.js and browser), and C++. You can use the See Also links to navigate directly to a reference topic in one of those languages.\r\n\r\n<span style=\"text-decoration: underline; \"><span style=\"font-weight: bold; \">Lightsail features:</span></span>\r\nEverything you need, right at your fingertips\r\n<span style=\"font-weight: bold; \">Lightsail Virtual Private Server (VPS)</span>\r\nExperience the power and reliability of AWS. Deploy in seconds and manage from the intuitive Lightsail management console or API.\r\nYour Lightsail instance is a virtual private server (also called a virtual machine). When you create your instance, you choose an image that has an operating system (OS) on it. You can also choose an instance image that has an application or development stack on it, including the base OS.\r\n<span style=\"font-weight: bold; \">Powerful API</span>\r\nUse the simple and flexible Lightsail API to extend your application or integrate it with external applications.\r\n<span style=\"font-weight: bold; \">High availability storage</span>\r\nEvery Lightsail server comes with high-performing, persistent SSD-based block storage.\r\nBenefits of Lightsail block storage are highly availability, easy management, low-latency performance, scalable, secure.\r\n<span style=\"font-weight: bold; \">Speedy & secure networking</span>\r\nLightsail servers run at warp speed on the AWS network. Configure your network simply and securely, including your IP addresses, DNS, firewall, and more.\r\n<span style=\"font-weight: bold; \">Snapshots</span>\r\nProtect your data, clone your server, and more with Lightsail snapshots. Take and manage snapshots for $0.05 USD/GB per month.\r\nA snapshot is a way to create a backup image of your Lightsail instance (a virtual private server) for reference, if you might need it later. For example, before you delete an instance, you create a snapshot of it so that if you change your mind, you have a backup to help you redo that instance as it was.\r\nThe snapshot we create is a copy of the system disk and also stores the original machine configuration (memory, CPU, disk size, and data transfer rate). If you choose to create a new instance from this snapshot, you can create the same size or larger instance. You cannot create a smaller instance.\r\n<span style=\"font-weight: bold; \">Important!</span> When you create a new instance from a snapshot, Lightsail lets you create an instance bundle that is either the same size or larger size. We do not currently support creating a smaller instance size from a snapshot. The smaller options will be grayed out when you create a new instance from a snapshot.\r\nTo create a larger instance size from a snapshot, you can use the Lightsail console, the create-instances-from-snapshot CLI command. or the CreateInstancesFromSnapshot API operation.\r\n<span style=\"font-weight: bold; \">Access to AWS Services</span>\r\nExtend the capabilities of your Lightsail server by connecting it to popular AWS services, including managed databases, CDN, and many others.\r\nAmazon Lightsail uses a focused set of AWS services like Amazon EC2 and AWS Identity and Access Management to make it easier to get started. But that doesn't mean you're limited to those services! You can integrate Lightsail resources with other AWS services through Amazon VPC peering.\r\n<span style=\"font-weight: bold; \">Simplified load balancing</span>\r\nAdd load balancing to your application to distribute traffic across multiple instances and keep your app up and running.\r\nBenefits of Lightsail load balancer are scalable, highly availability, automated health checks, simple interface, secure.\r\n<span style=\"font-weight: bold; \">Managed databases</span>\r\nLaunch a fully configured MySQL database in minutes and leave the maintenance to AWS. Use managed databases to scale your application or to run standalone databases.\r\n<span style=\"font-weight: bold; \">Upgrade to EC2</span>\r\nAs your cloud ideas expand, you can easily move to EC2. With a simple, guided experience, Lightsail can move your instance to EC2.\r\n<span style=\"font-style: italic; \">How do I know if I should move to EC2?</span>\r\nChances are, you got started on Lightsail because it was easy to get your web app, website, or software into the cloud. While you might continue to find this a natural fit for your growth, you also might find that you need a different set of resources or features.\r\nFor example, you might want to consider exporting if you need:\r\n<ul><li>an instance type that is optimized for specific workloads, including machine learning, high-performance computing, and graphic-intensive applications.</li><li>complete control over your networking settings like VPC, security groups and internet gateways.</li><li>dynamic scaling for your resources, like auto scaling for your instances behind a load balancer, or elastic file storage.</li><li>a specialized instance type, operating system, software package or a consumption option that Lightsail doesn’t offer.</li></ul>\r\nOnce you begin using EC2, you’ll incur its cost structure.\r\n<span style=\"font-weight: bold; \">Unlimited growth, unlimited potential</span>\r\nMany of the AWS platform's 90+ services can be connected to your Lightsail application using VPC peering. You can manage these powerful AWS services from the AWS management console, while still keeping your day-to-day VPS management in the Lightsail console. It's the best of both worlds!\r\nGrow and scale your Lightsail-hosted applications over time by connecting AWS services, including:\r\n<ul><li>Managed databases (RDS, DynamoDB)</li><li>Content delivery network (CloudFront)</li><li>Object storage (S3)</li><li>Dozens of other services</li></ul>\r\n<span style=\"font-weight: bold; \">Operating system & application templates</span>\r\nPreconfigured images allow you to launch your favorite Linux distribution, Windows Server, or popular web applications with a single click, including WordPress, Magento, LAMP, and more.\r\n<span style=\"font-style: italic; \">Operating systems:</span>\r\n<ul><li>Amazon Linux</li><li>Ubuntu</li><li>Debian</li><li>FreeBSD</li><li>OpenSUSE</li><li>Windows Server</li></ul>\r\n<span style=\"font-style: italic; \">Applications:</span>\r\n<ul><li>WordPress</li><li>Magento</li><li>Drupal</li><li>Joomla!</li><li>Redmine</li><li>Plesk</li></ul>\r\n<span style=\"font-style: italic; \">Stacks:</span>\r\n<ul><li>Node.js</li><li>GitLab</li><li>LAMP</li><li>MEAN</li><li>Nginx</li></ul>","shortDescription":"Amazon Lightsail is a simple cloud website hosting framework based on the Amazon Web Services (AWS) platform.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Amazon Lightsail","keywords":"your, Lightsail, server, with, storage, application, load, network","description":"Amazon Lightsail is an Amazon cloud service that offers bundles of cloud computing power and memory for new or less experienced cloud users.\r\nAmazon Lightsail is the easiest way to get started with AWS for developers who just need virtual private servers. Ligh","og:title":"Amazon Lightsail","og:description":"Amazon Lightsail is an Amazon cloud service that offers bundles of cloud computing power and memory for new or less experienced cloud users.\r\nAmazon Lightsail is the easiest way to get started with AWS for developers who just need virtual private servers. Ligh","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Amazon_Lightsail.png"},"eventUrl":"","translationId":1240,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":689,"title":"Amazon Web Services","alias":"amazon-web-services","description":"Amazon Web Services (AWS) is a subsidiary of Amazon that provides on-demand cloud computing platforms to individuals, companies and governments, on a metered pay-as-you-go basis. In aggregate, these cloud computing web services provide a set of primitive, abstract technical infrastructure and distributed computing building blocks and tools. One of these services is Amazon Elastic Compute Cloud, which allows users to have at their disposal a virtual cluster of computers, available all the time, through the Internet. AWS's version of virtual computers emulate most of the attributes of a real computer including hardware (CPU(s) & GPU(s) for processing, local/RAM memory, hard-disk/SSD storage); a choice of operating systems; networking; and pre-loaded application software such as web servers, databases, CRM, etc.\r\nThe AWS technology is implemented at server farms throughout the world, and maintained by the Amazon subsidiary. Fees are based on a combination of usage, the hardware/OS/software/networking features chosen by the subscriber, required availability, redundancy, security, and service options. Subscribers can pay for a single virtual AWS computer, a dedicated physical computer, or clusters of either. As part of the subscription agreement, Amazon provides security for subscribers' system. AWS operates from many global geographical regions including 6 in North America.\r\nIn 2017, AWS comprised more than 90 services spanning a wide range including computing, storage, networking, database, analytics, application services, deployment, management, mobile, developer tools, and tools for the Internet of Things. The most popular include Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage Service (S3). Most services are not exposed directly to end users, but instead offer functionality through APIs for developers to use in their applications. Amazon Web Services' offerings are accessed over HTTP, using the REST architectural style and SOAP protocol.\r\nAmazon markets AWS to subscribers as a way of obtaining large scale computing capacity more quickly and cheaply than building an actual physical server farm. All services are billed based on usage, but each service measures usage in varying ways. As of 2017, AWS owns a dominant 34% of all cloud (IaaS, PaaS) while the next three competitors Microsoft, Google, and IBM have 11%, 8%, 6% respectively according to Synergy Group.","materialsDescription":"<span style=\"font-weight: bold;\">What is "Amazon Web Services" (AWS)?</span>\r\nWith Amazon Web Services (AWS), organizations can flexibly deploy storage space and computing capacity into Amazon's data centers without having to maintain their own hardware. A big advantage is that the infrastructure covers all dimensions for cloud computing. Whether it's video sharing, high-resolution photos, print data, or text documents, AWS can deliver IT resources on-demand, over the Internet, at a cost-per-use basis. The service exists since 2006 as a wholly owned subsidiary of Amazon Inc. The idea arose from the extensive experience with Amazon.com and the own need for platforms for web services in the cloud.\r\n<span style=\"font-weight: bold;\">What is Cloud Computing?</span>\r\nCloud Computing is a service that gives you access to expert-managed technology resources. The platform in the cloud provides the infrastructure (eg computing power, storage space) that does not have to be installed and configured in contrast to the hardware you have purchased yourself. Cloud computing only pays for the resources that are used. For example, a web shop can increase its computing power in the Christmas business and book less in "weak" months.\r\nAccess is via the Internet or VPN. There are no ongoing investment costs after the initial setup, but resources such as Virtual servers, databases or storage services are charged only after they have been used.\r\n<span style=\"font-weight: bold;\">Where is my data on Amazon AWS?</span>\r\nThere are currently eight Amazon Data Centers (AWS Regions) in different regions of the world. For each Amazon AWS resource, only the customer can decide where to use or store it. German customers typically use the data center in Ireland, which is governed by European law.\r\n<span style=\"font-weight: bold;\">How safe is my data on Amazon AWS?</span>\r\nThe customer data is stored in a highly secure infrastructure. Safety measures include, but are not limited to:\r\n<ul><li>Protection against DDos attacks (Distributed Denial of Service)</li><li>Defense against brute-force attacks on AWS accounts</li><li>Secure access: The access options are made via SSL.</li><li> Firewall: Output and access to the AWS data can be controlled.</li><li>Encrypted Data Storage: Data can be encrypted with Advanced Encryption Standard (AES) 256.</li><li>Certifications: Regular security review by independent certifications that AWS has undergone.</li></ul>\r\nEach Amazon data center (AWS region) consists of at least one Availability Zone. Availability Zones are stand-alone sub-sites that have been designed to be isolated from faults in other Availability Zones (independent power and data supply). Certain AWS resources, such as Database Services (RDS) or Storage Services (S3) automatically replicate your data within the AWS region to the different Availability Zones.\r\nAmazon AWS has appropriate certifications such as ISO27001 and has implemented a comprehensive security concept for the operation of its data center.\r\n<span style=\"font-weight: bold;\">Do I have to worry about hardware on Amazon AWS?</span>\r\nNo, all Amazon AWS resources are virtualized. Only Amazon takes care of the replacement and upgrade of hardware.\r\nNormally, you will not get anything out of defective hardware because defective storage media are exchanged by Amazon and since your data is stored multiple times redundantly, there is usually no problem either.\r\nIncidentally, if your chosen resources do not provide enough performance, you can easily get more CPU power from resources by just a few mouse clicks. You do not have to install anything new, just reboot your virtual machine or virtual database instance.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Amazon_Web_Services.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"ampex-tuffserv":{"id":3253,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/AMPEX.png","logo":true,"scheme":false,"title":"Ampex TuffServ","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"ampex-tuffserv","companyTitle":"Ampex","companyTypes":["supplier","vendor"],"companyId":5126,"companyAlias":"ampex","description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performance needs of the marketplace, Ampex provides its customers with product solutions for their most demanding applications across the entire pricing spectrum - TuffServ 282, TuffServ 480GE, TuffServ 480v2, TuffServ 540, TuffServ 640, TuffServ 641, TuffServ® 481, TuffServ® TS 485. \r\nTuffServ®Series.\r\nEmploying a common architecture found throughout the TuffServ offerings all products advance performance and scalability to an entirely new level. With blazing read/write speeds of up 1GB/sec, 12.8TB of removable solid-statememory, and dual 10Gbit optical Ethernet ports, TuffServ offers unparalleled performance for a wide variety of airborne and mobile applications.\r\nThey addresses key issues encountered when attempting to take products designed for data center use into aerospace environments: cooling, removable storage and the management of internal cables in high-vibration environments.7","shortDescription":"The TuffServ is series of servers designed to perform in extreme airborne, ground, and space environments and offers the fastest ruggedized Network File Servers on the market. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Ampex TuffServ","keywords":"","description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc","og:title":"Ampex TuffServ","og:description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc","og:image":"https://old.roi4cio.com/fileadmin/user_upload/AMPEX.png"},"eventUrl":"","translationId":3253,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"cisco-ucs-c-series-rack-servers":{"id":2033,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Cisco_UCS_C-Series.jpg","logo":true,"scheme":false,"title":"Cisco UCS C-Series Rack Servers","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":125,"alias":"cisco-ucs-c-series-rack-servers","companyTitle":"Cisco","companyTypes":["supplier","vendor"],"companyId":170,"companyAlias":"cisco","description":"UCS C-Series Rack Servers deliver unified computing in an industry-standard form factor to reduce TCO and increase agility. Each server addresses varying workload challenges through a balance of processing, memory, I/O, and internal storage resources.\r\n<span style=\"font-weight: bold; \">Features:</span><br /><span style=\"font-weight: bold; \">Operational intelligence at scale.</span> Our rack servers provide industry-leading performance, capacity, and scalability for Splunk enterprise deployments.\r\n<span style=\"font-weight: bold; \">Integrated infrastructure for big data and analytics.</span> Our industry-leading reference architectures are designed to deliver out-of-the-box performance while scaling from small to very large as your business needs grow.\r\n<span style=\"font-weight: bold; \">Rack server management.</span> Cisco offers better management capabilities than other vendors, no matter how you deploy your rack servers.\r\n<span style=\"font-weight: bold; \">Supercharges your applications.</span> With Cisco UCS rack servers, you gain better application performance to improve customer and employee satisfaction.