{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"company":{"role-vendor":{"ru":"Производитель","_type":"localeString","en":"Vendor"},"role-supplier":{"en":"Supplier","ru":"Поставщик","_type":"localeString"},"products-popover":{"ru":"Продукты","_type":"localeString","en":"Products","de":"die produkte"},"introduction-popover":{"en":"introduction","ru":"внедрения","_type":"localeString"},"partners-popover":{"ru":"партнеры","_type":"localeString","en":"partners"},"update-profile-button":{"_type":"localeString","en":"Update profile","ru":"Обновить профиль"},"read-more-button":{"ru":"Показать ещё","_type":"localeString","en":"Show more"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"user-implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"categories":{"en":"Categories","ru":"Компетенции","_type":"localeString"},"description":{"_type":"localeString","en":"Description","ru":"Описание"},"role-user":{"en":"User","ru":"Пользователь","_type":"localeString"},"partnership-vendors":{"ru":"Партнерство с производителями","_type":"localeString","en":"Partnership with vendors"},"partnership-suppliers":{"en":"Partnership with suppliers","ru":"Партнерство с поставщиками","_type":"localeString"},"reference-bonus":{"en":"Bonus 4 reference","ru":"Бонус за референс","_type":"localeString"},"partner-status":{"ru":"Статус партнёра","_type":"localeString","en":"Partner status"},"country":{"ru":"Страна","_type":"localeString","en":"Country"},"partner-types":{"ru":"Типы партнеров","_type":"localeString","en":"Partner types"},"branch-popover":{"_type":"localeString","en":"branch","ru":"область деятельности"},"employees-popover":{"en":"number of employees","ru":"количество сотрудников","_type":"localeString"},"partnership-programme":{"ru":"Партнерская программа","_type":"localeString","en":"Partnership program"},"partner-discounts":{"ru":"Партнерские скидки","_type":"localeString","en":"Partner discounts"},"registered-discounts":{"en":"Additional benefits for registering a deal","ru":"Дополнительные преимущества за регистрацию сделки","_type":"localeString"},"additional-advantages":{"_type":"localeString","en":"Additional Benefits","ru":"Дополнительные преимущества"},"additional-requirements":{"_type":"localeString","en":"Partner level requirements","ru":"Требования к уровню партнера"},"certifications":{"ru":"Сертификация технических специалистов","_type":"localeString","en":"Certification of technical specialists"},"sales-plan":{"ru":"Годовой план продаж","_type":"localeString","en":"Annual Sales Plan"},"partners-vendors":{"ru":"Партнеры-производители","_type":"localeString","en":"Partners-vendors"},"partners-suppliers":{"ru":"Партнеры-поставщики","_type":"localeString","en":"Partners-suppliers"},"all-countries":{"_type":"localeString","en":"All countries","ru":"Все страны"},"supplied-products":{"en":"Supplied products","ru":"Поставляемые продукты","_type":"localeString"},"vendored-products":{"ru":"Производимые продукты","_type":"localeString","en":"Produced products"},"vendor-implementations":{"ru":"Производимые внедрения","_type":"localeString","en":"Produced deployments"},"supplier-implementations":{"_type":"localeString","en":"Supplied deployments","ru":"Поставляемые внедрения"},"show-all":{"en":"Show all","ru":"Показать все","_type":"localeString"},"not-yet-converted":{"ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later."},"schedule-event":{"en":"Events schedule","ru":"Pасписание событий","_type":"localeString"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"register":{"ru":"Регистрация ","_type":"localeString","en":"Register"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"auth-message":{"ru":"Для просмотра ивентов компании авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString","en":"To view company events please log in or register on the sit."},"company-presentation":{"en":"Company presentation","ru":"Презентация компании","_type":"localeString"}},"header":{"help":{"ru":"Помощь","_type":"localeString","en":"Help","de":"Hilfe"},"how":{"en":"How does it works","de":"Wie funktioniert es","ru":"Как это работает","_type":"localeString"},"login":{"ru":"Вход","_type":"localeString","en":"Log in","de":"Einloggen"},"logout":{"ru":"Выйти","_type":"localeString","en":"Sign out"},"faq":{"de":"FAQ","ru":"FAQ","_type":"localeString","en":"FAQ"},"references":{"ru":"Мои запросы","_type":"localeString","en":"Requests","de":"References"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find-it-product":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"ru":"Матрица сравнения","_type":"localeString","en":"Comparison Matrix"},"roi-calculators":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"b4r":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference"},"business-booster":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"catalogs":{"_type":"localeString","en":"Catalogs","ru":"Каталоги"},"products":{"_type":"localeString","en":"Products","ru":"Продукты"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"for-suppliers":{"ru":"Поставщикам","_type":"localeString","en":"For suppliers"},"blog":{"ru":"Блог","_type":"localeString","en":"Blog"},"agreements":{"_type":"localeString","en":"Deals","ru":"Сделки"},"my-account":{"ru":"Мой кабинет","_type":"localeString","en":"My account"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"comparison-deletion":{"ru":"Удаление","_type":"localeString","en":"Deletion"},"comparison-confirm":{"_type":"localeString","en":"Are you sure you want to delete","ru":"Подтвердите удаление"},"search-placeholder":{"_type":"localeString","en":"Enter your search term","ru":"Введите поисковый запрос"},"my-profile":{"_type":"localeString","en":"My profile","ru":"Мои данные"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"en":"Roi4Presenter","_type":"localeString"},"roi4webinar":{"en":"Pitch Avatar","_type":"localeString"},"sub_it_catalogs":{"en":"Find IT product","_type":"localeString"},"sub_b4reference":{"en":"Get reference from user","_type":"localeString"},"sub_roi4presenter":{"en":"Make online presentations","_type":"localeString"},"sub_roi4webinar":{"en":"Create an avatar for the event","_type":"localeString"},"catalogs_new":{"_type":"localeString","en":"Products"},"b4reference":{"en":"Bonus4Reference","_type":"localeString"},"it_our_it_catalogs":{"_type":"localeString","en":"Our IT Catalogs"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"en":"Our Products","_type":"localeString"},"it_it_catalogs":{"en":"IT catalogs","_type":"localeString"}},"footer":{"copyright":{"de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString","en":"All rights reserved"},"company":{"de":"Über die Firma","ru":"О компании","_type":"localeString","en":"My Company"},"about":{"de":"Über uns","ru":"О нас","_type":"localeString","en":"About us"},"infocenter":{"ru":"Инфоцентр","_type":"localeString","en":"Infocenter","de":"Infocenter"},"tariffs":{"en":"Subscriptions","de":"Tarife","ru":"Тарифы","_type":"localeString"},"contact":{"ru":"Связаться с нами","_type":"localeString","en":"Contact us","de":"Kontaktiere uns"},"marketplace":{"en":"Marketplace","de":"Marketplace","ru":"Marketplace","_type":"localeString"},"products":{"_type":"localeString","en":"Products","de":"Produkte","ru":"Продукты"},"compare":{"de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare"},"calculate":{"de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString","en":"Calculate the cost"},"get_bonus":{"_type":"localeString","en":"Bonus for reference","de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс"},"salestools":{"ru":"Salestools","_type":"localeString","en":"Salestools","de":"Salestools"},"automatization":{"ru":"Автоматизация расчетов","_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung"},"roi_calcs":{"en":"ROI calculators","de":"ROI-Rechner","ru":"ROI калькуляторы","_type":"localeString"},"matrix":{"de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString","en":"Comparison matrix"},"b4r":{"ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference"},"our_social":{"en":"Our social networks","de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети","_type":"localeString"},"subscribe":{"de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString","en":"Subscribe to newsletter"},"subscribe_info":{"en":"and be the first to know about promotions, new features and recent software reviews","ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString"},"policy":{"en":"Privacy Policy","ru":"Политика конфиденциальности","_type":"localeString"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"quote":{"_type":"localeString","en":"Price calculator","ru":"Калькулятор цены"},"boosting":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"4vendors":{"_type":"localeString","en":"4 vendors","ru":"поставщикам"},"blog":{"en":"blog","ru":"блог","_type":"localeString"},"pay4content":{"_type":"localeString","en":"we pay for content","ru":"платим за контент"},"categories":{"en":"categories","ru":"категории","_type":"localeString"},"showForm":{"ru":"Показать форму","_type":"localeString","en":"Show form"},"subscribe__title":{"_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!","ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!"},"subscribe__email-label":{"en":"Email","ru":"Email","_type":"localeString"},"subscribe__name-label":{"en":"Name","ru":"Имя","_type":"localeString"},"subscribe__required-message":{"ru":"Это поле обязательное","_type":"localeString","en":"This field is required"},"subscribe__notify-label":{"en":"Yes, please, notify me about news, events and propositions","ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString"},"subscribe__agree-label":{"ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data"},"subscribe__submit-label":{"ru":"Подписаться","_type":"localeString","en":"Subscribe"},"subscribe__email-message":{"ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString","en":"Please, enter the valid email"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"ru":"Имя Фамилия","_type":"localeString","en":"Last, first name"},"subscribe__success":{"en":"You are successfully subscribed! Check you mailbox.","ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString"},"subscribe__error":{"en":"Subscription is unsuccessful. Please, try again later.","ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString"},"roi4presenter":{"ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter","de":"roi4presenter"},"it_catalogs":{"en":"IT catalogs","_type":"localeString"},"roi4webinar":{"en":"Pitch Avatar","_type":"localeString"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"en":"Home","ru":"Главная","_type":"localeString"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"en":"Products","ru":"Продукты","_type":"localeString"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"login":{"en":"Login","ru":"Вход","_type":"localeString"},"registration":{"en":"Registration","ru":"Регистрация","_type":"localeString"},"b2b-platform":{"_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers","ru":"Портал для покупателей, поставщиков и производителей ИТ"}},"comment-form":{"title":{"ru":"Оставить комментарий","_type":"localeString","en":"Leave comment"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"ru":"Фамилия","_type":"localeString","en":"Last name"},"company":{"ru":"Компания","_type":"localeString","en":"Company name"},"position":{"ru":"Должность","_type":"localeString","en":"Position"},"actual-cost":{"ru":"Фактическая стоимость","_type":"localeString","en":"Actual cost"},"received-roi":{"en":"Received ROI","ru":"Полученный ROI","_type":"localeString"},"saving-type":{"_type":"localeString","en":"Saving type","ru":"Тип экономии"},"comment":{"ru":"Комментарий","_type":"localeString","en":"Comment"},"your-rate":{"en":"Your rate","ru":"Ваша оценка","_type":"localeString"},"i-agree":{"en":"I agree","ru":"Я согласен","_type":"localeString"},"terms-of-use":{"_type":"localeString","en":"With user agreement and privacy policy","ru":"С пользовательским соглашением и политикой конфиденциальности"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"_type":"localeString","en":"{NAME} is required filed","ru":"{NAME} - это обязательное поле"}},"maintenance":{"title":{"_type":"localeString","en":"Site under maintenance","ru":"На сайте проводятся технические работы"},"message":{"en":"Thank you for your understanding","ru":"Спасибо за ваше понимание","_type":"localeString"}}},"translationsStatus":{"company":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"company":{"meta":[{"content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg","name":"og:image"},{"name":"og:type","content":"website"}],"translatable_meta":[{"name":"title","translations":{"ru":"Компания","_type":"localeString","en":"Company"}},{"name":"description","translations":{"en":"Company description","ru":"Описание компании","_type":"localeString"}},{"name":"keywords","translations":{"en":"Company keywords","ru":"Ключевые слова для компании","_type":"localeString"}}],"title":{"en":"ROI4CIO: Company","ru":"ROI4CIO: Компания","_type":"localeString"}}},"pageMetaDataStatus":{"company":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{"faraday":{"id":6961,"title":"Faraday","logoURL":"https://old.roi4cio.com/uploads/roi/company/Faraday.png","alias":"faraday","address":"","roles":[{"id":2,"type":"supplier"},{"id":3,"type":"vendor"}],"description":" <span style=\"font-weight: bold;\">Faraday </span>focused on cutting-edge Offensive Cyber Security techniques. Company offers customized solutions to optimize your audit process and enhance the safety of your vital information<br />by increasing transparency, speed and efficiency for your teamwork. .<br /><br />Providing powerful Automation Technology, company helps you reduce your findings’ life cycle by prioritizing actions and decreasing the exposure time of your assets, promoting collaboration by allowing big and small groups of people to work together.<br /><br />Source: https://www.faradaysec.com/<br /><br />","companyTypes":["supplier","vendor"],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{"52":{"id":52,"title":"SaaS - software as a service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png","alias":"saas-software-as-a-service"},"204":{"id":204,"title":"Managed Detection and Response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png","alias":"managed-detection-and-response"},"445":{"id":445,"title":"Penetration Testing","description":" A <span style=\"font-weight: bold; \">penetration test</span>, colloquially known as a pen test, <span style=\"font-weight: bold; \">pentest </span>or <span style=\"font-weight: bold; \">ethical hacking</span>, is an authorized simulated cyberattack on a computer system, performed to evaluate the security of the system.