\r\nCisco UCS C-Series Rack Servers provide the following benefits:\r\n<ul><li>Form-factor-agnostic entry point into Cisco UCS</li><li>Simplified and fast deployment of applications</li><li>Extension of unified computing innovations and benefits to rack servers</li><li>Increased customer choice with unique benefits in a familiar rack package</li><li>Reduction in total cost of ownership (TCO) and increase in business agility</li></ul>","shortDescription":"UCS C-Series Rack Servers deliver unified computing in an industry-standard form factor to reduce Total Cost of Ownership and increase agility.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":2,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Cisco UCS C-Series Rack Servers","keywords":"","description":"UCS C-Series Rack Servers deliver unified computing in an industry-standard form factor to reduce TCO and increase agility. Each server addresses varying workload challenges through a balance of processing, memory, I/O, and internal storage resources.\r\n<span s","og:title":"Cisco UCS C-Series Rack Servers","og:description":"UCS C-Series Rack Servers deliver unified computing in an industry-standard form factor to reduce TCO and increase agility. Each server addresses varying workload challenges through a balance of processing, memory, I/O, and internal storage resources.\r\n<span s","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Cisco_UCS_C-Series.jpg"},"eventUrl":"","translationId":2034,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":62,"title":"Rack server"}],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"cisco-ucs-c4200-series-rack-server-chassis":{"id":1584,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/cisco_logo.png","logo":true,"scheme":false,"title":"Cisco UCS C4200 Series Rack Server Chassis","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":125,"alias":"cisco-ucs-c4200-series-rack-server-chassis","companyTitle":"Cisco","companyTypes":["supplier","vendor"],"companyId":170,"companyAlias":"cisco","description":"Optimize performance. Reduce complexity.\r\nWhether you’re a service provider looking for maximum density, a manufacture modeling new designs, a retailer analyzing consumer trends, or a data scientist modeling a financial market, your ability to scale computing efficiently to meet demand is crucial to gaining a competitive edge.\r\n<span style=\"font-weight: bold;\">Cisco UCS C4200 Series Rack Server Chassis</span>\r\n<ul><li>Four nodes in 2RU</li><li>24 SFF drive</li><li>Dual, redundant 2400 watt PSU</li></ul>\r\n<span style=\"font-weight: bold;\">Features</span>\r\n<ul><li>More servers per rack. Scale out applications need more servers and data center space can be at a premium. With the C-Series Multinode Rack Servers, you get up to 50% more server density compared to the Cisco UCS C220 M5 rack server.</li><li>More processor cores. Compute intensive, scale out, workloads benefit from additional cores per server. The UCS C125 M5 server node with AMD® EPYC™ processors have 14% more cores than other UCS M5 servers and up to 128% more cores per rack.</li><li>Better memory bandwidth. You can only process data as fast as your memory can deliver it. The UCS C125 M5 server node has 33% more memory bandwidth that other UCS M5 servers allowing you to unlock and quickly extract economic benefit from your data.</li></ul>","shortDescription":"Cisco UCS C4200 Series Rack Server Chassis designed for your scale out, compute intensive workloads.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":17,"sellingCount":4,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Cisco UCS C4200 Series Rack Server Chassis","keywords":"","description":"Optimize performance. Reduce complexity.\r\nWhether you’re a service provider looking for maximum density, a manufacture modeling new designs, a retailer analyzing consumer trends, or a data scientist modeling a financial market, your ability to scale computing ","og:title":"Cisco UCS C4200 Series Rack Server Chassis","og:description":"Optimize performance. Reduce complexity.\r\nWhether you’re a service provider looking for maximum density, a manufacture modeling new designs, a retailer analyzing consumer trends, or a data scientist modeling a financial market, your ability to scale computing ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/cisco_logo.png"},"eventUrl":"","translationId":1585,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"},{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"cisco-unified-computing-system-ucs":{"id":407,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Cisco_Unified_Computing_System__UCS_.gif","logo":true,"scheme":false,"title":"Cisco Unified Computing System (UCS)","vendorVerified":0,"rating":"2.70","implementationsCount":3,"suppliersCount":0,"supplierPartnersCount":125,"alias":"cisco-unified-computing-system-ucs","companyTitle":"Cisco","companyTypes":["supplier","vendor"],"companyId":170,"companyAlias":"cisco","description":"<span style=\"font-weight: bold;\">Computing</span>\r\nCisco UCS blade servers\r\nThe computing component of the UCS is available in two versions: the B-Series (a powered chassis and full and/or half slot blade servers), and the C-series for 19-inch racks (that can be used with fabric interconnects). The compute hardware managed by the UCS Manager software on the fabric Interconnects can be B-Series (blades), C-Series (rackmount) or a combination of the two. Both form factors use standard components, including Intel processors and DIMM memory. The servers are marketed with converged network adapter and port virtualization. Around 2010, an extended memory technology expanded the number of memory sockets that can be connected to a single memory channel in some models.\r\n<span style=\"font-weight: bold;\">Virtualization</span>\r\nCisco UCS supports several hypervisors including VMware ESX, ESXi, Microsoft Hyper-V, Citrix XenServer and others. VMware Virtualization is provided through a partnership with VMware and uses a version of that company's ESXi. Unlike the VMware Workstation software, ESX and ESXi run directly on the system hardware without the need for any other software (called Bare Metal), and provide the necessary hypervisor functions to host several guest operating systems (such as Windows or Linux) on the physical server. Guest operating systems are limited to 255 GB of vRAM and 8 virtual processors in vSphere 4.x, upgraded to 1 TB of vRAM and 32 vCPUs in vSphere 5.0. Additionally, the Cisco UCS Virtual Interface Cards incorporate VM-FEX technology that gives virtual machines direct access to the hardware for improved performance and network visibility.\r\n<span style=\"font-weight: bold;\">Networking</span>\r\nThe Cisco Fabric Interconnects (or "FI") provide network connectivity for the chassis, blade servers and rack servers connected to it through different speeds of ethernet and Fiber Channel over Ethernet (FCoE). The fabric interconnects are derived from the Nexus 5000 series switch and run NX-OS as well as the UCS Manager software. The FCoE component is necessary for connection to SAN storage, since the UCS system blade servers have very little local storage capacity. Cisco has produced the following series:\r\n\r\n6100 Series Fabric Interconnects (discontinued)\r\n6200 Series Fabric Interconnects\r\n6300 Series Fabric Interconnects\r\nThe fabric interconnect can further connect to multiple Fabric Extenders (or "FEX"), Port Extenders using VNTag to the fabric interconnects, allowing up to 160 servers to be managed by one fabric interconnect (or two in Active-Active failover).\r\n\r\n<span style=\"font-weight: bold;\">Management</span>\r\nManagement of the system devices is handled by the Cisco UCS Manager software embedded into the Fabric Interconnect, which is accessed by the administrator through a common browser such as Internet Explorer or Firefox, or a Command line interface like Windows PowerShell or programmatically through an API like Python. Virtual machines can be moved from one physical chassis to another, applications may be moved between virtual machines, and management may even be conducted remotely from an iPhone using SiMU - Simple iPhone Management of UCS. In addition to the embedded software, administrators may also manage the system from VMware's vSphere. The Cisco Integrated Management Controller (CIMC) is used to configure and manage C-Series servers not connected to a UCS environment. The CIMC can also be used to manage B-Series blades in addition to the UCS Manager application if configured.\r\n\r\nIn November 2012, Cisco announced the addition of UCS Central which extends management across multiple domains of UCS and as many as 10,000 servers. UCS Central extends the same model based, open API approach established with UCS Manager.\r\n\r\nEach compute node has no set configuration. MAC addresses, UUIDs, firmware and BIOS settings, the existence of IO adapters, RAID settings, etc. are all configured on the UCS manager in a Service Profile and applied to the servers. This allows for consistent configuration and ease of re-purposing.\r\n\r\nCisco offers a UCSM Platform Emulator, where the full logical configuration of a server can be created from the user interface or the API methods, and later applied to the physical hardware.","shortDescription":"The Cisco Unified Computing System (UCS) is an (x86) architecture data center server product line composed of computing hardware, virtualization support, switching fabric, and management software introduced in 2009. The idea behind the system is to reduce total cost of ownership and improve scalability by integrating the different components into a platform that can be managed as a single unit.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Cisco Unified Computing System (UCS)","keywords":"Cisco, servers, software, fabric, Fabric, Interconnects, Manager, from","description":"<span style=\"font-weight: bold;\">Computing</span>\r\nCisco UCS blade servers\r\nThe computing component of the UCS is available in two versions: the B-Series (a powered chassis and full and/or half slot blade servers), and the C-series for 19-inch racks (that can ","og:title":"Cisco Unified Computing System (UCS)","og:description":"<span style=\"font-weight: bold;\">Computing</span>\r\nCisco UCS blade servers\r\nThe computing component of the UCS is available in two versions: the B-Series (a powered chassis and full and/or half slot blade servers), and the C-series for 19-inch racks (that can ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Cisco_Unified_Computing_System__UCS_.gif"},"eventUrl":"","translationId":408,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"},{"id":509,"title":"Converged and Hyper Converged System","alias":"converged-and-hyper-converged-system","description":" Converged and hyper convergent infrastructures simplify support for virtual desktop infrastructure and desktop virtualization, as they are designed to be easy to install and perform complex tasks.\r\nConvergent infrastructure combines the four main components of a data center in one package: computing devices, storage devices, network devices, and server virtualization tools. Hyper-converged infrastructure allows for tighter integration of a larger number of components using software tools.\r\nIn both convergent and hyper-convergent infrastructure, all elements are compatible with each other. Thanks to this, you will be able to purchase the necessary storage devices and network devices for your company at a time, and they, as you know, are of great importance in the virtual desktops infrastructure. This allows you to simplify the process of deploying such an infrastructure - something that has been waiting for and what will be rejoiced by many companies that need to virtualize their desktop systems.\r\nDespite its value and innovation, there are several questions to these technologies regarding their intended use and differences. Let's try to figure out what functionality offers converged and hyper-convergent infrastructures and how they differ.","materialsDescription":" <span style=\"font-weight: bold;\">What is converged infrastructure?</span>\r\nConvergent infrastructure combines computing devices, storage, network devices and server virtualization tools in one chassis so that they can be managed from one place. Management capabilities may include the management of virtual desktop infrastructure, depending on the selected configuration and manufacturer.\r\nThe hardware included in the bundled converged infrastructure is pre-configured to support any targets: virtual desktop infrastructures, databases, special applications, and so on. But in fact, you do not have enough freedom to change the selected configuration.\r\nRegardless of the method chosen for extending the virtual desktop infrastructure environment, you should understand that subsequent vertical scaling will be costly and time-consuming. Adding individual components is becoming complex and depriving you of the many benefits of a converged infrastructure. Adding workstations and expanding storage capacity in a corporate infrastructure can be just as expensive, which suggests the need for proper planning for any virtual desktop infrastructure deployment.\r\nOn the other hand, all components of a converged infrastructure can work for a long time. For example, a complete server of such infrastructure works well even without the rest of the infrastructure components.\r\n<span style=\"font-weight: bold;\">What is a hyper-convergent infrastructure?</span>\r\nThe hyper-converged infrastructure was built on the basis of converged infrastructure and the concept of a software-defined data center. It combines all the components of the usual data center in one system. All four key components of the converged infrastructure are in place, but sometimes it also includes additional components, such as backup software, snapshot capabilities, data deduplication functionality, intermediate compression, global network optimization (WAN), and much more. Convergent infrastructure relies primarily on hardware, and software-defined data center often adapts to any hardware. In the hyper-convergent infrastructure, these two possibilities are combined.\r\nHyper-converged infrastructure is supported by one supplier. It can be managed as a single system with a single set of tools. To expand the infrastructure, you just need to install blocks of necessary devices and resources (for example, storage) into the main system block. And this is done literally on the fly.\r\nSince the hyper-convergent infrastructure is software-defined (that is, the operation of the infrastructure is logically separated from the physical equipment), the mutual integration of components is denser than in a conventional converged infrastructure, and the components themselves must be nearby to work correctly. This makes it possible to use a hyper-convergent infrastructure to support even more workloads than in the case of conventional converged infrastructure. This is explained by the fact that it has the possibility of changing the principle of definition and adjustment at the program level. In addition, you can make it work with specialized applications and workloads, which pre-configured converged infrastructures do not allow.\r\nHyper-converged infrastructure is especially valuable for working with a virtual desktop infrastructure because it allows you to scale up quickly without additional costs. Often, in the case of the classic virtual desktops infrastructure, things are completely different - companies need to buy more resources before scaling or wait for virtual desktops to use the allocated space and network resources, and then, in fact, add new infrastructure.\r\nBoth scenarios require significant time and money. But, in the case of hyperconvergent infrastructure, if you need to expand the storage, you can simply install the required devices in the existing stack. Scaling can be done quickly — for the time required to deliver the equipment. In this case, you do not have to go through the full procedure of re-evaluation and reconfiguration of the corporate infrastructure.\r\nIn addition, when moving from physical PCs to virtual workstations, you will need devices to perform all the computational tasks that laptops and PCs typically perform. Hyper-converged infrastructure will greatly help with this, as it often comes bundled with a large amount of flash memory, which has a positive effect on the performance of virtual desktops. This increases the speed of I / O operations, smoothes work under high loads, and allows you to perform scanning for viruses and other types of monitoring in the background (without distracting users).\r\nThe flexibility of the hyper-converged infrastructure makes it more scalable and cost-effective compared to the convergent infrastructure since it has the ability to add computing and storage devices as needed. The cost of the initial investment for both infrastructures is high, but in the long term, the value of the investment should pay off.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Converged_and_Hyper_Converged_System.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"correlog-siem-korreljacionnyi-server":{"id":4316,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/CorreLog.png","logo":true,"scheme":false,"title":"CorreLog SIEM Correlation Server","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"correlog-siem-korreljacionnyi-server","companyTitle":"CorreLog, Inc.","companyTypes":["supplier","vendor"],"companyId":6707,"companyAlias":"correlog-inc","description":"<span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-weight: bold;\">The CorreLog Server </span>is company's flag-ship product, containing the core functionality to implement full SIEM capability for your enterprise.\r\nThis 100% web-based system contains our high-speed message collector, indexed search engine, extensible dashboard facility, reporting facility, ticket facility, and unique correlation engine. Its simplicity and power are setting new benchmarks for industry every day.\r\n<span style=\"font-weight: bold;\">The CorreLog SIEM Server</span> provides a standards-based method of collecting all the system log messages of your network using syslog protocol and SNMP traps. These messages are then correlated into understandable threats, alerts, and actions using sophisticated (but easily configured) rules, and reduced to actionable "tickets" that are sent to users, and which can trigger automatic remediation of incidents.\r\n<span style=\"font-weight: bold;\">The SIEM Serve</span>r provides special application in security monitoring for your enterprise, and furnishes a variety of special functions and features to support this critical role, including data encryption, ready-to-run correlation rules and TCP tunneling software. Other roles of CorreLog, including performance management, analysis of business information, and log file analysis are also supported within the product.\r\n\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \" class=\"align-center\"><span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"><span style=\"font-size: 11pt; font-family: Arial; color: rgb(0, 0, 0); background-color: transparent; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\">System Features</span><span style=\"font-size: 11pt; font-family: Arial; color: rgb(0, 0, 0); background-color: transparent; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"></span></span></span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \" class=\"align-center\"> </p>\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">The CorreLog SIEM Server is specifically designed to leverage the capabilities of your existing infrastructure without requiring extensive installation of agents or other software.</span> The program is designed for high capacity, enterprise scale message aggregation, ease of navigation, small footprint, extensibility, and high internal security, available in a single web-based console.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">High Speed Message Reception.</span> CorreLog SIEM is suitable to operate as the single SNMP Trap and Syslog receiver for all devices on the network of large enterprises. CorreLog SIEM can process more than 2000 messages per second and can handle burst traffic of more than 10,000 messages in one second (depending upon the supporting hardware.) CorreLog SIEM tracks and catalogs devices on the network without hard upper limit. You can receive messages from virtually unlimited numbers of sources.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">High Speed Message Correlation</span>. CorreLog SIEM uses an advanced correlation engine, which performs semantic analysis of your messages in real-time. The system employs correlation threads, correlation counters, correlation alerts, and correlation triggers, which refine and reduce your incoming messages into something you can easily understand. </span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Flexible Reporting</span>. CorreLog SIEM incorporates various reporting facilities, including an Excel-based reporting facility that populates spreadsheets with summary and detailed event information, and an ODBC reporting facility that populates one or more databases with report information to support third-party report writers. Additionally, CorreLog SIEM includes a comprehensive dashboard facility, a "Pivot" log analyzer (for analyzing firewall data, HTTP server logs, and other "regular" data) and comprehensive graphing utilities useful for reporting on correlation results. The CorreLog Server comes preconfigured with compliancy reports and correlation rules to support these reports. Additional report templates can be loaded (or saved) using a built-in "Template" facility.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Data Aggregation and Archiving Functions.</span> The CorreLog SIEM system can aggregate vast amounts of data. It can collect in excess of 1 Gigabyte of data each day at a single site, and save this data online for up to 500 days (given enough storage.) Additionally, CorreLog SIEM compresses and archives your data, retaining this data for a period of more than 10 years (5000 days). To assist in forensics and long-term analysis, CorreLog SIEM generates archival data such as MD5 checksums and Security Codes.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Data Searching Ability.</span> One of the most important functions of the CorreLog SIEM system program is its search capability. CorreLog SIEM uses its proprietary GenDex (Generate Data Extraction) program, which employs a high speed, real time index system. This allows quick searches through massive amounts of message data. The performance of this engine rivals the fastest search engines currently available. Users can search a terabyte of data for a particular keyword in less than one second.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Taxonomy, Ontology, and Catalog Functions.</span> Taxonomy and categorization of data is at the center of our unique correlation system. The CorreLog SIEM Server automatically catalogs information by IP address, username, facility, and severity. Users can further create catalogs of information based upon simple or complex match patterns. Data is cataloged based upon specifications consisting of simple keywords, wildcards and regular expressions, logical expressions of wildcards, macro definitions of regular expressions, and logical combinations of macros. This provides a complete flexibility in managing and grouping message data, while still maintaining high data throughputs, and avoiding the rigors of data normalization.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Ability To Define New Syslog Facilities.</span> One of the commonly noticed limitations of Syslog protocol has always been that the "Facility" codes (which define the data sources for syslog messages) are limited to 24 predefined codes. The CorreLog program removes this restriction, permitting users to define their own facilities, such as "applications", and "devmsgs", so that data can be better categorized and managed. This important extension to the syslog protocol opens important new vistas in the practical use of Syslog messages and their correlation, not otherwise available using the standard specification.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Ability To Override Message Content. </span>One of the commonly noticed limitations of SNMP Trap and Syslog protocol has always been that, since messages are unsolicited, the message collector is stuck with whatever message, severity, or facility was originally specified by the message sender. In some cases the severities or facilities within a message may be nonsensical. The CorreLog program recognizes this existing limitation and implements a sophisticated "override" scheme, which allows users to override the facility, severity, or device name in any message. This greatly assists with the control and correlation of data.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Input Filtering.</span> To reduce data loading, and permit precise control over incoming messages, CorreLog SIEM can filter input data by device, facility, severity, message keyword, time of day, or any combination of these. Filtered data can be discarded, or put into a separate repository (and possibly permanently archived) for further analysis or forensics. When data is filtered, it is automatically tagged with the particular filter expression, assisting in the analysis of filtered data. CorreLog treats filtered data with respect, permitting you to re-import discarded data and undo any particular filtering function.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Automatic Remediation And Response.</span> The CorreLog SIEM system incorporates a simple and extensible "Actions" capability, which permits you to target specific messages based upon device, keyword, facility, severity and/ or time of day, and run programs on that data. CorreLog SIEM includes utility programs to update relational ODBC databases, relay syslog messages, send SNMP traps, send e-mail, and perform other actions. The facility is designed for easy extensibility by administrators and developers to extend correlation and ticketing services of the program.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Web Based Configuration.</span> CorreLog SIEM is entirely web-based. All activities, including the establishment of logins and permissions, are completely achieved without a native console. This means that an administrator does not ordinarily need access to the CorreLog Server platform, except in rare instances to startup or shutdown the process. The location of the CorreLog Server can be strategically placed in a Network Operations Center (NOC) or secure cabinet, which has important implications for security.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Suite of Utilities.</span> The CorreLog Server system incorporates a suite of Win32 utilities, in one small package that is easily installed on Windows Vista, XP, or Windows 2000 servers. These utilities are redistributable, and greatly extend the ability to manage these platforms using Syslog protocol.</span></li></ul>","shortDescription":"Correlation Server system contains high-speed message collector, indexed search engine, extensible dashboard facility, reporting facility, ticket facility and unique correlation engine.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":2,"sellingCount":4,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"CorreLog SIEM Correlation Server","keywords":"","description":"<span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"fo","og:title":"CorreLog SIEM Correlation Server","og:description":"<span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"fo","og:image":"https://old.roi4cio.com/fileadmin/user_upload/CorreLog.png"},"eventUrl":"","translationId":4317,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dell-emc-poweredge-14th-generation-server":{"id":1032,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_PowerEdge_14.jpg","logo":true,"scheme":false,"title":"Dell EMC PowerEdge 14th generation server","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":59,"alias":"dell-emc-poweredge-14th-generation-server","companyTitle":"Dell EMC","companyTypes":["vendor"],"companyId":955,"companyAlias":"dell-emc","description":"The new scalable business architecture of Dell EMC PowerEdge servers enable customers to meet dynamic business needs with performance optimized for traditional and cloud-native workloads. The new Dell EMC PowerEdge server portfolio is enhanced to:\r\n<ul><li>Increase application performance and response time – With 19X more Non-Volatile Memory Express (NVMe) low latency storage than the prior generation, Dell EMC leads the industry in driving industry standards in NVMe via Express Flash</li><li>Get results from PowerEdge faster – One-click BIOS tuning enables quick-and-easy deployment of many processing-intensive workloads</li><li>Access to the right data at the right time – With enhanced storage capacity and flexibility, customers can tailor their storage configurations to their application needs, this is especially critical in a software-defined-storage (SDS) environment</li></ul>\r\n<span style=\"font-weight: bold;\">Systems management features:</span>\r\n<ul><li>Unify the server management experience and provide full data center monitoring – OpenManage Enterprise is a new virtualized enterprise system management console with application plug-ins, an easy-to-use interface and customizable reporting</li><li>Speed troubleshooting and maximize server uptime – The enhanced iDRAC 9 provides up to 4 times better systems management performance over the prior generation</li><li>Enable faster remediation - ProSupport Plus with SupportAssist can reduce time to resolve parts failure by up to 90%</li><li>Improve power efficiency and compute density – Automatic multi-vector cooling enables more GPU accelerators in a single configuration, increasing up to 50% more VDI users per server</li></ul>\r\n<span style=\"font-weight: bold;\">The differentiated security features in the server:</span>\r\n<ul><li>Prevent unauthorized or inadvertent changes – System Lockdown, an industry-first feature, prevents configuration changes that create security vulnerabilities and expose sensitive data</li><li>Secure data center through a cyber-resilient architecture – Features such as SecureBoot, BIOS Recovery capabilities, signed firmware and iDRAC RESTful API (compliant with Redfish standards) provide enhanced protection against attacks</li><li>Ensure privacy – System Erase quickly and securely erases user data from drives or wipes all non-volatile media when a server is retired</li></ul>\r\nThe new design of the Dell EMC PowerEdge 14th generation server portfolio has already won a user-experience design award, with a completely reimagined portfolio identity to mirror how customers interact with servers:\r\n<ul><li>Improve airflow – A new streamlined front profile moves air efficiently, optimizing power for application performance</li><li>Deliver an intuitive user experience – Server configuration and monitoring is now possible via a handheld smart device with Quick Sync feature</li><li>Be eco-friendly – Introduction of hemmed edges as a structural element, eliminates the use of paint on the server reducing environmental impact</li></ul>\r\n<span style=\"font-weight: bold;\">Services are a critical component of the Dell EMC next generation server strategy include:</span>\r\n<ul><li>Our IT Transformation Workshop, where Dell EMC consultants help customers compare their efforts to best-in-class peers and identify key priorities to accelerate their transformation to a modern, cloud-enabled infrastructure and IT model</li><li>Award-winning ProDeploy Enterprise Suite accelerates technology adoption, saving time and money with up to 91% less IT effort and up to 39% faster deployments than in-house resources</li><li>ProSupport Enterprise Suite, services which are fully integrated with the PowerEdge 14th generation server’s intelligent management and automation features, include ProSupport Plus with SupportAssist, Dell EMC’s automated, proactive and predictive technology that can resolve hardware issues up to 90% faster</li></ul>","shortDescription":"The 14th generation of the Dell EMC PowerEdge is a server with scalable business architecture, that optimizes data centers for a wide variety of new and emerging workload requirements; intelligent automation via expanded APIs and the all-new OpenManage™ Enterprise console enable IT to spend more time on higher priority work; PowerEdge 14th generation servers will be embedded in storage and data center appliances, hyper-converged appliances and racks, ready nodes, bundles and other industry-leading Dell EMC solutions.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":4,"sellingCount":13,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC PowerEdge 14th generation server","keywords":"with, server, Dell, PowerEdge, management, generation, time, data","description":"The new scalable business architecture of Dell EMC PowerEdge servers enable customers to meet dynamic business needs with performance optimized for traditional and cloud-native workloads. The new Dell EMC PowerEdge server portfolio is enhanced to:\r\n<ul><li>Inc","og:title":"Dell EMC PowerEdge 14th generation server","og:description":"The new scalable business architecture of Dell EMC PowerEdge servers enable customers to meet dynamic business needs with performance optimized for traditional and cloud-native workloads. The new Dell EMC PowerEdge server portfolio is enhanced to:\r\n<ul><li>Inc","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_PowerEdge_14.jpg"},"eventUrl":"","translationId":1033,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dell-emc-poweredge-mx-io-modules":{"id":4772,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_PowerEdge_MX_IO_Modules.jpg","logo":true,"scheme":false,"title":"Dell EMC PowerEdge MX I/O Modules","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":59,"alias":"dell-emc-poweredge-mx-io-modules","companyTitle":"Dell EMC","companyTypes":["vendor"],"companyId":955,"companyAlias":"dell-emc","description":"<span style=\"font-weight: bold;\">SmartFabric Services</span>\r\nRobust yet simple fabric automation that goes beyond the ordinary\r\n<ul><li>Plug and Play fabric deployment with simplified I/O Aggregation providing a single pane of glass view</li><li>Physical topology validation and compliance checking</li><li>Automated per-VLAN Quality of Service assignment based on traffic types</li><li>Self-healing fabric detects misconfigurations and link failure conditions and adjusts where possible</li></ul>\r\n<span style=\"font-weight: bold;\">Scalable fabric architecture</span>\r\nMulti-chassis scalable fabric architecture that can grow with your specific needs\r\n<ul><li>Fabric expansion capability using 25GbE connectivity across multiple chassis</li><li>Single networking domain across the fabric providing a single pane of glass view</li><li>SmartFabric Services provides a robust fabric-level automation framework</li></ul>\r\n<span style=\"font-weight: bold;\">The power of open choice</span>\r\nAn array of hardware platforms, operating systems and management services\r\n<ul><li>Choice of unique Open Networking modular switches</li><li>Choice of Dell EMC OS10 or select 3rd party OS’s</li><li>Choice of leveraging standards-based open automation tools</li></ul>\r\n<span style=\"font-weight: bold;\">Highest performance connectivity</span>\r\nOptimum connectivity to servers and storage platforms in the chassis for demanding workloads\r\n<ul><li>High-performance 25GbE and 32G FC connectivity within the chassis</li><li>High throughput and low latency performance throughout the chassis</li><li>Multi-rate 100GbE uplinks to data center leaf/spine fabric</li></ul>","shortDescription":"Maximize the demanding connectivity needs of today’s data center workloads while also lowering overall costs and network management complexity.