\r\nStandard penetration test is performed to identify both weaknesses (also referred to as <span style=\"font-weight: bold; \">vulnerabilities</span>), including the potential for unauthorized parties to gain access to the system's features and data, as well as strengths, enabling a full risk assessment to be completed. \r\nThe main objective of system penetration testing is to identify security weaknesses. Vulnerability testing can also be used to test an organization's security policy, its adherence to compliance requirements, its employees' security awareness and the organization's ability to identify and respond to security incidents.\r\nTypically,<span style=\"font-size:11pt; font-family:Arial; font-style:normal; \">professional penetration testing</span>provides information about security weaknesses that are identified or exploited through pen testing is aggregated and provided to the organization's IT and network system managers, enabling them to make strategic decisions and prioritize remediation efforts. \r\nA wide variety of <span style=\"font-weight: bold; \">software security testing tools </span>are available to assist with penetration testing, including free-of-charge, free software, and commercial software. Penetration tools scan code in order to identity malicious code in applications that could result in a security breach. Pen testing tools examine data encryption techniques and can identify hard-coded values, such as usernames and passwords, to verify security vulnerabilities in the system.\r\n Important aspect of any penetration testing program is defining the scope within which the pen testers must operate. Usually, the scope defines what systems, locations, techniques and tools can be used in a penetration test. Limiting the scope of the penetration test helps focus team members - and defenders - on the systems over which the organization has control.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Here are several of the main vulnerability penetration testing approaches:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Targeted testing</span> is performed by the organization's IT team and the penetration testing team working together. It's sometimes referred to as a "lights turned on" approach because everyone can see the test being carried out.</li><li><span style=\"font-weight: bold;\">External testing</span> targets a company's externally visible servers or devices including domain name servers, email servers, web servers or firewalls. The<span style=\"font-size:11pt; font-family:Arial; font-style:normal; \">objective of penetration testing</span>is to find out if an outside attacker can get in and how far they can get in once they've gained access.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Internal testing</span> mimics an inside attack behind the firewall by an authorized user with standard access privileges. This kind of test is useful for estimating how much damage a disgruntled employee could cause.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Blind testing simulates</span> the actions and procedures of a real attacker by severely limiting the information given to the person or team performing the test beforehand. Typically, the pen testers may only be given the name of the company.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Double-blind testing</span> takes the blind test and carries it a step further. In this type of pen test, only one or two people within the organization might be aware a test is being conducted. Double-blind tests can be useful for testing an organization's security monitoring and incident identification as well as its response procedures.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Black box</span> testing is basically the same as blind testing, but the tester receives no information before the test takes place. Rather, the pen testers must find their own way into the system.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">White box</span> testing provides the penetration testers information about the target network before they start their work. This information can include such details as IP addresses, network infrastructure schematics and the protocols used plus the source code.</li></ul>","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What Is Penetration Testing?</span></h1>\r\nThere is a considerable amount of confusion in the industry regarding the differences between vulnerability assessment and penetration testing tool,as the two phrases are commonly interchanged. However, their meaning and implications are very different. A <span style=\"font-weight: bold; \">vulnerability assessment </span>simply identifies and reports noted vulnerabilities, whereas a pentest attempts to exploit the vulnerabilities to determine whether unauthorized access or other malicious activity is possible.<span style=\"font-weight: bold; \"> Penetration testing</span> typically includes network penetration testing and web application security testing as well as controls and processes around the networks and applications, and should occur from both outside the network trying to come in (external testing) and from inside the network.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is a pentesting tool ?</span></h1>\r\n<p class=\"align-left\">Penetration tools are used as part testing to automate certain tasks, improve testing efficiency and discover issues that might be difficult to find using manual analysis techniques alone. Two common penetration testing tools are <span style=\"font-weight: bold; \">static analysis </span>tools and <span style=\"font-weight: bold; \">dynamic analysis</span> tools. Tools for attack include software designed to produce <span style=\"font-weight: bold; \">brute-force attacks</span> or <span style=\"font-weight: bold; \">SQL injections</span>. There is also hardware specifically designed for pen testing, such as small inconspicuous boxes that can be plugged into a computer on the network to provide the hacker with remote access to that network. In addition, an ethical hacker may use social engineering techniques to find vulnerabilities. For example, sending phishing emails to company employees, or even disguising themselves as delivery people to gain physical access to the building.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What are the benefits of penetration testing?</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Manage the Risk Properly. </span>For many organizations, one of the most popular benefits of pen testing services is that they will give you a baseline to work upon to cure the risk in a structured and optimal way. It will show you the list of vulnerabilities in the target environment and the risks associated with it.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Increase Business Continuity.</span> Business continuity is the prime concern for any successful organization. A break in the business continuity can happen for many reasons. Lack of security loopholes is one of them. Insecure systems suffer more breaches in their availability than the secured ones. Today attackers are hired by other organizations to stop the continuity of business by exploiting the vulnerabilities to gain the access and to produce a denial of service condition which usually crashes the vulnerable service and breaks the server availability.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Protect Clients, Partners, and Third Parties.</span> A security breach can affect not only the target organization but also their associated clients, partners and third parties working with it. However, if company schedules a penetration test regularly and takes necessary actions towards security, it will help professionals build trust and confidence in the organization.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Helps to Evaluate Security Investment. </span> The pen test results will give us an independent view of the effectiveness of existing security processes, ensuring that configuration management practices have been followed correctly. This is an ideal opportunity to review the efficiency of the current security investment. What needs to be improved and what is working and what is not working and how much investment needed to build the more secure environment in the organization.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Help Protect Public Relationships and Guard the reputation of your company.</span>A good public relationship and company reputation are built up after taking many years struggle and hard work and with a huge amount of investment. This can be suddenly changed due to a single security breach.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Protection from Financial Damage.</span> A simple breach of the security system may cause millions of dollars of damage. Penetration testing can protect your organization from such damages.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Helps to tests cyber-defense capability.</span> During a penetration test, the target company’s security team should be able to detect multiple attacks and respond accordingly on time. Furthermore, if an intrusion is detected, the security and forensic teams should start investigations, and the penetration testers should be blocked and their tools removed. The effectiveness of your protection devices like IDS, IPS or WAF can also be tested during a penetration test.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Client-side Attacks. </span>Pen tests are an effective way of ensuring that successful highly targeted client-side attacks against key members of your staff. Security should be treated with a holistic approach. Companies only assessing the security of their servers run the risk of being targeted with client-side attacks exploiting vulnerabilities in software like web browsers, pdf readers, etc. It is important to ensure that the patch management processes are working properly updating the operating system and third-party applications.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Penetration_Testing.png","alias":"penetration-testing"},"467":{"id":467,"title":"Network Forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png","alias":"network-forensics"},"727":{"id":727,"title":"IT Security Audit","description":" A <span style=\"font-weight: bold; \">computer security audit</span> is a manual or systematic measurable technical assessment of a system or application. Manual assessments include interviewing staff, performing security vulnerability scans, reviewing application and operating system access controls, and analyzing physical access to the systems. Automated assessments, or CAAT's, include system generated audit reports or using software to monitor and report changes to files and settings on a system. Systems can include personal computers, servers, mainframes, network routers, switches.\r\nAt its root, an <span style=\"font-weight: bold; \">IT security audit</span> includes two different assessments. The manual assessment occurs when an internal or external IT security audit companies interview employees, reviews access controls, analyzes physical access to hardware, and performs vulnerability scans. \r\nAudit, performed by IT security audit services or IT security audit software, analyzes individual technical infrastructure components at a detailed level, ensuring that each is functioning in a manner that reinforces appropriate information security. The stakes are made higher with a number of regulatory compliance requirements mandating that IT audits be included in organizational due diligence efforts. These reviews should occur, at a minimum, annually. Some organizations, however, prefer to do them more frequently.\r\nOrganizations should also review system-generated reports. Automated assessments not only incorporate that data, but also respond to software monitoring reports and changes to server and file settings.\r\nSecurity audits, vulnerability assessments, and penetration testing are the <span style=\"font-weight: bold; \">three main types of security diagnostics. </span>Each of the three takes a different approach and may be best suited for a particular purpose. \r\n<span style=\"font-weight: bold; \">Security audits</span> measure an information system's performance against a list of criteria. \r\nA <span style=\"font-weight: bold; \">vulnerability assessment,</span> on the other hand, involves a comprehensive study of an entire information system, seeking potential security weaknesses. \r\n<span style=\"font-weight: bold; \">Penetration testing</span> is a covert operation, in which a security expert tries a number of attacks to ascertain whether or not a system could withstand the same types of attacks from a malicious hacker. In penetration testing, the feigned attack can include anything a real attacker might try, such as social engineering. Each of the approaches has inherent strengths, and using two or more of them in conjunction may be the most effective approach of all.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: bold;\">What is a security audit?</span></h1>\r\nA Security Audit is a process or event where the IT security policy or standards are used as a basis to determine the overall state of existing protection and to verify whether existing protection is being performed properly. It aims to determine whether the current environment is securely protected in accordance with the defined IT security policy.<br />Before performing a security assessment or audit, the organization should define the scope of the security audit, and the budget and duration allowed for the assessment/audit.\r\n<h1 class=\"align-center\"><span style=\"font-weight: bold;\">How often should a security audit be performed?</span></h1>\r\nA security audit only provides a snapshot of the vulnerabilities in a system at a particular point in time. As technology and the business environment changes, periodic and ongoing reviews will inevitably be required. Depending on the criticality of the business, a security audit might be conducted yearly, or every two years.\r\n<h1 class=\"align-center\"><span style=\"font-weight: bold;\">Who should perform a security audit?</span></h1>\r\nA security audit is a complex task requiring skilled and experienced personnel; it must be planned carefully. To perform the audit an independent and trusted third party is recommended. This third party can be another group of in-house staff or an external audit team, dependent on the skills of the internal staff and the criticality/sensitivity of the information being audited.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_IT_Security_Audit.png","alias":"it-security-audit"},"791":{"id":791,"title":"Vulnerability Scanner","description":" A <span style=\"font-weight: bold;\">vulnerability scanner</span> is a computer program designed to assess computers, network vulnerability or applications for known weaknesses. In plain words, these scanners are used to discover the weaknesses of a given system. They are utilized in the identification and detection of vulnerabilities arising from mis-configurations or flawed programming within a network-based asset such as a firewall, router, web server, application server, etc. They are typically available as SaaS (Software as a service); provided over the internet and delivered as a web application. \r\nMost vulnerability scanners will also attempt to log in to systems using default or other credentials in order to build a more detailed picture of the system. After building up an inventory, the vulnerability scanner checks each item in the inventory against one or more databases of known vulnerabilities to see if any items are subject to any of these vulnerabilities. The result of such scan is a systems vulnerability analysis, highlighting any that have known vulnerabilities that may need threat and vulnerability management.\r\n<span style=\"font-weight: bold;\">How vulnerability scanning works</span>. Vulnerability scanning finds systems and software that have known security vulnerabilities, but this information is only useful to IT security teams when it is used as the first part of a four-part vulnerability management process. <span style=\"font-weight: bold;\">Vulnerability management process involves:</span>\r\n<ul><li>Identification of vulnerabilities</li><li>Evaluation of the risk posed by any vulnerabilities identified</li><li>Treatment of any identified vulnerabilities</li><li>Reporting on vulnerabilities and how they have been handled</li></ul>\r\n<br /><span style=\"font-weight: bold;\">Types of vulnerability scans. </span>Not all vulnerability scans are alike, and to ensure compliance with certain regulations (such as those set by the PCI Security Standards Council) it is necessary to carry out two distinct types of vulnerability scans: an internal and an external vulnerability scan. \r\n<span style=\"font-weight: bold;\">External vulnerability scan.</span> As the name suggests, an external vulnerability scan is carried out from outside an organization's network, and its principal purpose is to detect vulnerabilities in the perimeter defenses such as open ports in the network firewall or specialized web application firewall. An external vulnerability scan can help organizations fix security issues that could enable hackers to gain access to the organization's network.\r\n<span style=\"font-weight: bold;\">Internal vulnerability scan. </span>By contrast, an internal vulnerability scan is carried out from inside an organization's perimeter defenses. Its purpose is to detect vulnerabilities that could be exploited by hackers who successfully penetrate the perimeter defenses, or equally by "insider threats" such as contractors or disgruntled employees who have legitimate access to parts of the network.\r\n<span style=\"font-weight: bold;\">Unauthenticated and authenticated vulnerability scans.</span> A similar but not always identical variation of internal and external vulnerability scans is the concept of unauthenticated and authenticated vulnerability scans. Unauthenticated scans, like external scans, search for weaknesses in the network perimeter, while authenticated scans provide vulnerability scanners with various privileged credentials, allowing them to probe the inside of the network for weak passwords, configuration issues, and misconfigured databases or applications.<br /><br />","materialsDescription":"<h1 class=\"align-center\">What is Vulnerability Assessment?</h1>\r\nVulnerability Assessment is also known as Vulnerability Testing, is a vulnerability scanning software performed to evaluate the security risks in the software system in order to reduce the probability of a threat. Vulnerability Analysis depends upon two mechanisms namely Vulnerability Assessment and Penetration Testing (VAPT).\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Types of a vulnerability scanner:</span></p>\r\n<span style=\"font-weight: bold;\">Host Based. </span>Identifies the issues in the host or the system. The process is carried out by using host-based scanners and diagnose the vulnerabilities. The host-based tools will load a mediator software onto the target system; it will trace the event and report it to the security analyst.\r\n<span style=\"font-weight: bold;\">Network-Based.</span> It will detect the open port, and identify the unknown services running on these ports. Then it will disclose possible vulnerabilities associated with these services. This process is done by using Network-based Scanners.\r\n<span style=\"font-weight: bold;\">Database-Based.</span> It will identify the security exposure in the database systems using tools and techniques to prevent from SQL Injections. (SQL Injections: - Injecting SQL statements into the database by the malicious users, which can read the sensitive data's from a database and can update the data in the Database.)\r\n<h1 class=\"align-center\">How vulnerability scanners works?</h1>\r\nVulnerability scanning is an inspection of the potential points of exploit on a computer or network to identify security holes.\r\nA security scan detects and classifies system weaknesses in computers, networks and communications equipment and predicts the effectiveness of countermeasures. A scan may be performed by an organization’s IT department or a security service provide, possibly as a condition imposed by some authority. Vulnerability scans are also used by attackers looking for points of entry.\r\nA vulnerability scanner runs from the end point of the person inspecting the attack surface in question. The software compares details about the target attack surface to a database of information about known security holes in services and ports, anomalies in packet construction, and potential paths to exploitable programs or scripts. The scanner software attempts to exploit each vulnerability that is discovered.\r\nRunning a vulnerability scan can pose its own risks as it is inherently intrusive on the target machine’s running code. As a result, the scan can cause issues such as errors and reboots, reducing productivity.\r\n<h1 class=\"align-center\">How to choose the best vulnerability scanning tool?</h1>\r\nWhen researching vulnerability scanners, it's important to find out how they're rated for accuracy (the most important metric) as well as reliability, scalability and reporting. If accuracy is lacking, you'll end up running two different scanners, hoping that one picks up vulnerabilities that the other misses. This adds cost and effort to the scanning process. \r\n<span style=\"font-weight: bold;\">Software-Based Vulnerability Scanners.</span> These types of scanning products generally include configuration auditing, target profiling, penetration testing and detailed vulnerability analysis. They integrate with Windows products, such as Microsoft System Center, to provide intelligent patch management; some work with mobile device managers. They can scan not only physical network devices, servers and workstations, but extend to virtual machines, BYOD mobile devices and databases.\r\n<span style=\"font-weight: bold;\">Cloud-Based Vulnerability Scanners: </span>Continuous, On-Demand Monitoring. A newer type of vulnerability finder is delivered on-demand as Software as a Service (SaaS). Like software-based scanners, on-demand scanners incorporate links for downloading vendor patches and updates for identified vulnerabilities, reducing remediation effort. These services also include scanning thresholds to prevent overloading devices during the scanning process, which can cause devices to crash.\r\n<h1 class=\"align-center\">What is mobile application security scanner?</h1>\r\nMobile application security testing can help ensure there aren’t any loopholes in the software that may cause data loss. The sets of tests are meant to attack the app to identify possible threats and vulnerabilities that would allow external persons or systems to access private information stored on the mobile device. \r\nMobile application vulnerability scanner can help to ensure that applications are free from the flaws and weaknesses that hackers use to gain access to sensitive information. From backdoors, malicious code and other threats, these flaws may be present both in commercial and open source applications as well as software developed in-house.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Vulnerability_Scanner.png","alias":"vulnerability-scanner"},"793":{"id":793,"title":"Web Application Vulnerability Scanner","description":" A <span style=\"font-weight: bold; \">web application vulnerability scanner,</span> also known as a <span style=\"font-weight: bold; \">web application security scanner,</span> is an automated security tool. It scans web applications for malware, vulnerabilities, and logical flaws. Web application scanner use black box tests, as these tests do not require access to the source code but instead launch external attacks to test for security vulnerabilities. These simulated attacks can detect path traversal, cross-site scripting(XSS), and command injection.\r\nWeb app scanners are categorized as <span style=\"font-weight: bold; \">Dynamic Application Security Testing (DAST) tools.</span> DAST tools provide insight into how your web applications behave while they are in production, enabling your business to address potential vulnerabilities before a hacker uses them to stage an attack. As your web applications evolve, DAST solutions continue to scan them so that your business can promptly identify and remediate emerging issues before they develop into serious risks.\r\nWeb app vulnerability scanner first crawls the entire website, analyzing in-depth each file it finds, and displaying the entire website structure. After this discovery stage, it performs an automatic audit for common security vulnerabilities by launching a series of Web attacks. Web application scanners check for vulnerabilities on the Web server, proxy server, Web application server and even on other Web services. Unlike source code scanners, web application scanners don't have access to the source code and therefore detect vulnerabilities by actually performing attacks.\r\nA web application vulnerability assessment is very different than a general vulnerability assessment where security focus on networks and hosts. App vulnerability scanner scans ports, connect to services, and use other techniques to gather information revealing the patch levels, configurations, and potential exposures of our infrastructure.\r\nAutomated web application scanning tools help the user making sure the whole website is properly crawled, and that no input or parameter is left unchecked. Automated web vulnerability scanners also help in finding a high percentage of the technical vulnerabilities, and give you a very good overview of the website’s structure, and security status. \r\nThe best way to identify web application security threats is to perform web application vulnerability assessment. The importance of these threats could leave your organization exposed if they are not properly identified and mitigated. Therefore, implementing a web app security scanner solution should be of paramount importance for your organizations security plans in the future. \r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Why Web Application Vulnerability Scanning is important?</h1>\r\nWeb applications are the technological base of modern companies. That’s why more and more businesses are betting on the development of this type of digital platforms. They stand out because they allow to automate processes, simplify tasks, be more efficient and offer a better service to the customer.<br /><br />The objective of web applications is that the user completes a task, be it buying, making a bank transaction, accessing e-mail, editing photos, texts, among many other things. In fact, they are very useful for an endless number of services, hence their popularity. Their disadvantages are few, but there is one that requires special attention: vulnerabilities.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Main web application security risks</span></p>\r\nA web vulnerability scanner tools will help you keep your services protected. However, it is important to be aware of the major security risks that exist so that both developers and security professionals are always alert and can find the most appropriate solutions in a timely manner.\r\n<ul><li><span style=\"font-weight: bold; \">Injection</span></li></ul>\r\nThis is a vulnerability that affects the application databases. They occur when unreliable data is sent to an interpreter by means of a command or query. The attacker may inject malicious code to disrupt the normal operation of the application by making it access the data without authorization or execute involuntary commands.\r\n<ul><li><span style=\"font-weight: bold; \">Authentication failures</span></li></ul>\r\nIf a vulnerability scan in web applications finds a failure, it may be due to loss of authentication. This is a critical vulnerability, as it allows the attacker to impersonate another user. This can compromise important data such as usernames, passwords, session tokens, and more.\r\n<ul><li><span style=\"font-weight: bold; \">Sensitive data exposure</span></li></ul>\r\nA serious risk is the exposure of sensitive data especially financial information such as credit cards or account numbers, personal data such as place of residence, or health-related information. If an attacker scans for this type of vulnerability, he or she may modify or steal this data and use it fraudulently. Therefore, it is essential to use a web app scanning tools to find vulnerabilities in web applications.<br /><br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_Application_Vulnerability_Scanner.png","alias":"web-application-vulnerability-scanner"},"840":{"id":840,"title":"ICS/SCADA Cyber Security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png","alias":"icsscada-cyber-security"}},"branches":"Information Technology","companySizes":"1 to 50 Employees","companyUrl":"https://www.faradaysec.com/","countryCodes":[],"certifications":[],"isSeller":true,"isSupplier":true,"isVendor":true,"presenterCodeLng":"","seo":{"title":"Faraday","keywords":"","description":" <span style=\"font-weight: bold;\">Faraday </span>focused on cutting-edge Offensive Cyber Security techniques. Company offers customized solutions to optimize your audit process and enhance the safety of your vital information<br />by increasing transparency, s","og:title":"Faraday","og:description":" <span style=\"font-weight: bold;\">Faraday </span>focused on cutting-edge Offensive Cyber Security techniques. Company offers customized solutions to optimize your audit process and enhance the safety of your vital information<br />by increasing transparency, s","og:image":"https://old.roi4cio.com/uploads/roi/company/Faraday.png"},"eventUrl":"","vendorPartners":[],"supplierPartners":[],"vendoredProducts":[{"id":4563,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/faraday.png","logo":true,"scheme":false,"title":"Faraday Platform","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"faraday-platform","companyTitle":"Faraday","companyTypes":["supplier","vendor"],"companyId":6961,"companyAlias":"faraday","description":"Faraday was made to let you take advantage of the available tools in the community in a truly multiuser way.