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":5,"sellingCount":18,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC PowerEdge MX I/O Modules","keywords":"","description":"<span style=\"font-weight: bold;\">SmartFabric Services</span>\r\nRobust yet simple fabric automation that goes beyond the ordinary\r\n<ul><li>Plug and Play fabric deployment with simplified I/O Aggregation providing a single pane of glass view</li><li>Physical topo","og:title":"Dell EMC PowerEdge MX I/O Modules","og:description":"<span style=\"font-weight: bold;\">SmartFabric Services</span>\r\nRobust yet simple fabric automation that goes beyond the ordinary\r\n<ul><li>Plug and Play fabric deployment with simplified I/O Aggregation providing a single pane of glass view</li><li>Physical topo","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_PowerEdge_MX_IO_Modules.jpg"},"eventUrl":"","translationId":4773,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":4,"title":"Data center","alias":"data-center","description":" A data center (or datacenter) is a facility composed of networked computers and storage that businesses or other organizations use to organize, process, store and disseminate large amounts of data. A business typically relies heavily upon the applications, services and data contained within a data center, making it a focal point and critical asset for everyday operations.\r\nData centers are not a single thing, but rather, a conglomeration of elements. At a minimum, data centers serve as the principal repositories for all manner of IT equipment, including servers, storage subsystems, networking switches, routers and firewalls, as well as the cabling and physical racks used to organize and interconnect the IT equipment. A data center must also contain an adequate infrastructure, such as power distribution and supplemental power subsystems, including electrical switching; uninterruptable power supplies; backup generators and so on; ventilation and data center cooling systems, such as computer room air conditioners; and adequate provisioning for network carrier (telco) connectivity. All of this demands a physical facility with physical security and sufficient physical space to house the entire collection of infrastructure and equipment.","materialsDescription":" <span style=\"font-weight: bold;\">What are the requirements for modern data centers?</span>\r\nModernization and data center transformation enhances performance and energy efficiency.\r\nInformation security is also a concern, and for this reason a data center has to offer a secure environment which minimizes the chances of a security breach. A data center must therefore keep high standards for assuring the integrity and functionality of its hosted computer environment.\r\nIndustry research company International Data Corporation (IDC) puts the average age of a data center at nine years old. Gartner, another research company, says data centers older than seven years are obsolete. The growth in data (163 zettabytes by 2025) is one factor driving the need for data centers to modernize.\r\nFocus on modernization is not new: Concern about obsolete equipment was decried in 2007, and in 2011 Uptime Institute was concerned about the age of the equipment therein. By 2018 concern had shifted once again, this time to the age of the staff: "data center staff are aging faster than the equipment."\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Meeting standards for data centers</span></span>\r\nThe Telecommunications Industry Association's Telecommunications Infrastructure Standard for Data Centers specifies the minimum requirements for telecommunications infrastructure of data centers and computer rooms including single tenant enterprise data centers and multi-tenant Internet hosting data centers. The topology proposed in this document is intended to be applicable to any size data center.\r\nTelcordia GR-3160, NEBS Requirements for Telecommunications Data Center Equipment and Spaces, provides guidelines for data center spaces within telecommunications networks, and environmental requirements for the equipment intended for installation in those spaces. These criteria were developed jointly by Telcordia and industry representatives. They may be applied to data center spaces housing data processing or Information Technology (IT) equipment. The equipment may be used to:\r\n<ul><li>Operate and manage a carrier's telecommunication network</li><li>Provide data center based applications directly to the carrier's customers</li><li>Provide hosted applications for a third party to provide services to their customers</li><li>Provide a combination of these and similar data center applications</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Data center transformation</span></span>\r\nData center transformation takes a step-by-step approach through integrated projects carried out over time. This differs from a traditional method of data center upgrades that takes a serial and siloed approach. The typical projects within a data center transformation initiative include standardization/consolidation, virtualization, automation and security.\r\n<ul><li>Standardization/consolidation: Reducing the number of data centers and avoiding server sprawl (both physical and virtual) often includes replacing aging data center equipment, and is aided by standardization.</li><li>Virtualization: Lowers capital and operational expenses, reduce energy consumption. Virtualized desktops can be hosted in data centers and rented out on a subscription basis. Investment bank Lazard Capital Markets estimated in 2008 that 48 percent of enterprise operations will be virtualized by 2012. Gartner views virtualization as a catalyst for modernization.</li><li>Automating: Automating tasks such as provisioning, configuration, patching, release management and compliance is needed, not just when facing fewer skilled IT workers.</li><li>Securing: Protection of virtual systems is integrated with existing security of physical infrastructures.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Machine room</span></span>\r\nThe term "Machine Room" is at times used to refer to the large room within a Data Center where the actual Central Processing Unit is located; this may be separate from where high-speed printers are located. Air conditioning is most important in the machine room.\r\nAside from air-conditioning, there must be monitoring equipment, one type of which is to detect water prior to flood-level situations. One company, for several decades, has had share-of-mind: Water Alert. The company, as of 2018, has 2 competing manufacturers (Invetex, Hydro-Temp) and 3 competing distributors (Longden,Northeast Flooring, Slayton). ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_center.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dell-emc-poweredge-rack-servers":{"id":856,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/DELL_Servery_PowerEdge__ustanavlivaemye_v_stoiku.jpg","logo":true,"scheme":false,"title":"Dell EMC PowerEdge Rack Servers","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":59,"alias":"dell-emc-poweredge-rack-servers","companyTitle":"Dell EMC","companyTypes":["vendor"],"companyId":955,"companyAlias":"dell-emc","description":"Dell PowerEdge is a server line by Dell, following the naming convention for other Dell products: the PowerVault (data storage) and the PowerConnect (data transfer & switches).\r\nBelow is an overview of current and former servers within Dell's PowerEdge product line. Different models are or were available as towers, 19-inch racks or blades. In the current naming scheme, towers are designated by T, racks by R, and blades by M (for modular). The 19" rack-servers come in different physical heights expressed in rack unit or U. Most modern servers are either 1U or 2U high while in the past the 4U was more common. Over the years, many different types of PowerEdge servers have been introduced and there was wide variety of product and family codes used within the PowerEdge name.\r\n<span style=\"font-weight: bold;\">Itanium servers</span> The Dell Itanium-based servers were introduced before this new naming-convention was introduced and were only available as rack servers.<br /><span style=\"font-weight: bold;\">New naming convention</span> Since the introduction of the Generation 10 servers in 2007 Dell has adopted a standardized method for naming their servers; the name of each server is now represented by a letter followed by 3 digits. The letter indicates the type of server: R (for Rack-mountable) indicates a 19" rack-mountable server, M (for Modular) indicates a blade server, whilst T (for Tower) indicates a stand-alone server. This letter is then followed by 3 digits.\r\n<ul><li>The first digit refers to the number of sockets in the system: 1 to 3 for one socket, 4 to 7 for two sockets, and 8 or 9 for four sockets.</li><li>The middle digit refers to the generation: 0 for Generation 10, 1 for Generation 11, and so on.</li><li>The third digit indicates the make of the CPU: 0 for Intel or 5 for AMD. </li></ul>\r\n<span style=\"font-style: italic;\">For example: The Dell PowerEdge M610 is a two-socket server of the 11th generation using an Intel CPU whilst the R605 is a two-socket AMD-based rack-server of the 10th generation.</span><span style=\"font-weight: bold;\"></span>\r\n<span style=\"font-weight: bold;\">Blade servers</span> Since Generation 10 there are models for the M1000e enclosure. The blade-servers in Generation 8 and Generation 9 are using another enclosure that is not compatible with the current M1000e system. In form-factor there are two models: half-height and full-height. In an enclosure you can fit 8 full or 16 half-height blades (or a mix). Each server has two or four on-board NIC's and two additional Mezzanine card-slots for additional I/O options: 1 Gb or 10 Gb Ethernet cards, Fibre Channel HBA's or InfiniBand slots. Apart from USB connectors a blade-server doesn't offer direct connections: all I/O goes via the midplane of the enclosure.","shortDescription":"Dell PowerEdge is a server line by Dell, following the naming convention for other Dell products: the PowerVault (data storage) and the PowerConnect (data transfer & switches).","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":1,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC PowerEdge Rack Servers","keywords":"","description":"Dell PowerEdge is a server line by Dell, following the naming convention for other Dell products: the PowerVault (data storage) and the PowerConnect (data transfer & switches).\r\nBelow is an overview of current and former servers within Dell's PowerEdge pro","og:title":"Dell EMC PowerEdge Rack Servers","og:description":"Dell PowerEdge is a server line by Dell, following the naming convention for other Dell products: the PowerVault (data storage) and the PowerConnect (data transfer & switches).\r\nBelow is an overview of current and former servers within Dell's PowerEdge pro","og:image":"https://old.roi4cio.com/fileadmin/user_upload/DELL_Servery_PowerEdge__ustanavlivaemye_v_stoiku.jpg"},"eventUrl":"","translationId":2032,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":62,"title":"Rack server"}],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dell-emc-vxrail":{"id":3396,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/dell_vxrail.jpg","logo":true,"scheme":false,"title":"Dell EMC VxRail","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":59,"alias":"dell-emc-vxrail","companyTitle":"Dell EMC","companyTypes":["vendor"],"companyId":955,"companyAlias":"dell-emc","description":"Whether you are accelerating data center modernization or deploying a hybrid cloud, VxRail delivers a turnkey experience that enables our customers to continuously innovate. The only fully integrated, pre-configured, and pre-tested VMware hyperconverged system on the market, VxRail transforms HCI networking and simplifies VMware cloud adoption, while meeting any HCI use case, including support for many of the most demanding workloads and applications.\r\nVxRail, powered by Dell EMC PowerEdge server platforms, features next-generation technology that provides future proofing for your infrastructure, including NVMe cache drives, SmartFabric Services supported by the Dell EMC PowerSwitch family, deep integration across the VMware ecosystem, advanced VMware hybrid cloud integration, and automated tools and guides to simplify deployment of a secure VxRail infrastructure.\r\n<ul><li>Consolidates compute, storage, and virtualization with end-to-end automated lifecycle management</li><li>Automates network setup and lifecycle management with SmartFabric Services, greatly accelerating deployment and simplifying operations</li><li>Delivers enterprise edge solutions with support for 2-node clusters</li><li>Provides a single point of support for all software and hardware</li><li>Offers smarter operations and infrastructure machine learning as part of the VxRail HCI System Software</li></ul>\r\n\r\n<span style=\"font-weight: bold;\">Benefits:</span>\r\n<span style=\"font-weight: bold; \">Dell Technologies Cloud Platform:</span> VMware Cloud Foundation on VxRail delivers full stack integration and simplified path to hybrid cloud that is future-proof for next generation VMware Cloud technologies.\r\n<span style=\"font-weight: bold; \">Jointly engineered:</span> Enables 2.5x faster time to value with synchronous availability of VMware core HCI and full stack HCI software with unique integration enabled by VxRail HCI System Software.\r\n<span style=\"font-weight: bold; \">Operational transparency:</span> 100% of VxRail value-added software capabilities and management available through VMware vCenter.\r\n<span style=\"font-weight: bold;\">Automated connectivity:</span> The first and only HCI appliance with network configuration automation reduces deployment and administration by 98%.","shortDescription":"Whether you are accelerating data center modernization or deploying a hybrid cloud, VxRail delivers a turnkey experience that enables our customers to continuously innovate.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":9,"sellingCount":20,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC VxRail","keywords":"","description":"Whether you are accelerating data center modernization or deploying a hybrid cloud, VxRail delivers a turnkey experience that enables our customers to continuously innovate. The only fully integrated, pre-configured, and pre-tested VMware hyperconverged system","og:title":"Dell EMC VxRail","og:description":"Whether you are accelerating data center modernization or deploying a hybrid cloud, VxRail delivers a turnkey experience that enables our customers to continuously innovate. The only fully integrated, pre-configured, and pre-tested VMware hyperconverged system","og:image":"https://old.roi4cio.com/fileadmin/user_upload/dell_vxrail.jpg"},"eventUrl":"","translationId":3397,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":697,"title":"Backup Administration","alias":"backup-administration","description":" Nowadays, information, along with human capital, is the most valuable asset of every enterprise. The backup system administration is an integral part of data and IT system security structure. It is the backup process quality and method that determine whether in the case of a system failure or data loss it will be possible to maintain functionality and continuity of the enterprise’s operations. This is why careful creation of backup copies is so important.