\r\nDesigned for simplicity, users should notice no difference between their own terminal application and the one included in Faraday. Developed with a specialized set of functionalities, users improve their own work. Do you remember the last time you programmed without an IDE? What IDEs are to programming, Faraday is to pentesting.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Plugins </span></p>\r\nYou feed data to Faraday from your favorite tools through Plugins. Right now there are more than 70+ supported tools.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">There are three Plugin types:</span></span> console plugins which intercept and interpret the output of the tools you execute, report plugins which allows you to import previously generated XMLs, and online plugins which access Faraday's \r\nAPI or allow Faraday to connect to external APIs and databases.\r\nSupporting output from +70 tools, Faraday Platform centralizes all your efforts and gives sense to your main objectives.\r\nProviding powerful Automation Technology, it helps you reduce your findings’ life cycle by prioritizing actions and decreasing the exposure time of your assets, promoting collaboration by allowing big and small groups of people to work together.\r\nPlus, get deep insight on all your projects with just a couple clicks.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Key features</span></p>\r\n<span style=\"font-weight: bold;\">Custom Implementation.</span> No infrastructure changes needed: implement Faraday On-prem, Cloud or Hybrid without network changes.\r\n<span style=\"font-weight: bold;\">Flexible Integrations.</span> Import output or results from 3rd party tools and synchronize your ticketing systems (JIRA, ServiceNow) and security enhancements (2FA, LDAP)\r\n<span style=\"font-weight: bold;\">Workflows.</span> Implement custom events by triggering actions or vulns' content in real time\r\n<span style=\"font-weight: bold;\">Deduplicate Vulns.</span> Faraday's Global Vuln KB allows you to customize descriptions and apply them accordingly.\r\n<span style=\"font-weight: bold;\">Agents.</span> Define and execute your own actions from different sources and automatically import outputs into your repository.\r\n<span style=\"font-weight: bold;\">Scheduler.</span> Automate repetitive Agents' actions and check results on your Dashboard.\r\n<span style=\"font-weight: bold;\">Graphics.</span> Get a visual representation of all your findings with just one click.\r\n<span style=\"font-weight: bold;\">Faraday Client.</span> Solution’s shell allows you to upload results while pentesting actively.\r\n<span style=\"font-weight: bold;\">Methodology and Tasks.</span> Setup your own strategy, assign tasks to users for each phase and easily follow them up.\r\n<p class=\"align-center\"><span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Choose the plan that best: fits your needs</span></span></p>\r\n<span style=\"font-weight: bold;\">Community</span>\r\nFaraday supports the InfoSec Community around the globe by offering a free open source version that improves on daily workflows\r\n<ul><li>Feed data to Faraday from your favorite tools</li><li>Divide projects by your own rules</li><li>Customize your instance</li></ul>\r\n<span style=\"font-weight: bold;\">Professional</span>\r\nDesigned for small pentester teamwork. Integrate and report main data generated during a security audit.\r\n<ul><li>Easily identify and sort your database<br />Craft and export projects using your own templates<br />Plan ahead and keep track of your goals</li></ul>\r\n<span style=\"font-weight: bold;\">Corporate</span>\r\nOperate large volumes of data and save time with the Automation Technology, reducing your findings’ life cycle\r\n<ul><li>Prioritize actions, decreasing exposure time for your assets</li><li>Adapt strategies to customize every phase of your projects</li><li>Integrate everything!</li></ul>\r\n<br /><br />","shortDescription":"Integrated Penetration-Test Environment, a multiuser Penetration test IDE. Designed for distributing, indexing, and analyzing the data generated during a security audit.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":8,"sellingCount":4,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Faraday Platform","keywords":"","description":"Faraday was made to let you take advantage of the available tools in the community in a truly multiuser way.\r\nDesigned for simplicity, users should notice no difference between their own terminal application and the one included in Faraday. Developed with a sp","og:title":"Faraday Platform","og:description":"Faraday was made to let you take advantage of the available tools in the community in a truly multiuser way.\r\nDesigned for simplicity, users should notice no difference between their own terminal application and the one included in Faraday. Developed with a sp","og:image":"https://old.roi4cio.com/fileadmin/user_upload/faraday.png"},"eventUrl":"","translationId":4564,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":174,"title":"System and Network Management Software","alias":"system-and-network-management-software","description":"System and network management software is used to manage all the computing resources for the end-user, small business, workgroup, or enterprise, including systems, applications, and the network infrastructure. This market does not include storage management and other storage software. System and network management software break down into the following categories: event management, workload scheduling and automation, output management, performance management, change and configuration management, problem management, and network management.\r\nCommercial tools for system and network management can provide numerous desirable features (e.g., graphical network maps, scalability to manage hundreds or thousands of servers or networks, automated long-term collection of performance information, OS health and event log monitoring, alert generation).\r\nAnalysts found that the best solution is a combination of commercial technologies, in combination with internally developed tools, across several large enterprises, and learned that you must consider several important factors when you select commercial management tools. First, make sure that the commercial tool meets the bulk of your requirements. (The product probably won’t meet all your needs, which is why you also need in-house tools.) Second, how easily can you roll out the product, and how much training will your team need before you can capitalize on your investment? Analysts recommend that if you can evaluate demonstration software first, do so. If you can wait to purchase management software until you’ve tested it in your lab, ensured that it will integrate with your existing in-house or third-party tools, and successfully rolled it out to your production environment.","materialsDescription":" <span style=\"font-weight: bold;\">What is the difference between a network operating system and a network-management software?</span>\r\nDifference between network operating system and network management software:\r\n<span style=\"font-weight: bold;\">Network operating system</span>\r\n<ul><li>The network operating system is used to controls computer systems and network devices and permits them to communicate with one another.</li><li>The network operating system performs the same functions for the network as operating system software does for a computer...</li></ul>\r\n<span style=\"font-weight: bold;\">Network management software</span>\r\n<ul><li>Network management software is used to monitor, discover, provision and maintain computer networks.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/_System_and_Network_Management_Software.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":206,"title":"Application Security Testing","alias":"application-security-testing","description":" Applications form the lifeline of any business today – and they are under attack more than ever before. Where previously we focused our attention on securing organizations’ network parameters, today the application level is where the focus is for attackers.\r\nAccording to Verizon’s 2014 Data Breach Investigations Report, web applications “remain the proverbial punching bag of the internet,” with about 80% of attacks in the application layer, as Gartner has stated. Taking proactive measures to protect your company and customer data is no longer an option: It is a business imperative for enterprises across all industries.\r\nIn 2013, the Ponemon Institute’s ‘Cost of a Data Breach Report’ found that security incidents in the U.S. averaged a total cost of $5.4 million. Preventing just one similar security incident would more than cover the cost of application security and prove your security programs value.\r\nApplication Security is built around the concept of ensuring that the code written for an application does what it was built to do, and keeps the contained data secure.\r\nAccording to Gartner, application security puts a primary focus on three elements:\r\n<ul><li>Reducing security vulnerabilities and risks</li><li>Improving security features and functions such as authentication, encryption or auditing</li><li>Integrating with the enterprise security infrastructure</li></ul>","materialsDescription":" Security testing techniques scour for vulnerabilities or security holes in applications. These vulnerabilities leave applications open to exploitation. Ideally, security testing is implemented throughout the entire software development life cycle (SDLC) so that vulnerabilities may be addressed in a timely and thorough manner. Unfortunately, testing is often conducted as an afterthought at the end of the development cycle. With the growth of Continuous delivery and DevOps as popular software development and deployment models, continuous security models are becoming more popular.\r\nVulnerability scanners, and more specifically web application scanners, otherwise known as penetration testing tools (i.e. ethical hacking tools) have been historically used by security organizations within corporations and security consultants to automate the security testing of http request/responses; however, this is not a substitute for the need for actual source code review. Physical code reviews of an application's source code can be accomplished manually or in an automated fashion. Given the common size of individual programs (often 500,000 lines of code or more), the human brain cannot execute a comprehensive data flow analysis needed in order to completely check all circuitous paths of an application program to find vulnerability points. The human brain is suited more for filtering, interrupting and reporting the outputs of automated source code analysis tools available commercially versus trying to trace every possible path through a compiled code base to find the root cause level vulnerabilities.\r\nThere are many kinds of automated tools for identifying vulnerabilities in applications. Some require a great deal of security expertise to use and others are designed for fully automated use. The results are dependent on the types of information (source, binary, HTTP traffic, configuration, libraries, connections) provided to the tool, the quality of the analysis, and the scope of vulnerabilities covered. Common technologies used for identifying application vulnerabilities include:\r\n<span style=\"font-weight: bold;\">Static Application Security Testing (SAST)</span> is a technology that is frequently used as a Source Code Analysis tool. The method analyzes source code for security vulnerabilities prior to the launch of an application and is used to strengthen code. This method produces fewer false positives but for most implementations requires access to an application's source code and requires expert configuration and lots of processing power.\r\n<span style=\"font-weight: bold;\">Dynamic Application Security Testing (DAST)</span> is a technology, which is able to find visible vulnerabilities by feeding a URL into an automated scanner. This method is highly scalable, easily integrated and quick. DAST's drawbacks lie in the need for expert configuration and the high possibility of false positives and negatives.\r\n<span style=\"font-weight: bold;\">Interactive Application Security Testing (IAST)</span> is a solution that assesses applications from within using software instrumentation. This technique allows IAST to combine the strengths of both SAST and DAST methods as well as providing access to code, HTTP traffic, library information, backend connections and configuration information. Some IAST products require the application to be attacked, while others can be used during normal quality assurance testing.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Application_Security_Testing1.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":445,"title":"Penetration Testing","alias":"penetration-testing","description":" A <span style=\"font-weight: bold; \">penetration test</span>, colloquially known as a pen test, <span style=\"font-weight: bold; \">pentest </span>or <span style=\"font-weight: bold; \">ethical hacking</span>, is an authorized simulated cyberattack on a computer system, performed to evaluate the security of the system.\r\nStandard penetration test is performed to identify both weaknesses (also referred to as <span style=\"font-weight: bold; \">vulnerabilities</span>), including the potential for unauthorized parties to gain access to the system's features and data, as well as strengths, enabling a full risk assessment to be completed. \r\nThe main objective of system penetration testing is to identify security weaknesses. Vulnerability testing can also be used to test an organization's security policy, its adherence to compliance requirements, its employees' security awareness and the organization's ability to identify and respond to security incidents.\r\nTypically,<span style=\"font-size:11pt; font-family:Arial; font-style:normal; \">professional penetration testing</span>provides information about security weaknesses that are identified or exploited through pen testing is aggregated and provided to the organization's IT and network system managers, enabling them to make strategic decisions and prioritize remediation efforts. \r\nA wide variety of <span style=\"font-weight: bold; \">software security testing tools </span>are available to assist with penetration testing, including free-of-charge, free software, and commercial software. Penetration tools scan code in order to identity malicious code in applications that could result in a security breach. Pen testing tools examine data encryption techniques and can identify hard-coded values, such as usernames and passwords, to verify security vulnerabilities in the system.\r\n Important aspect of any penetration testing program is defining the scope within which the pen testers must operate. Usually, the scope defines what systems, locations, techniques and tools can be used in a penetration test. Limiting the scope of the penetration test helps focus team members - and defenders - on the systems over which the organization has control.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Here are several of the main vulnerability penetration testing approaches:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Targeted testing</span> is performed by the organization's IT team and the penetration testing team working together. It's sometimes referred to as a "lights turned on" approach because everyone can see the test being carried out.</li><li><span style=\"font-weight: bold;\">External testing</span> targets a company's externally visible servers or devices including domain name servers, email servers, web servers or firewalls. The<span style=\"font-size:11pt; font-family:Arial; font-style:normal; \">objective of penetration testing</span>is to find out if an outside attacker can get in and how far they can get in once they've gained access.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Internal testing</span> mimics an inside attack behind the firewall by an authorized user with standard access privileges. This kind of test is useful for estimating how much damage a disgruntled employee could cause.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Blind testing simulates</span> the actions and procedures of a real attacker by severely limiting the information given to the person or team performing the test beforehand. Typically, the pen testers may only be given the name of the company.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Double-blind testing</span> takes the blind test and carries it a step further. In this type of pen test, only one or two people within the organization might be aware a test is being conducted. Double-blind tests can be useful for testing an organization's security monitoring and incident identification as well as its response procedures.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Black box</span> testing is basically the same as blind testing, but the tester receives no information before the test takes place. Rather, the pen testers must find their own way into the system.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">White box</span> testing provides the penetration testers information about the target network before they start their work. This information can include such details as IP addresses, network infrastructure schematics and the protocols used plus the source code.</li></ul>","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What Is Penetration Testing?</span></h1>\r\nThere is a considerable amount of confusion in the industry regarding the differences between vulnerability assessment and penetration testing tool,as the two phrases are commonly interchanged. However, their meaning and implications are very different. A <span style=\"font-weight: bold; \">vulnerability assessment </span>simply identifies and reports noted vulnerabilities, whereas a pentest attempts to exploit the vulnerabilities to determine whether unauthorized access or other malicious activity is possible.<span style=\"font-weight: bold; \"> Penetration testing</span> typically includes network penetration testing and web application security testing as well as controls and processes around the networks and applications, and should occur from both outside the network trying to come in (external testing) and from inside the network.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is a pentesting tool ?</span></h1>\r\n<p class=\"align-left\">Penetration tools are used as part testing to automate certain tasks, improve testing efficiency and discover issues that might be difficult to find using manual analysis techniques alone. Two common penetration testing tools are <span style=\"font-weight: bold; \">static analysis </span>tools and <span style=\"font-weight: bold; \">dynamic analysis</span> tools. Tools for attack include software designed to produce <span style=\"font-weight: bold; \">brute-force attacks</span> or <span style=\"font-weight: bold; \">SQL injections</span>. There is also hardware specifically designed for pen testing, such as small inconspicuous boxes that can be plugged into a computer on the network to provide the hacker with remote access to that network. In addition, an ethical hacker may use social engineering techniques to find vulnerabilities. For example, sending phishing emails to company employees, or even disguising themselves as delivery people to gain physical access to the building.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What are the benefits of penetration testing?</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Manage the Risk Properly. </span>For many organizations, one of the most popular benefits of pen testing services is that they will give you a baseline to work upon to cure the risk in a structured and optimal way. It will show you the list of vulnerabilities in the target environment and the risks associated with it.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Increase Business Continuity.</span> Business continuity is the prime concern for any successful organization. A break in the business continuity can happen for many reasons. Lack of security loopholes is one of them. Insecure systems suffer more breaches in their availability than the secured ones. Today attackers are hired by other organizations to stop the continuity of business by exploiting the vulnerabilities to gain the access and to produce a denial of service condition which usually crashes the vulnerable service and breaks the server availability.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Protect Clients, Partners, and Third Parties.</span> A security breach can affect not only the target organization but also their associated clients, partners and third parties working with it. However, if company schedules a penetration test regularly and takes necessary actions towards security, it will help professionals build trust and confidence in the organization.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Helps to Evaluate Security Investment. </span> The pen test results will give us an independent view of the effectiveness of existing security processes, ensuring that configuration management practices have been followed correctly. This is an ideal opportunity to review the efficiency of the current security investment. What needs to be improved and what is working and what is not working and how much investment needed to build the more secure environment in the organization.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Help Protect Public Relationships and Guard the reputation of your company.</span>A good public relationship and company reputation are built up after taking many years struggle and hard work and with a huge amount of investment. This can be suddenly changed due to a single security breach.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Protection from Financial Damage.</span> A simple breach of the security system may cause millions of dollars of damage. Penetration testing can protect your organization from such damages.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Helps to tests cyber-defense capability.</span> During a penetration test, the target company’s security team should be able to detect multiple attacks and respond accordingly on time. Furthermore, if an intrusion is detected, the security and forensic teams should start investigations, and the penetration testers should be blocked and their tools removed. The effectiveness of your protection devices like IDS, IPS or WAF can also be tested during a penetration test.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Client-side Attacks. </span>Pen tests are an effective way of ensuring that successful highly targeted client-side attacks against key members of your staff. Security should be treated with a holistic approach. Companies only assessing the security of their servers run the risk of being targeted with client-side attacks exploiting vulnerabilities in software like web browsers, pdf readers, etc. It is important to ensure that the patch management processes are working properly updating the operating system and third-party applications.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Penetration_Testing.png"},{"id":791,"title":"Vulnerability Scanner","alias":"vulnerability-scanner","description":" A <span style=\"font-weight: bold;\">vulnerability scanner</span> is a computer program designed to assess computers, network vulnerability or applications for known weaknesses. In plain words, these scanners are used to discover the weaknesses of a given system. They are utilized in the identification and detection of vulnerabilities arising from mis-configurations or flawed programming within a network-based asset such as a firewall, router, web server, application server, etc. They are typically available as SaaS (Software as a service); provided over the internet and delivered as a web application. \r\nMost vulnerability scanners will also attempt to log in to systems using default or other credentials in order to build a more detailed picture of the system. After building up an inventory, the vulnerability scanner checks each item in the inventory against one or more databases of known vulnerabilities to see if any items are subject to any of these vulnerabilities. The result of such scan is a systems vulnerability analysis, highlighting any that have known vulnerabilities that may need threat and vulnerability management.\r\n<span style=\"font-weight: bold;\">How vulnerability scanning works</span>. Vulnerability scanning finds systems and software that have known security vulnerabilities, but this information is only useful to IT security teams when it is used as the first part of a four-part vulnerability management process. <span style=\"font-weight: bold;\">Vulnerability management process involves:</span>\r\n<ul><li>Identification of vulnerabilities</li><li>Evaluation of the risk posed by any vulnerabilities identified</li><li>Treatment of any identified vulnerabilities</li><li>Reporting on vulnerabilities and how they have been handled</li></ul>\r\n<br /><span style=\"font-weight: bold;\">Types of vulnerability scans. </span>Not all vulnerability scans are alike, and to ensure compliance with certain regulations (such as those set by the PCI Security Standards Council) it is necessary to carry out two distinct types of vulnerability scans: an internal and an external vulnerability scan. \r\n<span style=\"font-weight: bold;\">External vulnerability scan.</span> As the name suggests, an external vulnerability scan is carried out from outside an organization's network, and its principal purpose is to detect vulnerabilities in the perimeter defenses such as open ports in the network firewall or specialized web application firewall. An external vulnerability scan can help organizations fix security issues that could enable hackers to gain access to the organization's network.\r\n<span style=\"font-weight: bold;\">Internal vulnerability scan. </span>By contrast, an internal vulnerability scan is carried out from inside an organization's perimeter defenses. Its purpose is to detect vulnerabilities that could be exploited by hackers who successfully penetrate the perimeter defenses, or equally by "insider threats" such as contractors or disgruntled employees who have legitimate access to parts of the network.\r\n<span style=\"font-weight: bold;\">Unauthenticated and authenticated vulnerability scans.</span> A similar but not always identical variation of internal and external vulnerability scans is the concept of unauthenticated and authenticated vulnerability scans. Unauthenticated scans, like external scans, search for weaknesses in the network perimeter, while authenticated scans provide vulnerability scanners with various privileged credentials, allowing them to probe the inside of the network for weak passwords, configuration issues, and misconfigured databases or applications.<br /><br />","materialsDescription":"<h1 class=\"align-center\">What is Vulnerability Assessment?</h1>\r\nVulnerability Assessment is also known as Vulnerability Testing, is a vulnerability scanning software performed to evaluate the security risks in the software system in order to reduce the probability of a threat. Vulnerability Analysis depends upon two mechanisms namely Vulnerability Assessment and Penetration Testing (VAPT).\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Types of a vulnerability scanner:</span></p>\r\n<span style=\"font-weight: bold;\">Host Based. </span>Identifies the issues in the host or the system. The process is carried out by using host-based scanners and diagnose the vulnerabilities. The host-based tools will load a mediator software onto the target system; it will trace the event and report it to the security analyst.\r\n<span style=\"font-weight: bold;\">Network-Based.</span> It will detect the open port, and identify the unknown services running on these ports. Then it will disclose possible vulnerabilities associated with these services. This process is done by using Network-based Scanners.\r\n<span style=\"font-weight: bold;\">Database-Based.</span> It will identify the security exposure in the database systems using tools and techniques to prevent from SQL Injections. (SQL Injections: - Injecting SQL statements into the database by the malicious users, which can read the sensitive data's from a database and can update the data in the Database.)\r\n<h1 class=\"align-center\">How vulnerability scanners works?</h1>\r\nVulnerability scanning is an inspection of the potential points of exploit on a computer or network to identify security holes.\r\nA security scan detects and classifies system weaknesses in computers, networks and communications equipment and predicts the effectiveness of countermeasures. A scan may be performed by an organization’s IT department or a security service provide, possibly as a condition imposed by some authority. Vulnerability scans are also used by attackers looking for points of entry.\r\nA vulnerability scanner runs from the end point of the person inspecting the attack surface in question. The software compares details about the target attack surface to a database of information about known security holes in services and ports, anomalies in packet construction, and potential paths to exploitable programs or scripts. The scanner software attempts to exploit each vulnerability that is discovered.