\r\nCreating backup copies may be burdensome and very expensive and time-consuming when you do it all by yourself. On the other hand, the automation of the process introduces a range of improvements, saves time and eliminate the risk of data loss. The copies are created automatically and are protected against interference by third parties. The network administrator is capable of remote backup system management, validity monitoring of created copies as well as retrieving lost information.","materialsDescription":" <span style=\"font-weight: bold;\">The need for backup: when will help out the backup scheme?</span>\r\n<span style=\"font-weight: bold;\">Data corruption</span>\r\nThe need to create a backup is most obvious in the case when your data may undergo damage - physical destruction or theft of the carrier, virus attack, accidental and/or illegal changes, etc.\r\nA working backup plan will allow you to return your data in the event of any failure or accident without the cost and complexity.\r\n<span style=\"font-weight: bold;\">Copying information, creating mirrors</span>\r\nA less obvious option for using the backup scheme is to automatically create copies of data not for storage, but for use: cloning and mirroring databases, web sites, work projects, etc.\r\nThe backup scheme does not define what, where and why to copy - use backup as a cloning tool.\r\n<span style=\"font-weight: bold;\">Test, training and debugging projects</span>\r\nA special case of data cloning is the creation of a copy of working information in order to debug, improve or study its processing system. You can create a copy of your website or database using the backup instructions to make and debug any changes.\r\nThe need for backing up training and debugging versions of information is all the more high because the changes you make often lead to data loss.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Backup_Administration.png"},{"id":46,"title":"Data Protection and Recovery Software","alias":"data-protection-and-recovery-software","description":"Data protection and recovery software provide data backup, integrity and security for data backups and it enables timely, reliable and secure backup of data from a host device to destination device. Recently, Data Protection and Recovery Software market are disrupted by innovative technologies such as server virtualization, disk-based backup, and cloud services where emerging players are playing an important role. Tier one players such as IBM, Hewlett Packard Enterprise, EMC Corporation, Symantec Corporation and Microsoft Corporation are also moving towards these technologies through partnerships and acquisitions.\r\nThe major factor driving data protection and recovery software market is the high adoption of cloud-based services and technologies. Many organizations are moving towards the cloud to reduce their operational expenses and to provide real-time access to their employees. However, increased usage of the cloud has increased the risk of data loss and data theft and unauthorized access to confidential information, which increases the demand for data protection and recovery solution suites.","materialsDescription":" \r\n<span style=\"font-weight: bold; \">What is Data recovery?</span>\r\nData recovery is a process of salvaging (retrieving) inaccessible, lost, corrupted, damaged or formatted data from secondary storage, removable media or files, when the data stored in them cannot be accessed in a normal way. The data is most often salvaged from storage media such as internal or external hard disk drives (HDDs), solid-state drives (SSDs), USB flash drives, magnetic tapes, CDs, DVDs, RAID subsystems, and other electronic devices. Recovery may be required due to physical damage to the storage devices or logical damage to the file system that prevents it from being mounted by the host operating system (OS).\r\nThe most common data recovery scenario involves an operating system failure, malfunction of a storage device, logical failure of storage devices, accidental damage or deletion, etc. (typically, on a single-drive, single-partition, single-OS system), in which case the ultimate goal is simply to copy all important files from the damaged media to another new drive. This can be easily accomplished using a Live CD or DVD by booting directly from a ROM instead of the corrupted drive in question. Many Live CDs or DVDs provide a means to mount the system drive and backup drives or removable media, and to move the files from the system drive to the backup media with a file manager or optical disc authoring software. Such cases can often be mitigated by disk partitioning and consistently storing valuable data files (or copies of them) on a different partition from the replaceable OS system files.\r\nAnother scenario involves a drive-level failure, such as a compromised file system or drive partition, or a hard disk drive failure. In any of these cases, the data is not easily read from the media devices. Depending on the situation, solutions involve repairing the logical file system, partition table or master boot record, or updating the firmware or drive recovery techniques ranging from software-based recovery of corrupted data, hardware- and software-based recovery of damaged service areas (also known as the hard disk drive's "firmware"), to hardware replacement on a physically damaged drive which allows for extraction of data to a new drive. If a drive recovery is necessary, the drive itself has typically failed permanently, and the focus is rather on a one-time recovery, salvaging whatever data can be read.\r\nIn a third scenario, files have been accidentally "deleted" from a storage medium by the users. Typically, the contents of deleted files are not removed immediately from the physical drive; instead, references to them in the directory structure are removed, and thereafter space the deleted data occupy is made available for later data overwriting. In the mind of end users, deleted files cannot be discoverable through a standard file manager, but the deleted data still technically exists on the physical drive. In the meantime, the original file contents remain, often in a number of disconnected fragments, and may be recoverable if not overwritten by other data files.\r\nThe term "data recovery" is also used in the context of forensic applications or espionage, where data which have been encrypted or hidden, rather than damaged, are recovered. Sometimes data present in the computer gets encrypted or hidden due to reasons like virus attack which can only be recovered by some computer forensic experts.\r\n<span style=\"font-weight: bold;\">What is a backup?</span>\r\nA backup, or data backup, or the process of backing up, refers to the copying into an archive file of computer data that is already in secondary storage—so that it may be used to restore the original after a data loss event. The verb form is "back up" (a phrasal verb), whereas the noun and adjective form is "backup".\r\nBackups have two distinct purposes. The primary purpose is to recover data after its loss, be it by data deletion or corruption. Data loss can be a common experience of computer users; a 2008 survey found that 66% of respondents had lost files on their home PC. The secondary purpose of backups is to recover data from an earlier time, according to a user-defined data retention policy, typically configured within a backup application for how long copies of data are required. Though backups represent a simple form of disaster recovery and should be part of any disaster recovery plan, backups by themselves should not be considered a complete disaster recovery plan. One reason for this is that not all backup systems are able to reconstitute a computer system or other complex configuration such as a computer cluster, active directory server, or database server by simply restoring data from a backup.\r\nSince a backup system contains at least one copy of all data considered worth saving, the data storage requirements can be significant. Organizing this storage space and managing the backup process can be a complicated undertaking. A data repository model may be used to provide structure to the storage. Nowadays, there are many different types of data storage devices that are useful for making backups. There are also many different ways in which these devices can be arranged to provide geographic redundancy, data security, and portability.\r\nBefore data are sent to their storage locations, they are selected, extracted, and manipulated. Many different techniques have been developed to optimize the backup procedure. These include optimizations for dealing with open files and live data sources as well as compression, encryption, and de-duplication, among others. Every backup scheme should include dry runs that validate the reliability of the data being backed up. It is important to recognize the limitations and human factors involved in any backup scheme.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Data_Protection_and_Recovery_Software__1_.png"},{"id":509,"title":"Converged and Hyper Converged System","alias":"converged-and-hyper-converged-system","description":" Converged and hyper convergent infrastructures simplify support for virtual desktop infrastructure and desktop virtualization, as they are designed to be easy to install and perform complex tasks.\r\nConvergent infrastructure combines the four main components of a data center in one package: computing devices, storage devices, network devices, and server virtualization tools. Hyper-converged infrastructure allows for tighter integration of a larger number of components using software tools.\r\nIn both convergent and hyper-convergent infrastructure, all elements are compatible with each other. Thanks to this, you will be able to purchase the necessary storage devices and network devices for your company at a time, and they, as you know, are of great importance in the virtual desktops infrastructure. This allows you to simplify the process of deploying such an infrastructure - something that has been waiting for and what will be rejoiced by many companies that need to virtualize their desktop systems.\r\nDespite its value and innovation, there are several questions to these technologies regarding their intended use and differences. Let's try to figure out what functionality offers converged and hyper-convergent infrastructures and how they differ.","materialsDescription":" <span style=\"font-weight: bold;\">What is converged infrastructure?</span>\r\nConvergent infrastructure combines computing devices, storage, network devices and server virtualization tools in one chassis so that they can be managed from one place. Management capabilities may include the management of virtual desktop infrastructure, depending on the selected configuration and manufacturer.\r\nThe hardware included in the bundled converged infrastructure is pre-configured to support any targets: virtual desktop infrastructures, databases, special applications, and so on. But in fact, you do not have enough freedom to change the selected configuration.\r\nRegardless of the method chosen for extending the virtual desktop infrastructure environment, you should understand that subsequent vertical scaling will be costly and time-consuming. Adding individual components is becoming complex and depriving you of the many benefits of a converged infrastructure. Adding workstations and expanding storage capacity in a corporate infrastructure can be just as expensive, which suggests the need for proper planning for any virtual desktop infrastructure deployment.\r\nOn the other hand, all components of a converged infrastructure can work for a long time. For example, a complete server of such infrastructure works well even without the rest of the infrastructure components.\r\n<span style=\"font-weight: bold;\">What is a hyper-convergent infrastructure?</span>\r\nThe hyper-converged infrastructure was built on the basis of converged infrastructure and the concept of a software-defined data center. It combines all the components of the usual data center in one system. All four key components of the converged infrastructure are in place, but sometimes it also includes additional components, such as backup software, snapshot capabilities, data deduplication functionality, intermediate compression, global network optimization (WAN), and much more. Convergent infrastructure relies primarily on hardware, and software-defined data center often adapts to any hardware. In the hyper-convergent infrastructure, these two possibilities are combined.\r\nHyper-converged infrastructure is supported by one supplier. It can be managed as a single system with a single set of tools. To expand the infrastructure, you just need to install blocks of necessary devices and resources (for example, storage) into the main system block. And this is done literally on the fly.\r\nSince the hyper-convergent infrastructure is software-defined (that is, the operation of the infrastructure is logically separated from the physical equipment), the mutual integration of components is denser than in a conventional converged infrastructure, and the components themselves must be nearby to work correctly. This makes it possible to use a hyper-convergent infrastructure to support even more workloads than in the case of conventional converged infrastructure. This is explained by the fact that it has the possibility of changing the principle of definition and adjustment at the program level. In addition, you can make it work with specialized applications and workloads, which pre-configured converged infrastructures do not allow.\r\nHyper-converged infrastructure is especially valuable for working with a virtual desktop infrastructure because it allows you to scale up quickly without additional costs. Often, in the case of the classic virtual desktops infrastructure, things are completely different - companies need to buy more resources before scaling or wait for virtual desktops to use the allocated space and network resources, and then, in fact, add new infrastructure.\r\nBoth scenarios require significant time and money. But, in the case of hyperconvergent infrastructure, if you need to expand the storage, you can simply install the required devices in the existing stack. Scaling can be done quickly — for the time required to deliver the equipment. In this case, you do not have to go through the full procedure of re-evaluation and reconfiguration of the corporate infrastructure.\r\nIn addition, when moving from physical PCs to virtual workstations, you will need devices to perform all the computational tasks that laptops and PCs typically perform. Hyper-converged infrastructure will greatly help with this, as it often comes bundled with a large amount of flash memory, which has a positive effect on the performance of virtual desktops. This increases the speed of I / O operations, smoothes work under high loads, and allows you to perform scanning for viruses and other types of monitoring in the background (without distracting users).\r\nThe flexibility of the hyper-converged infrastructure makes it more scalable and cost-effective compared to the convergent infrastructure since it has the ability to add computing and storage devices as needed. The cost of the initial investment for both infrastructures is high, but in the long term, the value of the investment should pay off.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Converged_and_Hyper_Converged_System.png"},{"id":5,"title":"Security Software","alias":"security-software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png"},{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dell-poweredge-mx7000-modular-chassis":{"id":4770,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Dell_PowerEdge_MX7000_Modular_Chassis.jpg","logo":true,"scheme":false,"title":"Dell PowerEdge MX7000 Modular Chassis","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":15,"alias":"dell-poweredge-mx7000-modular-chassis","companyTitle":"DELL","companyTypes":["vendor"],"companyId":169,"companyAlias":"dell","description":"<span style=\"font-weight: bold; \">Liberate IT resources to achieve optimal utilization, productivity and efficiency</span>\r\nAs dynamic and innovative as your business, PowerEdge MX kinetic infrastructure bridges traditional and software-defined data centers with unequal flexibility and agility. At the foundation, PowerEdge MX7000 chassis hosts disaggregated blocks of server and storage to create consumable resources on-demand. Shared power, cooling, networking, I/O and in-chassis management provides outstanding efficiencies.\r\n<ul><li>7U modular enclosure with eight slots holds 2S single or four 4S double-width compute sleds and 12Gbs single-width storage sleds</li><li>25Gb Ethernet, 12Gb SAS and 32Gb Fibre Channel I/O options</li><li>Three I/O networking fabrics, two general purpose and one storage specific, each with redundant modules</li><li>Multi-chassis networking up to 10 chassis</li><li>Single management point for compute, storage and networking</li><li>High-speed technology connections, now and into the future, with no midplane upgrade</li><li>At least three server processor microarchitecture generation support assurance</li></ul>\r\n<span style=\"font-weight: bold; \">Dynamically scale and respond with kinetic infrastructure</span>\r\nDesigned with Dell EMC’s kinetic infrastructure, PowerEdge MX creates shared pools of disaggregated compute and storage resources, connected by scalable fabric, from which workloads can draw resources needed to run most quickly and efficiently. Then when no longer needed the resources are returned into the pool. By essentially creating hardware on the fly the capacity can be managed at a data center level instead of a per server level.