\r\nRunning a vulnerability scan can pose its own risks as it is inherently intrusive on the target machine’s running code. As a result, the scan can cause issues such as errors and reboots, reducing productivity.\r\n<h1 class=\"align-center\">How to choose the best vulnerability scanning tool?</h1>\r\nWhen researching vulnerability scanners, it's important to find out how they're rated for accuracy (the most important metric) as well as reliability, scalability and reporting. If accuracy is lacking, you'll end up running two different scanners, hoping that one picks up vulnerabilities that the other misses. This adds cost and effort to the scanning process. \r\n<span style=\"font-weight: bold;\">Software-Based Vulnerability Scanners.</span> These types of scanning products generally include configuration auditing, target profiling, penetration testing and detailed vulnerability analysis. They integrate with Windows products, such as Microsoft System Center, to provide intelligent patch management; some work with mobile device managers. They can scan not only physical network devices, servers and workstations, but extend to virtual machines, BYOD mobile devices and databases.\r\n<span style=\"font-weight: bold;\">Cloud-Based Vulnerability Scanners: </span>Continuous, On-Demand Monitoring. A newer type of vulnerability finder is delivered on-demand as Software as a Service (SaaS). Like software-based scanners, on-demand scanners incorporate links for downloading vendor patches and updates for identified vulnerabilities, reducing remediation effort. These services also include scanning thresholds to prevent overloading devices during the scanning process, which can cause devices to crash.\r\n<h1 class=\"align-center\">What is mobile application security scanner?</h1>\r\nMobile application security testing can help ensure there aren’t any loopholes in the software that may cause data loss. The sets of tests are meant to attack the app to identify possible threats and vulnerabilities that would allow external persons or systems to access private information stored on the mobile device. \r\nMobile application vulnerability scanner can help to ensure that applications are free from the flaws and weaknesses that hackers use to gain access to sensitive information. From backdoors, malicious code and other threats, these flaws may be present both in commercial and open source applications as well as software developed in-house.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Vulnerability_Scanner.png"},{"id":793,"title":"Web Application Vulnerability Scanner","alias":"web-application-vulnerability-scanner","description":" A <span style=\"font-weight: bold; \">web application vulnerability scanner,</span> also known as a <span style=\"font-weight: bold; \">web application security scanner,</span> is an automated security tool. It scans web applications for malware, vulnerabilities, and logical flaws. Web application scanner use black box tests, as these tests do not require access to the source code but instead launch external attacks to test for security vulnerabilities. These simulated attacks can detect path traversal, cross-site scripting(XSS), and command injection.\r\nWeb app scanners are categorized as <span style=\"font-weight: bold; \">Dynamic Application Security Testing (DAST) tools.</span> DAST tools provide insight into how your web applications behave while they are in production, enabling your business to address potential vulnerabilities before a hacker uses them to stage an attack. As your web applications evolve, DAST solutions continue to scan them so that your business can promptly identify and remediate emerging issues before they develop into serious risks.\r\nWeb app vulnerability scanner first crawls the entire website, analyzing in-depth each file it finds, and displaying the entire website structure. After this discovery stage, it performs an automatic audit for common security vulnerabilities by launching a series of Web attacks. Web application scanners check for vulnerabilities on the Web server, proxy server, Web application server and even on other Web services. Unlike source code scanners, web application scanners don't have access to the source code and therefore detect vulnerabilities by actually performing attacks.\r\nA web application vulnerability assessment is very different than a general vulnerability assessment where security focus on networks and hosts. App vulnerability scanner scans ports, connect to services, and use other techniques to gather information revealing the patch levels, configurations, and potential exposures of our infrastructure.\r\nAutomated web application scanning tools help the user making sure the whole website is properly crawled, and that no input or parameter is left unchecked. Automated web vulnerability scanners also help in finding a high percentage of the technical vulnerabilities, and give you a very good overview of the website’s structure, and security status. \r\nThe best way to identify web application security threats is to perform web application vulnerability assessment. The importance of these threats could leave your organization exposed if they are not properly identified and mitigated. Therefore, implementing a web app security scanner solution should be of paramount importance for your organizations security plans in the future. \r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Why Web Application Vulnerability Scanning is important?</h1>\r\nWeb applications are the technological base of modern companies. That’s why more and more businesses are betting on the development of this type of digital platforms. They stand out because they allow to automate processes, simplify tasks, be more efficient and offer a better service to the customer.<br /><br />The objective of web applications is that the user completes a task, be it buying, making a bank transaction, accessing e-mail, editing photos, texts, among many other things. In fact, they are very useful for an endless number of services, hence their popularity. Their disadvantages are few, but there is one that requires special attention: vulnerabilities.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Main web application security risks</span></p>\r\nA web vulnerability scanner tools will help you keep your services protected. However, it is important to be aware of the major security risks that exist so that both developers and security professionals are always alert and can find the most appropriate solutions in a timely manner.\r\n<ul><li><span style=\"font-weight: bold; \">Injection</span></li></ul>\r\nThis is a vulnerability that affects the application databases. They occur when unreliable data is sent to an interpreter by means of a command or query. The attacker may inject malicious code to disrupt the normal operation of the application by making it access the data without authorization or execute involuntary commands.\r\n<ul><li><span style=\"font-weight: bold; \">Authentication failures</span></li></ul>\r\nIf a vulnerability scan in web applications finds a failure, it may be due to loss of authentication. This is a critical vulnerability, as it allows the attacker to impersonate another user. This can compromise important data such as usernames, passwords, session tokens, and more.\r\n<ul><li><span style=\"font-weight: bold; \">Sensitive data exposure</span></li></ul>\r\nA serious risk is the exposure of sensitive data especially financial information such as credit cards or account numbers, personal data such as place of residence, or health-related information. If an attacker scans for this type of vulnerability, he or she may modify or steal this data and use it fraudulently. Therefore, it is essential to use a web app scanning tools to find vulnerabilities in web applications.<br /><br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_Application_Vulnerability_Scanner.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"suppliedProducts":[{"id":4563,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/faraday.png","logo":true,"scheme":false,"title":"Faraday Platform","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"faraday-platform","companyTitle":"Faraday","companyTypes":["supplier","vendor"],"companyId":6961,"companyAlias":"faraday","description":"Faraday was made to let you take advantage of the available tools in the community in a truly multiuser way.\r\nDesigned for simplicity, users should notice no difference between their own terminal application and the one included in Faraday. Developed with a specialized set of functionalities, users improve their own work. Do you remember the last time you programmed without an IDE? What IDEs are to programming, Faraday is to pentesting.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Plugins </span></p>\r\nYou feed data to Faraday from your favorite tools through Plugins. Right now there are more than 70+ supported tools.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">There are three Plugin types:</span></span> console plugins which intercept and interpret the output of the tools you execute, report plugins which allows you to import previously generated XMLs, and online plugins which access Faraday's \r\nAPI or allow Faraday to connect to external APIs and databases.\r\nSupporting output from +70 tools, Faraday Platform centralizes all your efforts and gives sense to your main objectives.\r\nProviding powerful Automation Technology, it helps you reduce your findings’ life cycle by prioritizing actions and decreasing the exposure time of your assets, promoting collaboration by allowing big and small groups of people to work together.\r\nPlus, get deep insight on all your projects with just a couple clicks.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Key features</span></p>\r\n<span style=\"font-weight: bold;\">Custom Implementation.</span> No infrastructure changes needed: implement Faraday On-prem, Cloud or Hybrid without network changes.\r\n<span style=\"font-weight: bold;\">Flexible Integrations.</span> Import output or results from 3rd party tools and synchronize your ticketing systems (JIRA, ServiceNow) and security enhancements (2FA, LDAP)\r\n<span style=\"font-weight: bold;\">Workflows.</span> Implement custom events by triggering actions or vulns' content in real time\r\n<span style=\"font-weight: bold;\">Deduplicate Vulns.</span> Faraday's Global Vuln KB allows you to customize descriptions and apply them accordingly.\r\n<span style=\"font-weight: bold;\">Agents.</span> Define and execute your own actions from different sources and automatically import outputs into your repository.\r\n<span style=\"font-weight: bold;\">Scheduler.</span> Automate repetitive Agents' actions and check results on your Dashboard.\r\n<span style=\"font-weight: bold;\">Graphics.</span> Get a visual representation of all your findings with just one click.\r\n<span style=\"font-weight: bold;\">Faraday Client.</span> Solution’s shell allows you to upload results while pentesting actively.\r\n<span style=\"font-weight: bold;\">Methodology and Tasks.</span> Setup your own strategy, assign tasks to users for each phase and easily follow them up.\r\n<p class=\"align-center\"><span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Choose the plan that best: fits your needs</span></span></p>\r\n<span style=\"font-weight: bold;\">Community</span>\r\nFaraday supports the InfoSec Community around the globe by offering a free open source version that improves on daily workflows\r\n<ul><li>Feed data to Faraday from your favorite tools</li><li>Divide projects by your own rules</li><li>Customize your instance</li></ul>\r\n<span style=\"font-weight: bold;\">Professional</span>\r\nDesigned for small pentester teamwork. Integrate and report main data generated during a security audit.\r\n<ul><li>Easily identify and sort your database<br />Craft and export projects using your own templates<br />Plan ahead and keep track of your goals</li></ul>\r\n<span style=\"font-weight: bold;\">Corporate</span>\r\nOperate large volumes of data and save time with the Automation Technology, reducing your findings’ life cycle\r\n<ul><li>Prioritize actions, decreasing exposure time for your assets</li><li>Adapt strategies to customize every phase of your projects</li><li>Integrate everything!</li></ul>\r\n<br /><br />","shortDescription":"Integrated Penetration-Test Environment, a multiuser Penetration test IDE. Designed for distributing, indexing, and analyzing the data generated during a security audit.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":8,"sellingCount":4,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Faraday Platform","keywords":"","description":"Faraday was made to let you take advantage of the available tools in the community in a truly multiuser way.\r\nDesigned for simplicity, users should notice no difference between their own terminal application and the one included in Faraday. Developed with a sp","og:title":"Faraday Platform","og:description":"Faraday was made to let you take advantage of the available tools in the community in a truly multiuser way.\r\nDesigned for simplicity, users should notice no difference between their own terminal application and the one included in Faraday. Developed with a sp","og:image":"https://old.roi4cio.com/fileadmin/user_upload/faraday.png"},"eventUrl":"","translationId":4564,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":174,"title":"System and Network Management Software","alias":"system-and-network-management-software","description":"System and network management software is used to manage all the computing resources for the end-user, small business, workgroup, or enterprise, including systems, applications, and the network infrastructure. This market does not include storage management and other storage software. System and network management software break down into the following categories: event management, workload scheduling and automation, output management, performance management, change and configuration management, problem management, and network management.\r\nCommercial tools for system and network management can provide numerous desirable features (e.g., graphical network maps, scalability to manage hundreds or thousands of servers or networks, automated long-term collection of performance information, OS health and event log monitoring, alert generation).