\r\n<ul><li>Full-featured, no compromise compute sleds with Intel® Xeon® Scalable processors</li><li>Generous, scalable on-board SAS, SATA, and NVMe storage drives, plus substantial, granular SAS direct-attached storage using optional storage sleds</li><li>Scalable fabric architecture with a grow-as-you-need fabric expansion capability for up to 10 chassis in fabric.</li></ul>\r\n<span style=\"font-weight: bold; \">Increase effectiveness and accelerate operations with unified automation</span>\r\nEmbedded Dell EMC OpenManage Enterprise – Modular Edition delivers the key abilities of OpenMange Enterprise systems management within the PowerEdge MX chassis. A unified simple interface manages compute, storage and fabric, reducing costs and the learning curve and consolidates multiple tools. Redundant management modules ensure highest availability.\r\n<ul><li>Automatic expansion from one to multiple chassis; scale management to thousands of PowerEdge MX and rack servers with OpenManage Enterprise</li><li>Flexible, at-the-box management front control panel options include Quick Sync 2 (wireless), touchscreen LCD and traditional crash cart</li><li>Comprehensive RESTful API helps automate multiple tasks and integrates to third-party tools</li><li>Seamlessly integrates with integrated Dell Remote Access Controller 9 (iDRAC9) and Lifecycle Controller (LC)</li></ul>\r\n<span style=\"font-weight: bold;\">Protect infrastructure and investment with responsive design</span>\r\nReduce the risk of infrastructure investment and help make new innovations more easily available with PowerEdge MX7000 future-forward architecture. Designed to maximize longevity and minimize disruptive technology changes support across both generational and architectural transitions is provided.\r\n<ul><li>Multi-generational assurance with support for at least three server processor microarchitecture generations</li><li>Nearly zero throughput limitations, providing high-speed technology connections, and well into the future, with no midplane upgrade</li><li>Industry-leading thermal architecture and mechanical design and control algorithms support dense configurations and future compatibility</li></ul>","shortDescription":"Dynamically assign, move and scale shared pools of compute, storage and fabric, with greater flexibility and efficiency, and deliver optimal value.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":1,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell PowerEdge MX7000 Modular Chassis","keywords":"","description":"<span style=\"font-weight: bold; \">Liberate IT resources to achieve optimal utilization, productivity and efficiency</span>\r\nAs dynamic and innovative as your business, PowerEdge MX kinetic infrastructure bridges traditional and software-defined data centers wi","og:title":"Dell PowerEdge MX7000 Modular Chassis","og:description":"<span style=\"font-weight: bold; \">Liberate IT resources to achieve optimal utilization, productivity and efficiency</span>\r\nAs dynamic and innovative as your business, PowerEdge MX kinetic infrastructure bridges traditional and software-defined data centers wi","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Dell_PowerEdge_MX7000_Modular_Chassis.jpg"},"eventUrl":"","translationId":4771,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":4,"title":"Data center","alias":"data-center","description":" A data center (or datacenter) is a facility composed of networked computers and storage that businesses or other organizations use to organize, process, store and disseminate large amounts of data. A business typically relies heavily upon the applications, services and data contained within a data center, making it a focal point and critical asset for everyday operations.\r\nData centers are not a single thing, but rather, a conglomeration of elements. At a minimum, data centers serve as the principal repositories for all manner of IT equipment, including servers, storage subsystems, networking switches, routers and firewalls, as well as the cabling and physical racks used to organize and interconnect the IT equipment. A data center must also contain an adequate infrastructure, such as power distribution and supplemental power subsystems, including electrical switching; uninterruptable power supplies; backup generators and so on; ventilation and data center cooling systems, such as computer room air conditioners; and adequate provisioning for network carrier (telco) connectivity. All of this demands a physical facility with physical security and sufficient physical space to house the entire collection of infrastructure and equipment.","materialsDescription":" <span style=\"font-weight: bold;\">What are the requirements for modern data centers?</span>\r\nModernization and data center transformation enhances performance and energy efficiency.\r\nInformation security is also a concern, and for this reason a data center has to offer a secure environment which minimizes the chances of a security breach. A data center must therefore keep high standards for assuring the integrity and functionality of its hosted computer environment.\r\nIndustry research company International Data Corporation (IDC) puts the average age of a data center at nine years old. Gartner, another research company, says data centers older than seven years are obsolete. The growth in data (163 zettabytes by 2025) is one factor driving the need for data centers to modernize.\r\nFocus on modernization is not new: Concern about obsolete equipment was decried in 2007, and in 2011 Uptime Institute was concerned about the age of the equipment therein. By 2018 concern had shifted once again, this time to the age of the staff: "data center staff are aging faster than the equipment."\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Meeting standards for data centers</span></span>\r\nThe Telecommunications Industry Association's Telecommunications Infrastructure Standard for Data Centers specifies the minimum requirements for telecommunications infrastructure of data centers and computer rooms including single tenant enterprise data centers and multi-tenant Internet hosting data centers. The topology proposed in this document is intended to be applicable to any size data center.\r\nTelcordia GR-3160, NEBS Requirements for Telecommunications Data Center Equipment and Spaces, provides guidelines for data center spaces within telecommunications networks, and environmental requirements for the equipment intended for installation in those spaces. These criteria were developed jointly by Telcordia and industry representatives. They may be applied to data center spaces housing data processing or Information Technology (IT) equipment. The equipment may be used to:\r\n<ul><li>Operate and manage a carrier's telecommunication network</li><li>Provide data center based applications directly to the carrier's customers</li><li>Provide hosted applications for a third party to provide services to their customers</li><li>Provide a combination of these and similar data center applications</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Data center transformation</span></span>\r\nData center transformation takes a step-by-step approach through integrated projects carried out over time. This differs from a traditional method of data center upgrades that takes a serial and siloed approach. The typical projects within a data center transformation initiative include standardization/consolidation, virtualization, automation and security.\r\n<ul><li>Standardization/consolidation: Reducing the number of data centers and avoiding server sprawl (both physical and virtual) often includes replacing aging data center equipment, and is aided by standardization.</li><li>Virtualization: Lowers capital and operational expenses, reduce energy consumption. Virtualized desktops can be hosted in data centers and rented out on a subscription basis. Investment bank Lazard Capital Markets estimated in 2008 that 48 percent of enterprise operations will be virtualized by 2012. Gartner views virtualization as a catalyst for modernization.</li><li>Automating: Automating tasks such as provisioning, configuration, patching, release management and compliance is needed, not just when facing fewer skilled IT workers.</li><li>Securing: Protection of virtual systems is integrated with existing security of physical infrastructures.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Machine room</span></span>\r\nThe term "Machine Room" is at times used to refer to the large room within a Data Center where the actual Central Processing Unit is located; this may be separate from where high-speed printers are located. Air conditioning is most important in the machine room.\r\nAside from air-conditioning, there must be monitoring equipment, one type of which is to detect water prior to flood-level situations. One company, for several decades, has had share-of-mind: Water Alert. The company, as of 2018, has 2 competing manufacturers (Invetex, Hydro-Temp) and 3 competing distributors (Longden,Northeast Flooring, Slayton). ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_center.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dell-bleid-massiv-equallogic-ps-m4110":{"id":865,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Bleid-massiv_EqualLogic_PS-M4110.png","logo":true,"scheme":false,"title":"DELL Блейд-массив EqualLogic PS-M4110","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":15,"alias":"dell-bleid-massiv-equallogic-ps-m4110","companyTitle":"DELL","companyTypes":["vendor"],"companyId":169,"companyAlias":"dell","description":"Конвергенция центра обработки данных\r\nВычислительные ресурсы, сетевые компоненты и система хранения данных в одном корпусе для блейд-модулей PowerEdge™ M1000e, а также сокращение инфраструктуры центра обработки данных, кабельных конфигураций и требований к питанию и охлаждению.\r\n\r\nИнтеграция системы хранения данных корпоративного класса с блейд-серверами\r\nПолучите максимально гибкую систему хранения данных для блейд-среды благодаря блейд-массиву двойной ширины и половинной высоты, который можно установить в любом отсеке корпуса PowerEdge M1000e.\r\n\r\nПростое расширение системы хранения данных\r\nОтличная одноранговая архитектура EqualLogic, обеспечивающая линейное масштабирование, позволит сэкономить время благодаря одновременному масштабированию емкости и производительности системы хранения данных.\r\n\r\nУпрощение управления и снижение риска\r\nПоложитесь на возможности централизованного мониторинга и составления отчетов, а также мощные средства защиты данных, реализованные благодаря комплексному набору расширенных функций блейд-массива EqualLogic PS-M4110.\r\n\r\nСистема хранения данных Equallogic PS M4110 \r\nБлейд-массив EqualLogic PS-M4110 предлагается в четырех различных конфигурациях.\r\n\r\nPS-M4110E\r\nПовысьте емкость и производительность, а также расширьте возможности подключения системы хранения данных на вашем малом или среднем предприятии, воспользовавшись экономичными блейд-массивами с протоколом iSCSI 10GbE EqualLogic PS-M4110E.\r\n\r\nPS-M4110X\r\nРазверните блейд-массив iSCSI Dell EqualLogic PS-M4110X 10GbE с отличным сочетанием экономичной производительности и емкости для различных приложений.\r\nБолее подробная информация\r\n\r\nPS-M4110XV\r\nВысокопроизводительные блейд-массивы iSCSI Dell EqualLogic PS-M4110XV 10GbE обеспечат эффективную работу ваших критически важных приложений.\r\n\r\nPS-M4110XS\r\nПриобретите блейд-массив 10GbE iSCSI Dell EqualLogic PS-M4110XS, и вы получите решение с расширенными функциями многоуровневого хранения данных, объединяющее в себе производительные твердотельные накопители с небольшой задержкой и жесткие диски большой емкости.","shortDescription":"Объедините системы хранения, блейд-серверы и сетевые компоненты в масшабируемый виртуализированный центр обработки данных с помощью блейд-массива Dell™ EqualLogic™ PS-M4110.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":15,"sellingCount":20,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"DELL Блейд-массив EqualLogic PS-M4110","keywords":"данных, хранения, EqualLogic, системы, 10GbE, iSCSI, благодаря, PS-M4110","description":"Конвергенция центра обработки данных\r\nВычислительные ресурсы, сетевые компоненты и система хранения данных в одном корпусе для блейд-модулей PowerEdge™ M1000e, а также сокращение инфраструктуры центра обработки данных, кабельных конфигураций и требований к пит","og:title":"DELL Блейд-массив EqualLogic PS-M4110","og:description":"Конвергенция центра обработки данных\r\nВычислительные ресурсы, сетевые компоненты и система хранения данных в одном корпусе для блейд-модулей PowerEdge™ M1000e, а также сокращение инфраструктуры центра обработки данных, кабельных конфигураций и требований к пит","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Bleid-massiv_EqualLogic_PS-M4110.png"},"eventUrl":"","translationId":7014,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dell-obshchaja-infrastruktura-konvergentnye-platformy":{"id":868,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/DELL_Obshchaja_infrastruktura_-_Konvergentnye_platformy.jpg","logo":true,"scheme":false,"title":"DELL Общая инфраструктура - Конвергентные платформы","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":15,"alias":"dell-obshchaja-infrastruktura-konvergentnye-platformy","companyTitle":"DELL","companyTypes":["vendor"],"companyId":169,"companyAlias":"dell","description":"Блейд-сервер PowerEdge M420\r\nБлейд-сервер Dell PowerEdge™ M420 высотой в одну четверть, отличающийся исключительной плотностью размещения вычислительных ресурсов, обеспечивает эффективность и непрерывность бизнес-процессов и позволяет быстро выполнять любые задачи.\r\n\r\nБлейд-сервер PowerEdge M520\r\nСервер PowerEdge™ M520 предлагает невероятно эффективную работу и исключительные преимущества для бизнес-приложений, а также беспрецедентный набор функций корпоративного класса.\r\n\r\nБлейд-сервер PowerEdge M620\r\nБлейд-сервер PowerEdge™ M620 справится с самыми ресурсоемкими рабочими нагрузками. Это идеальное сочетание высокой плотности установки, производительности, эффективности и масштабируемости.\r\n\r\nБлейд-сервер PowerEdge M915\r\nПовысьте эффективность, производительность и гибкость центра обработки данных благодаря блейд-серверу максимальной высоты PowerEdge M915 с процессорами AMD, максимальной полосой пропускания и функциями управления корпоративного класса.","shortDescription":"Dell PowerEdge VRTX PowerEdge VRTX интегрирует серверы, системы хранения данных, сетевые компоненты и средства управления в компактной инфраструктуре совместного использования, оптимизированной для офисных сред.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":9,"sellingCount":20,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"DELL Общая инфраструктура - Конвергентные платформы","keywords":"Блейд-сервер, PowerEdge, PowerEdge™, эффективность, M520, корпоративного, класса, M620","description":"Блейд-сервер PowerEdge M420\r\nБлейд-сервер Dell PowerEdge™ M420 высотой в одну четверть, отличающийся исключительной плотностью размещения вычислительных ресурсов, обеспечивает эффективность и непрерывность бизнес-процессов и позволяет быстро выполнять любые за","og:title":"DELL Общая инфраструктура - Конвергентные платформы","og:description":"Блейд-сервер PowerEdge M420\r\nБлейд-сервер Dell PowerEdge™ M420 высотой в одну четверть, отличающийся исключительной плотностью размещения вычислительных ресурсов, обеспечивает эффективность и непрерывность бизнес-процессов и позволяет быстро выполнять любые за","og:image":"https://old.roi4cio.com/fileadmin/user_upload/DELL_Obshchaja_infrastruktura_-_Konvergentnye_platformy.jpg"},"eventUrl":"","translationId":7016,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"},{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dell-servery-poweredge-v-korpuse-tower":{"id":855,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/DELL_Servery_PowerEdge_v_korpuse_Tower.jpg","logo":true,"scheme":false,"title":"DELL Серверы PowerEdge в корпусе Tower","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":15,"alias":"dell-servery-poweredge-v-korpuse-tower","companyTitle":"DELL","companyTypes":["vendor"],"companyId":169,"companyAlias":"dell","description":"Предлагаемые модели\r\nСравнить все\r\nСерверы — PowerEdge — модель T130\r\nСервер PowerEdge T20 в корпусе Tower\r\nСервер PowerEdge T30 в корпусе Tower\r\nСервер в корпусе Tower PowerEdge T130\r\nМощный однопроцессорный сервер начального уровня в корпусе Mini-Tower для консолидации данных и ускорения работы приложений в масштабах малого или среднего предприятия, небольшого офиса или домашнего офиса.\r\nПодробнее\r\nPowerEdge T20\r\nИдеальный вариант для обеспечения совместной работы, хранения файлов, обмена данными и их защиты внутри компактного и бесшумного сервера в корпусе Mini-Tower.