\r\nAnalysts found that the best solution is a combination of commercial technologies, in combination with internally developed tools, across several large enterprises, and learned that you must consider several important factors when you select commercial management tools. First, make sure that the commercial tool meets the bulk of your requirements. (The product probably won’t meet all your needs, which is why you also need in-house tools.) Second, how easily can you roll out the product, and how much training will your team need before you can capitalize on your investment? Analysts recommend that if you can evaluate demonstration software first, do so. If you can wait to purchase management software until you’ve tested it in your lab, ensured that it will integrate with your existing in-house or third-party tools, and successfully rolled it out to your production environment.","materialsDescription":" <span style=\"font-weight: bold;\">What is the difference between a network operating system and a network-management software?</span>\r\nDifference between network operating system and network management software:\r\n<span style=\"font-weight: bold;\">Network operating system</span>\r\n<ul><li>The network operating system is used to controls computer systems and network devices and permits them to communicate with one another.</li><li>The network operating system performs the same functions for the network as operating system software does for a computer...</li></ul>\r\n<span style=\"font-weight: bold;\">Network management software</span>\r\n<ul><li>Network management software is used to monitor, discover, provision and maintain computer networks.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/_System_and_Network_Management_Software.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":206,"title":"Application Security Testing","alias":"application-security-testing","description":" Applications form the lifeline of any business today – and they are under attack more than ever before. Where previously we focused our attention on securing organizations’ network parameters, today the application level is where the focus is for attackers.\r\nAccording to Verizon’s 2014 Data Breach Investigations Report, web applications “remain the proverbial punching bag of the internet,” with about 80% of attacks in the application layer, as Gartner has stated. Taking proactive measures to protect your company and customer data is no longer an option: It is a business imperative for enterprises across all industries.\r\nIn 2013, the Ponemon Institute’s ‘Cost of a Data Breach Report’ found that security incidents in the U.S. averaged a total cost of $5.4 million. Preventing just one similar security incident would more than cover the cost of application security and prove your security programs value.\r\nApplication Security is built around the concept of ensuring that the code written for an application does what it was built to do, and keeps the contained data secure.\r\nAccording to Gartner, application security puts a primary focus on three elements:\r\n<ul><li>Reducing security vulnerabilities and risks</li><li>Improving security features and functions such as authentication, encryption or auditing</li><li>Integrating with the enterprise security infrastructure</li></ul>","materialsDescription":" Security testing techniques scour for vulnerabilities or security holes in applications. These vulnerabilities leave applications open to exploitation. Ideally, security testing is implemented throughout the entire software development life cycle (SDLC) so that vulnerabilities may be addressed in a timely and thorough manner. Unfortunately, testing is often conducted as an afterthought at the end of the development cycle. With the growth of Continuous delivery and DevOps as popular software development and deployment models, continuous security models are becoming more popular.\r\nVulnerability scanners, and more specifically web application scanners, otherwise known as penetration testing tools (i.e. ethical hacking tools) have been historically used by security organizations within corporations and security consultants to automate the security testing of http request/responses; however, this is not a substitute for the need for actual source code review. Physical code reviews of an application's source code can be accomplished manually or in an automated fashion. Given the common size of individual programs (often 500,000 lines of code or more), the human brain cannot execute a comprehensive data flow analysis needed in order to completely check all circuitous paths of an application program to find vulnerability points. The human brain is suited more for filtering, interrupting and reporting the outputs of automated source code analysis tools available commercially versus trying to trace every possible path through a compiled code base to find the root cause level vulnerabilities.\r\nThere are many kinds of automated tools for identifying vulnerabilities in applications. Some require a great deal of security expertise to use and others are designed for fully automated use. The results are dependent on the types of information (source, binary, HTTP traffic, configuration, libraries, connections) provided to the tool, the quality of the analysis, and the scope of vulnerabilities covered. Common technologies used for identifying application vulnerabilities include:\r\n<span style=\"font-weight: bold;\">Static Application Security Testing (SAST)</span> is a technology that is frequently used as a Source Code Analysis tool. The method analyzes source code for security vulnerabilities prior to the launch of an application and is used to strengthen code. This method produces fewer false positives but for most implementations requires access to an application's source code and requires expert configuration and lots of processing power.\r\n<span style=\"font-weight: bold;\">Dynamic Application Security Testing (DAST)</span> is a technology, which is able to find visible vulnerabilities by feeding a URL into an automated scanner. This method is highly scalable, easily integrated and quick. DAST's drawbacks lie in the need for expert configuration and the high possibility of false positives and negatives.\r\n<span style=\"font-weight: bold;\">Interactive Application Security Testing (IAST)</span> is a solution that assesses applications from within using software instrumentation. This technique allows IAST to combine the strengths of both SAST and DAST methods as well as providing access to code, HTTP traffic, library information, backend connections and configuration information. Some IAST products require the application to be attacked, while others can be used during normal quality assurance testing.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Application_Security_Testing1.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":445,"title":"Penetration Testing","alias":"penetration-testing","description":" A <span style=\"font-weight: bold; \">penetration test</span>, colloquially known as a pen test, <span style=\"font-weight: bold; \">pentest </span>or <span style=\"font-weight: bold; \">ethical hacking</span>, is an authorized simulated cyberattack on a computer system, performed to evaluate the security of the system.\r\nStandard penetration test is performed to identify both weaknesses (also referred to as <span style=\"font-weight: bold; \">vulnerabilities</span>), including the potential for unauthorized parties to gain access to the system's features and data, as well as strengths, enabling a full risk assessment to be completed. \r\nThe main objective of system penetration testing is to identify security weaknesses. Vulnerability testing can also be used to test an organization's security policy, its adherence to compliance requirements, its employees' security awareness and the organization's ability to identify and respond to security incidents.\r\nTypically,<span style=\"font-size:11pt; font-family:Arial; font-style:normal; \">professional penetration testing</span>provides information about security weaknesses that are identified or exploited through pen testing is aggregated and provided to the organization's IT and network system managers, enabling them to make strategic decisions and prioritize remediation efforts. \r\nA wide variety of <span style=\"font-weight: bold; \">software security testing tools </span>are available to assist with penetration testing, including free-of-charge, free software, and commercial software. Penetration tools scan code in order to identity malicious code in applications that could result in a security breach. Pen testing tools examine data encryption techniques and can identify hard-coded values, such as usernames and passwords, to verify security vulnerabilities in the system.\r\n Important aspect of any penetration testing program is defining the scope within which the pen testers must operate. Usually, the scope defines what systems, locations, techniques and tools can be used in a penetration test. Limiting the scope of the penetration test helps focus team members - and defenders - on the systems over which the organization has control.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Here are several of the main vulnerability penetration testing approaches:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Targeted testing</span> is performed by the organization's IT team and the penetration testing team working together. It's sometimes referred to as a "lights turned on" approach because everyone can see the test being carried out.</li><li><span style=\"font-weight: bold;\">External testing</span> targets a company's externally visible servers or devices including domain name servers, email servers, web servers or firewalls. The<span style=\"font-size:11pt; font-family:Arial; font-style:normal; \">objective of penetration testing</span>is to find out if an outside attacker can get in and how far they can get in once they've gained access.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Internal testing</span> mimics an inside attack behind the firewall by an authorized user with standard access privileges. This kind of test is useful for estimating how much damage a disgruntled employee could cause.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Blind testing simulates</span> the actions and procedures of a real attacker by severely limiting the information given to the person or team performing the test beforehand. Typically, the pen testers may only be given the name of the company.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Double-blind testing</span> takes the blind test and carries it a step further. In this type of pen test, only one or two people within the organization might be aware a test is being conducted. Double-blind tests can be useful for testing an organization's security monitoring and incident identification as well as its response procedures.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Black box</span> testing is basically the same as blind testing, but the tester receives no information before the test takes place. Rather, the pen testers must find their own way into the system.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">White box</span> testing provides the penetration testers information about the target network before they start their work. This information can include such details as IP addresses, network infrastructure schematics and the protocols used plus the source code.</li></ul>","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What Is Penetration Testing?</span></h1>\r\nThere is a considerable amount of confusion in the industry regarding the differences between vulnerability assessment and penetration testing tool,as the two phrases are commonly interchanged. However, their meaning and implications are very different. A <span style=\"font-weight: bold; \">vulnerability assessment </span>simply identifies and reports noted vulnerabilities, whereas a pentest attempts to exploit the vulnerabilities to determine whether unauthorized access or other malicious activity is possible.<span style=\"font-weight: bold; \"> Penetration testing</span> typically includes network penetration testing and web application security testing as well as controls and processes around the networks and applications, and should occur from both outside the network trying to come in (external testing) and from inside the network.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is a pentesting tool ?</span></h1>\r\n<p class=\"align-left\">Penetration tools are used as part testing to automate certain tasks, improve testing efficiency and discover issues that might be difficult to find using manual analysis techniques alone. Two common penetration testing tools are <span style=\"font-weight: bold; \">static analysis </span>tools and <span style=\"font-weight: bold; \">dynamic analysis</span> tools. Tools for attack include software designed to produce <span style=\"font-weight: bold; \">brute-force attacks</span> or <span style=\"font-weight: bold; \">SQL injections</span>. There is also hardware specifically designed for pen testing, such as small inconspicuous boxes that can be plugged into a computer on the network to provide the hacker with remote access to that network. In addition, an ethical hacker may use social engineering techniques to find vulnerabilities. For example, sending phishing emails to company employees, or even disguising themselves as delivery people to gain physical access to the building.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What are the benefits of penetration testing?</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Manage the Risk Properly. </span>For many organizations, one of the most popular benefits of pen testing services is that they will give you a baseline to work upon to cure the risk in a structured and optimal way. It will show you the list of vulnerabilities in the target environment and the risks associated with it.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Increase Business Continuity.</span> Business continuity is the prime concern for any successful organization. A break in the business continuity can happen for many reasons. Lack of security loopholes is one of them. Insecure systems suffer more breaches in their availability than the secured ones. Today attackers are hired by other organizations to stop the continuity of business by exploiting the vulnerabilities to gain the access and to produce a denial of service condition which usually crashes the vulnerable service and breaks the server availability.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Protect Clients, Partners, and Third Parties.</span> A security breach can affect not only the target organization but also their associated clients, partners and third parties working with it. However, if company schedules a penetration test regularly and takes necessary actions towards security, it will help professionals build trust and confidence in the organization.