\r\nПодробнее\r\nНовинка Сервер PowerEdge T30 в корпусе Mini-Tower\r\nИдеальный вариант для совместной работы, хранения файлов, общего доступа и защиты данных в небольших и домашних офисах.\r\n\r\nСервер PowerEdge T320 в корпусе Tower\r\nОбеспечьте надежную работу основных бизнес-приложений, используя надежность и гибкость сервера PowerEdge™ T320 в корпусе Tower.\r\n\r\nСервер PowerEdge T330 в корпусе Tower\r\nМощный и расширяемый однопроцессорный сервер в корпусе Tower позволяет ускорить работу приложений, используемых на малых и средних предприятиях, а также в удаленных офисах и филиалах, и развиваться в соответствии с вашими потребностями в данных.\r\n\r\nСервер PowerEdge T420 в корпусе Tower\r\nБлагодаря высокой мощности, большому объему памяти и расширенной пропускной способности ввода-вывода, которые отличают сервер PowerEdge™ T420 в корпусе Tower, вашей организации будет обеспечена высокая производительность, масштабируемость и надежность.\r\n\r\nСервер PowerEdge T430 в корпусе Tower\r\nПовышение производительности в офисной среде благодаря с помощью мощного двухпроцессорного сервера в корпусе Tower с расширяемой конструкцией и низким уровнем шума.\r\n\r\nСервер PowerEdge T630 в корпусе Tower\r\nСправляйтесь с широким диапазоном ресурсоемких рабочих нагрузок благодаря гибкому двухпроцессорному серверу с максимальной производительностью и огромной емкостью внутренней системы хранения данных.","shortDescription":"Независимо от того, работаете ли вы дома или в небольшом офисе, серверы Dell PowerEdge в корпусе Tower идеально подойдут для ваших потребностей в области ИТ. Ознакомьтесь с нашими продуктами уже сегодня. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":16,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"DELL Серверы PowerEdge в корпусе Tower","keywords":"корпусе, Tower, PowerEdge, Сервер, данных, сервер, Mini-Tower, работы","description":"Предлагаемые модели\r\nСравнить все\r\nСерверы — PowerEdge — модель T130\r\nСервер PowerEdge T20 в корпусе Tower\r\nСервер PowerEdge T30 в корпусе Tower\r\nСервер в корпусе Tower PowerEdge T130\r\nМощный однопроцессорный сервер начального уровня в корпусе Mini-Tower для к","og:title":"DELL Серверы PowerEdge в корпусе Tower","og:description":"Предлагаемые модели\r\nСравнить все\r\nСерверы — PowerEdge — модель T130\r\nСервер PowerEdge T20 в корпусе Tower\r\nСервер PowerEdge T30 в корпусе Tower\r\nСервер в корпусе Tower PowerEdge T130\r\nМощный однопроцессорный сервер начального уровня в корпусе Mini-Tower для к","og:image":"https://old.roi4cio.com/fileadmin/user_upload/DELL_Servery_PowerEdge_v_korpuse_Tower.jpg"},"eventUrl":"","translationId":7010,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dell-stoechnyi-server-poweredge-c6320":{"id":866,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/DELL_Modulnaja_infrastruktura.png","logo":true,"scheme":false,"title":"DELL Стоечный сервер PowerEdge C6320","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":15,"alias":"dell-stoechnyi-server-poweredge-c6320","companyTitle":"DELL","companyTypes":["vendor"],"companyId":169,"companyAlias":"dell","description":"Производительность и эффективность\r\n\r\nСоздавайте высокопроизводительные кластеры и решения с горизонтальным масштабированием при помощи серверов PowerEdge C6320 со следующими характеристиками:\r\n \r\nМодульное решение с форм-фактором 2U и высокой плотностью, оснащенное процессорами Intel® Xeon® E5-2600 v4 нового поколения с увеличенным числом ядер по сравнению с предыдущими моделями E5-2600 v3, а также с поддержкой памяти объемом до 512 Гбайт на серверный узел с общим объемом до 2 Тбайт.\r\nИнтегрированный контроллер удаленного доступа Dell iDRAC8 с контроллером жизненного цикла (оптимальная стоимость при использовании с C6320) для обеспечения стабильного, эффективного управления серверами в физических, виртуальных, локальных и удаленных средах\r\nУниверсальные конфигурации с жесткими дисками высокой емкости с шириной 2,5 и 3,5 дюйма\r\n16 разъемов для модулей памяти DIMM позволяют адаптировать объем памяти (до 512 Гбайт1) под ваши потребности\r\nПамять DDR4 обеспечивает увеличение пропускной способности на 15% и сокращение энергопотребления до 30% по сравнению с ОЗУ DDR3\r\n\r\nМаксимальная универсальность\r\n\r\nЭкономия пространства и поддержка меняющихся нагрузок за счет оптимального сочетания производительности процессоров, вариантов узлов и функций энергосбережения, а также благодаря возможности использования до четырех независимых салазок (серверных узлов) и поддержке различного числа жестких дисков в одном шасси с форм-фактором 2U.\r\nДо 44 ядер на узел, 176 ядер на шасси\r\nДо 24 (шириной 2,5 дюйма) или 12 (шириной 3,5 дюйма) накопителей SAS, SATA или твердотельных накопителей с возможностью горячей замены в каждом шасси\r\nДва высокоэффективных блока питания мощностью 1 400 Вт и 1 600 Вт с возможностью горячей замены\r\nОпциональное встроенное загрузочное устройство SATA DOM (64 Гбайта) позволяет освободить ценное пространство на жестком диске для данных\r\nОдин разъем x16 PCIe 3.0 и один мезонинный разъем x8 PCIe 3.0 для салазок с форм-фактором 1U\r\nВстроенный модуль LOM: 2 порта 10GbE (SFP+)\r\n\r\nПовышение эффективности работы\r\n\r\nПростое управление серверами PowerEdge C6320 благодаря автоматическому выполнению стандартных задач по управлению жизненным циклом с помощью технологий Dell OpenManage на основе iDRAC8 со встроенным контроллером жизненного цикла без использования агентов, который работает как автономно, так и в сочетании с другими компонентами Dell OpenManage и средствами управления сторонних производителей, включая следующие:\r\nOpenManage Essentials\r\nИнтеграция Dell для BMC BladeLogic\r\nMicrosoft System Center\r\nVMware vCenter\r\nЭти средства позволяют оптимизировать операции в существующей среде управления ИТ.\r\nУпрощение задач управления\r\n\r\nIDRAC с контроллером жизненного цикла предоставляет полный набор функций управления сервером (включая конфигурацию, развертывание ОС, обновления микропрограмм, мониторинг состояния и техническое обслуживание), которые работают независимо от состояния операционной системы и наличия гипервизора.\r\n <span style=\"white-space:pre\">\t</span>\r\nБез агентов — мониторинг производительности основной памяти, ЦП и системы ввода-вывода и настройка пользовательских пороговых значений для оповещения по протоколу SNMP, Racadm или WSman — и все это без агентов ОС или какого-либо влияния на операционную систему или серверные компоненты.\r\n \r\nКонтроллер жизненного цикла — локальное развертывание и упрощенное обслуживание с помощью средства, интегрируемого с Dell OpenManage Essentials и консолями сторонних производителей.\r\n poweredge-c6320-Автоматическое развертывание и выделение ресурсов <span style=\"white-space:pre\">\t</span>Автоматическое развертывание и выделение ресурсов — автоматическая настройка серверов и опциональная возможность планирования проверок работоспособности с автоматическими изменениями конфигурации (требуется iDRAC Enterprise Edition).\r\n\r\nКрупномасштабные среды\r\n\r\nИспользуйте возможности гипермасштабирования C6320 для сред с высокими требованиями к производительности и с интенсивной рабочей нагрузкой.\r\n \r\nВысокопроизводительные вычисления — внедрение высокопроизводительных массово-параллельных вычислений с малой задержкой для кластеров с высокой плотностью, которым требуется высокая масштабируемость с максимальной производительностью на одно стойко-место.\r\nАналитика и большие объемы данных — поддержка крупномасштабного анализа данных благодаря максимальной плотности вычислений и возможности адаптации серверных конфигураций к изменяющимся нагрузкам.\r\nОблако — существенная масштабируемость и высокая плотность помогают поставщикам облачных сервисов и услуг хостинга сократить капитальные расходы и максимально повысить уровень производительности на кв. фут из расчета на ватт.\r\nWeb 2.0 — обеспечение соответствия серверной инфраструктуры крупным нагрузкам веб-хостинга, а также исключение выделения избыточных ресурсов благодаря высокой масштабируемости и универсальным вариантам быстрой конфигурации.","shortDescription":"Оптимизация производительности вычислений.\r\nМаксимизируйте производительность гипермасштабируемых систем благодаря поддержке до четырех независимых серверных узлов, различных конфигураций накопителей и общей инфраструктуры в компактном корпусе с форм-фактором 2U.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":1,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"DELL Стоечный сервер PowerEdge C6320","keywords":"Dell, управления, C6320, производительности, OpenManage, высокой, развертывание, памяти","description":"Производительность и эффективность\r\n\r\nСоздавайте высокопроизводительные кластеры и решения с горизонтальным масштабированием при помощи серверов PowerEdge C6320 со следующими характеристиками:\r\n \r\nМодульное решение с форм-фактором 2U и высокой плотностью,","og:title":"DELL Стоечный сервер PowerEdge C6320","og:description":"Производительность и эффективность\r\n\r\nСоздавайте высокопроизводительные кластеры и решения с горизонтальным масштабированием при помощи серверов PowerEdge C6320 со следующими характеристиками:\r\n \r\nМодульное решение с форм-фактором 2U и высокой плотностью,","og:image":"https://old.roi4cio.com/fileadmin/user_upload/DELL_Modulnaja_infrastruktura.png"},"eventUrl":"","translationId":7015,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"fujitsu-server-primequest":{"id":204,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Servery_Fujitsu_PRIMEQUEST.png","logo":true,"scheme":false,"title":"Fujitsu Server PRIMEQUEST","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":13,"alias":"fujitsu-server-primequest","companyTitle":"Fujitsu","companyTypes":["vendor"],"companyId":2750,"companyAlias":"fujitsu","description":"Combining the power of Intel® Xeon® E7 family processors, the standard specifications of Microsoft Windows and Linux operating systems and the wealth of market solutions with innovative fault immune system architecture for highest availability and business continuity, Fujitsu Server PRIMEQUEST systems provide a new operational efficiency for business critical computing with truly open standards. \r\n\r\nThe Fujitsu Server PRIMEQUEST 2800B is the successor of the PRIMERGY RX900 S2, offering an unprecedented performance and memory capacity combined with high reliability thanks to built-in advanced RAS features for advanced error circumvention. This makes it ideal for big data applications and in-memory solutions like SAP HANA. \r\nIn addition, the Fujitsu Server PRIMEQUEST 2400E and 2800E feature self-healing capabilities and unique features such as Dynamic Reconfiguration which result in outstanding platform reliability, best availability and serviceability. The Dynamic Reconfiguration feature allows the changes of resources while systems are still up and running. Isolated physical partitions enable high availability, where any hardware failures do not have an impact on other partitions. In the unlikely event of a failure, the affected system board can be automatically replaced by a reserved system board and thus instantly recover applications and services.","shortDescription":"Fujitsu Server PRIMEQUEST systems provide a new operational efficiency for business critical computing with truly open standards.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Fujitsu Server PRIMEQUEST","keywords":"Fujitsu, PRIMEQUEST, Server, availability, systems, with, system, advanced","description":"Combining the power of Intel® Xeon® E7 family processors, the standard specifications of Microsoft Windows and Linux operating systems and the wealth of market solutions with innovative fault immune system architecture for highest availability and business con","og:title":"Fujitsu Server PRIMEQUEST","og:description":"Combining the power of Intel® Xeon® E7 family processors, the standard specifications of Microsoft Windows and Linux operating systems and the wealth of market solutions with innovative fault immune system architecture for highest availability and business con","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Servery_Fujitsu_PRIMEQUEST.png"},"eventUrl":"","translationId":204,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"fujitsu-server-primergy":{"id":389,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/FUJITSU_Server_PRIMERGY.jpg","logo":true,"scheme":false,"title":"FUJITSU Server PRIMERGY","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":13,"alias":"fujitsu-server-primergy","companyTitle":"Fujitsu","companyTypes":["vendor"],"companyId":2750,"companyAlias":"fujitsu","description":"<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">FUJITSU Server PRIMERGY systems provide the most powerful and flexible data center solutions for companies of all sizes, across all industries and for any type of workload. This includes expandable PRIMERGY tower servers for remote and branch offices, versatile rack-mount servers, compact and scalable blade systems, as well as density-optimized scale-out servers. They convince by business proven quality with a wide range of innovations, highest efficiency cutting operational cost and complexity, and provide more agility in daily operations in order to turn IT faster into a business advantage. FUJITSU Server PRIMERGY RX rack systems are versatile rack-optimized servers providing best-inclass performance and energy efficiency, and thus form the “standard” in each data center. PRIMERGY RX servers deliver 20 years of development and production know-how resulting in extremely low failure rates below market average, and lead to continuous operations and outstanding hardware availability.</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \"><br /></span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">PRIMERGY Blade Servers </span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">To stay competitive, your business needs an IT environment that drives success through cost reduction, maximum performance and enhanced agility. PRIMERGY Blade Servers help you achieve this for your midsize organization, branch office or large data center.</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">PRIMERGY Rack Servers</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Simplified operation, enhanced quality and faster productive deployment thanks to our supply model and build-to-order process are the primary advantages of our PRIMERGY RX rack servers and can be integrated in PRIMECENTER racks with common infrastructure.</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">PRIMERGY Tower Servers</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">PRIMERGY TX tower servers provide SMEs and branch offices with the perfect combination of record-breaking performance, outstanding energy efficiency, rock-solid reliability and investment protection.</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Scale out Servers</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">The PRIMERGY CX Cloud eXtension servers are Fujitsu´s platform for Cloud computing, HPC High Performance Computing, Service Provider and large scale-out computing server farms. They focus on providing large datacenters with massive scale-out x86 server power while at the same time delivering new datacenter economics for server density, energy consumption, heat optimization and lower overall operational costs.</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">PRIMERGY Rack Technology</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">The 19-inch PRIMECENTER Racks are the basis for rack configurations, such as server, storage systems as well as operating controls, such as consoles, switches, power distribution units (PDUs) and uninteruptible power supplies (UPS).</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">PRIMERGY Energy Efficient</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Reduce the power consumption of your IT infrastructure</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Long Lifecycle (LLC) Versions</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Fujitsu offers selected models as a long lifecycle version. With an extended availability of up to 5 years, optimized configurations are supported and guaranteed – including maintenance, service and spare part availability.</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Server Virtualization</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">To provide you with an appropriate solution for any of your requirements Fujitsu cooperates closely with all market leaders regarding server virtualization.</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Fujitsu Server PRIMERGY - System Management</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Intelligent, easy-to-use system management. Enhance productivity with the Fujitsu Software ServerView Suite.</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">PRIMERGY Operating Systems</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">This is the age of e-business: Digital infrastructures are increasingly becoming the indispensable backbone supporting worldwide eBusiness processes. To ensure reliability and high availability, Fujitsu provides you with computing systems one can trust!</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Fujitsu x86 Server Benchmarks</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">We detail the results of standardized benchmarks run on the PRIMERGY server family and PRIMEQUEST 2000 family. These reports not only verify the superb performance of our PRIMERGY and PRIMEQUEST platforms, but can also help you select a specific server system and configuration.</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">Fujitsu Value Calculator App</span>\r\n<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px;\">The Fujitsu Value Calculator is a simple to use App which helps to pick out the business advantages of the Fujitsu hardware and to find a server or storage system that suits your personal requirements</span>\r\n","shortDescription":"FUJITSU Server PRIMERGY systems provide the most powerful and flexible data center solutions for companies of all sizes, across all industries and for any type of workload.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"FUJITSU Server PRIMERGY","keywords":"PRIMERGY, Fujitsu, server, servers, with, Server, your, Servers","description":"<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">FUJITSU Server PRIMERGY systems provide the most powerful and flexible data center solutions for companies of all sizes, across all industries and for any type ","og:title":"FUJITSU Server PRIMERGY","og:description":"<span style=\"font-family: Arial, Verdana, "Lucida Grande", sans-serif; font-size: 13px; \">FUJITSU Server PRIMERGY systems provide the most powerful and flexible data center solutions for companies of all sizes, across all industries and for any type ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/FUJITSU_Server_PRIMERGY.jpg"},"eventUrl":"","translationId":389,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"fujitsu-server-primergy-rx":{"id":2039,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/FUJITSU_Server_PRIMERGY.jpg","logo":true,"scheme":false,"title":"Fujitsu Server Primergy RX","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":13,"alias":"fujitsu-server-primergy-rx","companyTitle":"Fujitsu","companyTypes":["vendor"],"companyId":2750,"companyAlias":"fujitsu","description":"Fujitsu server Primergy RX rack systems are versatile rack-optimized servers providing best-in-class performance and energy efficiency, and thus form the “standard” in each datacenter.\r\nPrimergy RX servers deliver approximately 20 years of development and production know-how resulting in extremely low failure rates below market average, and leading to continuous operations and outstanding hardware availability.\r\nThe proven data centre technology of Primergy RX rack servers ensures carefree and continuous operation. Top performance and a long operating life are certain thanks to the latest processor technology and innovative "cool-safe" air flow cooling concept.\r\n<span style=\"font-weight: bold;\"> The product line of Primergy RX includes:</span>\r\n<span style=\"font-weight: bold;\">Primergy RX2510 M2.</span> The server is a dual-socket rack server optimized to meet demanding requirements of service providers and hosters. Balanced dual-socket Intel Xeon E5-2600 v4 family processor performance, easy manageability and top energy efficiency ensure cost-efficient operation. The 1U small-size housing delivers optimal density for large scale-out installations including up to 384 GB DDR4 memory meet demands emerging in the field of web hosting, managed CRM services, shared, managed or private cloud environments, or other XaaS solutions.\r\n<span style=\"font-weight: bold;\">Primergy RX2520 M1.</span> It is an efficient and scalable platform featuring the latest Intel Xeon processor E5-2400 v2 product family and up to 192 GB RAM. Its compact Primergy 2U modular chassis provides up to twelve 3.5-inch or sixteen 2.5-inch storage drives. Lower costs are ensured thanks to modular upgrade options, 96 % efficient power supply and the enhanced iRMC S4 management.\r\n<span style=\"font-weight: bold;\">Primergy RX2530 M1.</span> The server is a dual-socket rack server that provides high performance of the new Intel Xeon processor E5-2600 v3 product family, expandability of up to 1536 GB of DDR4 memory and up to 10x 2.5-inch storage devices - all in a 1U space saving housing. Accordingly, the Primergy RX2530 M1 is the optimal system for virtualization and scale-out scenarios, small databases and also for high performance computing.\r\n<span style=\"font-weight: bold;\">Primergy RX2530 M2.</span> The server is a dual-socket rack server that provides high performance of the new Intel Xeon processor E5-2600 v4 product family, expandability of up to 1536 GB (3TB release planned for end 2016) of DDR4 memory and up to 10x 2.5-inch storage devices - all in a 1U space saving housing. Accordingly, the Primergy RX2530 M2 is the optimal system for virtualization and scale-out scenarios, small databases and also for high performance computing.\r\n<span style=\"font-weight: bold;\">Primergy RX2540 M1.</span> The server is a dual-socket rack server that provides high performance of the new Intel Xeon processor E5-2600 v4 product family, expandability of up to 1536 GB (3TB release planned for end 2016) of DDR4 memory and up to 10x 2.5-inch storage devices - all in a 1U space saving housing. Accordingly, the Primergy RX2530 M2 is the optimal system for virtualization and scale-out scenarios, small databases and also for high performance computing.\r\n<span style=\"font-weight: bold;\">Primergy RX2540 M2.</span> The server is the new 2U dual socket rack server for high usability, scalability and cost-efficiency. Its Intel Xeon E5-2600 v4 processors in conjunction with DDR4 memory technology with up to 1.5 TB (3TB release planned for end 2016) increases performance to meet the requirements for data center processing, enterprise applications as well as collaboration. The modular design offers excellent expandability of up to 24 disk drives, up to 8 PCIe Gen3 expansion cards, and best-in-class energy efficiency thanks to two hot-plug power supplies with up to 96% efficiency meet the future demands of data growth. To complete the picture, DynamicLoM makes network connections more flexible and ready for future modifications. Operation in higher ambient temperatures is ensured by the Cool-safe® Advanced Thermal Design resulting in lower OPEX.\r\n<span style=\"font-weight: bold;\">Primergy RX2560 M2.</span> The server offers maximum performance, best expandability and highest availability without any compromises. Branches, data centers and SMEs value the performance of the two Intel Xeon E5 v4 processors and 1536 GB (3TB release planned for end 2016) DDR4 memory support. Up to 10 extension slots and the redundant power supply enable top availability levels and excellent expandability options. The server is thus ideal for computing-intensive applications, virtualization solutions and databases.\r\n<span style=\"font-weight: bold;\">Primergy RX4770 M2.</span> The server defines four-socket rack server technology without compromising performance, scalability, and expandability. Featuring the latest Intel Xeon processor E7-4800/8800 v3 product family with up to 72 cores as well as superfast DDR4 main memory, the Primergy RX4770 M2 fulfills the requirements of solutions operating ‘in-memory’ such as SAP HANA. It is ideal for virtualization, server consolidation, databases, business processing, and general 4-socket data-intensive applications where price/performance and highest realibility is paramount.\r\n<span style=\"font-weight: bold;\">Primergy RX4770 M3.</span> The server defines four-socket rack server technology without compromising performance, scalability, and expandability. Featuring the latest Intel Xeon processor E7-4800/8800 v4 product family with up to 24 cores as well as superfast DDR4 main memory, the Primergy RX4770 M3 fulfills the requirements of solutions operating ‘in-memory’ such as SAP HANA. It is ideal for virtualization, server consolidation, databases, business processing, and general 4-socket data-intensive applications where price/performance and highest realibility is paramount.","shortDescription":"Fujitsu server Primergy RX rack systems are versatile rack-optimized servers providing best-in-class performance and energy efficiency, and thus form the “standard” in each datacenter.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":14,"sellingCount":20,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Fujitsu Server Primergy RX","keywords":"","description":"Fujitsu server Primergy RX rack systems are versatile rack-optimized servers providing best-in-class performance and energy efficiency, and thus form the “standard” in each datacenter.\r\nPrimergy RX servers deliver approximately 20 years of development and prod","og:title":"Fujitsu Server Primergy RX","og:description":"Fujitsu server Primergy RX rack systems are versatile rack-optimized servers providing best-in-class performance and energy efficiency, and thus form the “standard” in each datacenter.\r\nPrimergy RX servers deliver approximately 20 years of development and prod","og:image":"https://old.roi4cio.com/fileadmin/user_upload/FUJITSU_Server_PRIMERGY.jpg"},"eventUrl":"","translationId":2040,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":62,"title":"Rack server"}],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"hitachi-unified-storage-vm-and-power-730-express-8231-e2d-by-si-bis":{"id":1522,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/sibis-logo.png","logo":true,"scheme":false,"title":"Hitachi Unified Storage VM and Power 730 Express (8231-E2D) by SI BIS","vendorVerified":0,"rating":"1.40","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"hitachi-unified-storage-vm-and-power-730-express-8231-e2d-by-si-bis","companyTitle":"SI BIS","companyTypes":["supplier","vendor"],"companyId":246,"companyAlias":"si-bis","description":"Модернизация инфраструктуры СХД посредством установки высокопроизводительной платформы на базе Hitachi Unified Storage VM (виртуализация существующей СХД с миграцией данных на HUS VM) - для бесперебойной работы;\r\nрасширение серверного оборудования IBM более производительной системой Power 730 Express (8231-E2D), созданной на основе новейшей процессорной технологии Power7 - приспособленной для больших объемов информации.\r\n\r\n","shortDescription":"Комплексная модернизация АПК на базе Hitachi Unified Storage VM и расширения серверного оборудования IBM более производительной системой Power 730 Express (8231-E2D)","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Hitachi Unified Storage VM and Power 730 Express (8231-E2D) by SI BIS","keywords":"Hitachi, Unified, 8231-E2D, Express, Storage, Power, технологии, более","description":"Модернизация инфраструктуры СХД посредством установки высокопроизводительной платформы на базе Hitachi Unified Storage VM (виртуализация существующей СХД с миграцией данных на HUS VM) - для бесперебойной работы;\r\nрасширение серверного оборудования IBM более пр","og:title":"Hitachi Unified Storage VM and Power 730 Express (8231-E2D) by SI BIS","og:description":"Модернизация инфраструктуры СХД посредством установки высокопроизводительной платформы на базе Hitachi Unified Storage VM (виртуализация существующей СХД с миграцией данных на HUS VM) - для бесперебойной работы;\r\nрасширение серверного оборудования IBM более пр","og:image":"https://old.roi4cio.com/fileadmin/user_upload/sibis-logo.png"},"eventUrl":"","translationId":7113,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"hp-integrity-superdome":{"id":4925,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/HP_Integrity_Superdome.png","logo":true,"scheme":false,"title":"HP Integrity Superdome","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":452,"alias":"hp-integrity-superdome","companyTitle":"Hewlett Packard Enterprise","companyTypes":["supplier","vendor"],"companyId":172,"companyAlias":"hewlett-packard-enterprise","description":"HP Superdome is the family of enterprise-class high-performance servers manufactured with both the PA-8900 processors (HP 9000 family) and Intel Itanium 2 processors (HP Integrity family). Superdome is represented by three models with 16, 32 and 64 processor sockets. Within the family, there is the possibility of moving from younger models to older ones, which ensures a reduction in initial costs, investment protection and the possibility of a phased increase in system performance. Superdome is a universal hierarchical crossbar architecture specifically designed to work with various types of processors. The main components of the architecture are Cells, Crossbar Backplane, and I / O subsystems.<br />\r\nThe cell board is the main unit of the Superdome system. It is a symmetrical multiprocessor (SMP) containing 4 processor sockets and up to 64 GB of main memory. It is possible (but not necessary) to connect to the cell its own I / O subsystem, which is an I / O basket with 12 PCI-X slots. Each cell can work in different configurations, i.e., be connected to other cells or form an independent independent server. In one system, cell boards can be combined with both PA-RISC processors and Itanium processors.<br />\r\nBackplane patch panels provide a non-blocking connection between cells, their associated memory, and I / O modules. The main principle underlying Superdome is the balanced performance of the system at all levels of the hierarchy in order to exclude the appearance of additional delays when the processors of one cell access the RAM located on other cells. The developed architecture allows the system to demonstrate record performance indicators for various types of tasks, such as operational transaction processing, technical calculations, processing of Internet transactions, analysis of large volumes of data, etc.<br />\r\nA single Superdome system can be logically divided into many hardware independent, software independent partitions, virtual machines, or resource partitions within a single server. Each hardware / software partition or virtual machine is running its own independent operating system. For cells with PA-RISC processors, the operating system is HP-UX 11i, and for cells with Itanium processors, HP-UX, Linux, Microsoft Windows 2003, and OpenVMS.\r\nTo implement effective system management and technical support, the Superdome server family includes:\r\n<ul><li>Event Monitoring System (EMS), an alert service that monitors the status of server hardware, including processors, memory, FC components, system buses, cache, system temperature, battery status, fans, power supplies.</li></ul>\r\n<ul><li>A hardware inventory service in Support Tools Manager (STM) that provides system inventory information, including serial numbers, part numbers, version levels, and so on.</li></ul>\r\n<ul><li>Support Management Station (SMS), which is used to start the process of scanning, diagnostics and testing the platform throughout the life cycle, including upgrades.</li></ul>\r\nThe Superdome family provides customers with investment protection and uptime thanks to a system infrastructure designed to upgrade to next-generation processors.","shortDescription":"HP Superdome is a premium server designed and manufactured by Hewlett Packard Enterprise.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":19,"sellingCount":13,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP Integrity Superdome","keywords":"","description":"HP Superdome is the family of enterprise-class high-performance servers manufactured with both the PA-8900 processors (HP 9000 family) and Intel Itanium 2 processors (HP Integrity family). Superdome is represented by three models with 16, 32 and 64 processor s","og:title":"HP Integrity Superdome","og:description":"HP Superdome is the family of enterprise-class high-performance servers manufactured with both the PA-8900 processors (HP 9000 family) and Intel Itanium 2 processors (HP Integrity family). Superdome is represented by three models with 16, 32 and 64 processor s","og:image":"https://old.roi4cio.com/fileadmin/user_upload/HP_Integrity_Superdome.png"},"eventUrl":"","translationId":4926,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}},"aliases":{"1":["amazon-lightsail","ampex-tuffserv","cisco-ucs-c-series-rack-servers","cisco-ucs-c4200-series-rack-server-chassis","cisco-unified-computing-system-ucs","correlog-siem-korreljacionnyi-server","dell-emc-poweredge-14th-generation-server","dell-emc-poweredge-mx-io-modules","dell-emc-poweredge-rack-servers","dell-emc-vxrail","dell-poweredge-mx7000-modular-chassis","dell-bleid-massiv-equallogic-ps-m4110","dell-obshchaja-infrastruktura-konvergentnye-platformy","dell-servery-poweredge-v-korpuse-tower","dell-stoechnyi-server-poweredge-c6320","fujitsu-server-primequest","fujitsu-server-primergy","fujitsu-server-primergy-rx","hitachi-unified-storage-vm-and-power-730-express-8231-e2d-by-si-bis","hp-integrity-superdome"]},"links":{"first":"http://apis.roi4cio.com/api/products?page=1","last":"http://apis.roi4cio.com/api/products?page=3","prev":null,"next":"http://apis.roi4cio.com/api/products?page=2"},"meta":{"current_page":1,"from":1,"last_page":3,"path":"http://apis.roi4cio.com/api/products","per_page":20,"to":20,"total":47},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{"62":{"id":62,"title":"Rack server"}},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}