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Helps to Evaluate Security Investment. </span> The pen test results will give us an independent view of the effectiveness of existing security processes, ensuring that configuration management practices have been followed correctly. This is an ideal opportunity to review the efficiency of the current security investment. What needs to be improved and what is working and what is not working and how much investment needed to build the more secure environment in the organization.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Help Protect Public Relationships and Guard the reputation of your company.</span>A good public relationship and company reputation are built up after taking many years struggle and hard work and with a huge amount of investment. This can be suddenly changed due to a single security breach.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Protection from Financial Damage.</span> A simple breach of the security system may cause millions of dollars of damage. Penetration testing can protect your organization from such damages.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Helps to tests cyber-defense capability.</span> During a penetration test, the target company’s security team should be able to detect multiple attacks and respond accordingly on time. Furthermore, if an intrusion is detected, the security and forensic teams should start investigations, and the penetration testers should be blocked and their tools removed. The effectiveness of your protection devices like IDS, IPS or WAF can also be tested during a penetration test.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Client-side Attacks. </span>Pen tests are an effective way of ensuring that successful highly targeted client-side attacks against key members of your staff. Security should be treated with a holistic approach. Companies only assessing the security of their servers run the risk of being targeted with client-side attacks exploiting vulnerabilities in software like web browsers, pdf readers, etc. It is important to ensure that the patch management processes are working properly updating the operating system and third-party applications.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Penetration_Testing.png"},{"id":791,"title":"Vulnerability Scanner","alias":"vulnerability-scanner","description":" A <span style=\"font-weight: bold;\">vulnerability scanner</span> is a computer program designed to assess computers, network vulnerability or applications for known weaknesses. In plain words, these scanners are used to discover the weaknesses of a given system. They are utilized in the identification and detection of vulnerabilities arising from mis-configurations or flawed programming within a network-based asset such as a firewall, router, web server, application server, etc. They are typically available as SaaS (Software as a service); provided over the internet and delivered as a web application. \r\nMost vulnerability scanners will also attempt to log in to systems using default or other credentials in order to build a more detailed picture of the system. After building up an inventory, the vulnerability scanner checks each item in the inventory against one or more databases of known vulnerabilities to see if any items are subject to any of these vulnerabilities. The result of such scan is a systems vulnerability analysis, highlighting any that have known vulnerabilities that may need threat and vulnerability management.\r\n<span style=\"font-weight: bold;\">How vulnerability scanning works</span>. Vulnerability scanning finds systems and software that have known security vulnerabilities, but this information is only useful to IT security teams when it is used as the first part of a four-part vulnerability management process. <span style=\"font-weight: bold;\">Vulnerability management process involves:</span>\r\n<ul><li>Identification of vulnerabilities</li><li>Evaluation of the risk posed by any vulnerabilities identified</li><li>Treatment of any identified vulnerabilities</li><li>Reporting on vulnerabilities and how they have been handled</li></ul>\r\n<br /><span style=\"font-weight: bold;\">Types of vulnerability scans. </span>Not all vulnerability scans are alike, and to ensure compliance with certain regulations (such as those set by the PCI Security Standards Council) it is necessary to carry out two distinct types of vulnerability scans: an internal and an external vulnerability scan. \r\n<span style=\"font-weight: bold;\">External vulnerability scan.</span> As the name suggests, an external vulnerability scan is carried out from outside an organization's network, and its principal purpose is to detect vulnerabilities in the perimeter defenses such as open ports in the network firewall or specialized web application firewall. An external vulnerability scan can help organizations fix security issues that could enable hackers to gain access to the organization's network.\r\n<span style=\"font-weight: bold;\">Internal vulnerability scan. </span>By contrast, an internal vulnerability scan is carried out from inside an organization's perimeter defenses. Its purpose is to detect vulnerabilities that could be exploited by hackers who successfully penetrate the perimeter defenses, or equally by "insider threats" such as contractors or disgruntled employees who have legitimate access to parts of the network.\r\n<span style=\"font-weight: bold;\">Unauthenticated and authenticated vulnerability scans.</span> A similar but not always identical variation of internal and external vulnerability scans is the concept of unauthenticated and authenticated vulnerability scans. Unauthenticated scans, like external scans, search for weaknesses in the network perimeter, while authenticated scans provide vulnerability scanners with various privileged credentials, allowing them to probe the inside of the network for weak passwords, configuration issues, and misconfigured databases or applications.<br /><br />","materialsDescription":"<h1 class=\"align-center\">What is Vulnerability Assessment?</h1>\r\nVulnerability Assessment is also known as Vulnerability Testing, is a vulnerability scanning software performed to evaluate the security risks in the software system in order to reduce the probability of a threat. Vulnerability Analysis depends upon two mechanisms namely Vulnerability Assessment and Penetration Testing (VAPT).\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Types of a vulnerability scanner:</span></p>\r\n<span style=\"font-weight: bold;\">Host Based. </span>Identifies the issues in the host or the system. The process is carried out by using host-based scanners and diagnose the vulnerabilities. The host-based tools will load a mediator software onto the target system; it will trace the event and report it to the security analyst.\r\n<span style=\"font-weight: bold;\">Network-Based.</span> It will detect the open port, and identify the unknown services running on these ports. Then it will disclose possible vulnerabilities associated with these services. This process is done by using Network-based Scanners.\r\n<span style=\"font-weight: bold;\">Database-Based.</span> It will identify the security exposure in the database systems using tools and techniques to prevent from SQL Injections. (SQL Injections: - Injecting SQL statements into the database by the malicious users, which can read the sensitive data's from a database and can update the data in the Database.)\r\n<h1 class=\"align-center\">How vulnerability scanners works?</h1>\r\nVulnerability scanning is an inspection of the potential points of exploit on a computer or network to identify security holes.\r\nA security scan detects and classifies system weaknesses in computers, networks and communications equipment and predicts the effectiveness of countermeasures. A scan may be performed by an organization’s IT department or a security service provide, possibly as a condition imposed by some authority. Vulnerability scans are also used by attackers looking for points of entry.\r\nA vulnerability scanner runs from the end point of the person inspecting the attack surface in question. The software compares details about the target attack surface to a database of information about known security holes in services and ports, anomalies in packet construction, and potential paths to exploitable programs or scripts. The scanner software attempts to exploit each vulnerability that is discovered.\r\nRunning a vulnerability scan can pose its own risks as it is inherently intrusive on the target machine’s running code. As a result, the scan can cause issues such as errors and reboots, reducing productivity.\r\n<h1 class=\"align-center\">How to choose the best vulnerability scanning tool?</h1>\r\nWhen researching vulnerability scanners, it's important to find out how they're rated for accuracy (the most important metric) as well as reliability, scalability and reporting. If accuracy is lacking, you'll end up running two different scanners, hoping that one picks up vulnerabilities that the other misses. This adds cost and effort to the scanning process. \r\n<span style=\"font-weight: bold;\">Software-Based Vulnerability Scanners.</span> These types of scanning products generally include configuration auditing, target profiling, penetration testing and detailed vulnerability analysis. They integrate with Windows products, such as Microsoft System Center, to provide intelligent patch management; some work with mobile device managers. They can scan not only physical network devices, servers and workstations, but extend to virtual machines, BYOD mobile devices and databases.\r\n<span style=\"font-weight: bold;\">Cloud-Based Vulnerability Scanners: </span>Continuous, On-Demand Monitoring. A newer type of vulnerability finder is delivered on-demand as Software as a Service (SaaS). Like software-based scanners, on-demand scanners incorporate links for downloading vendor patches and updates for identified vulnerabilities, reducing remediation effort. These services also include scanning thresholds to prevent overloading devices during the scanning process, which can cause devices to crash.\r\n<h1 class=\"align-center\">What is mobile application security scanner?</h1>\r\nMobile application security testing can help ensure there aren’t any loopholes in the software that may cause data loss. The sets of tests are meant to attack the app to identify possible threats and vulnerabilities that would allow external persons or systems to access private information stored on the mobile device. \r\nMobile application vulnerability scanner can help to ensure that applications are free from the flaws and weaknesses that hackers use to gain access to sensitive information. From backdoors, malicious code and other threats, these flaws may be present both in commercial and open source applications as well as software developed in-house.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Vulnerability_Scanner.png"},{"id":793,"title":"Web Application Vulnerability Scanner","alias":"web-application-vulnerability-scanner","description":" A <span style=\"font-weight: bold; \">web application vulnerability scanner,</span> also known as a <span style=\"font-weight: bold; \">web application security scanner,</span> is an automated security tool. It scans web applications for malware, vulnerabilities, and logical flaws. Web application scanner use black box tests, as these tests do not require access to the source code but instead launch external attacks to test for security vulnerabilities. These simulated attacks can detect path traversal, cross-site scripting(XSS), and command injection.\r\nWeb app scanners are categorized as <span style=\"font-weight: bold; \">Dynamic Application Security Testing (DAST) tools.</span> DAST tools provide insight into how your web applications behave while they are in production, enabling your business to address potential vulnerabilities before a hacker uses them to stage an attack. As your web applications evolve, DAST solutions continue to scan them so that your business can promptly identify and remediate emerging issues before they develop into serious risks.\r\nWeb app vulnerability scanner first crawls the entire website, analyzing in-depth each file it finds, and displaying the entire website structure. After this discovery stage, it performs an automatic audit for common security vulnerabilities by launching a series of Web attacks. Web application scanners check for vulnerabilities on the Web server, proxy server, Web application server and even on other Web services. Unlike source code scanners, web application scanners don't have access to the source code and therefore detect vulnerabilities by actually performing attacks.\r\nA web application vulnerability assessment is very different than a general vulnerability assessment where security focus on networks and hosts. App vulnerability scanner scans ports, connect to services, and use other techniques to gather information revealing the patch levels, configurations, and potential exposures of our infrastructure.\r\nAutomated web application scanning tools help the user making sure the whole website is properly crawled, and that no input or parameter is left unchecked. Automated web vulnerability scanners also help in finding a high percentage of the technical vulnerabilities, and give you a very good overview of the website’s structure, and security status. \r\nThe best way to identify web application security threats is to perform web application vulnerability assessment. The importance of these threats could leave your organization exposed if they are not properly identified and mitigated. Therefore, implementing a web app security scanner solution should be of paramount importance for your organizations security plans in the future. \r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Why Web Application Vulnerability Scanning is important?</h1>\r\nWeb applications are the technological base of modern companies. That’s why more and more businesses are betting on the development of this type of digital platforms. They stand out because they allow to automate processes, simplify tasks, be more efficient and offer a better service to the customer.<br /><br />The objective of web applications is that the user completes a task, be it buying, making a bank transaction, accessing e-mail, editing photos, texts, among many other things. In fact, they are very useful for an endless number of services, hence their popularity. Their disadvantages are few, but there is one that requires special attention: vulnerabilities.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Main web application security risks</span></p>\r\nA web vulnerability scanner tools will help you keep your services protected. However, it is important to be aware of the major security risks that exist so that both developers and security professionals are always alert and can find the most appropriate solutions in a timely manner.\r\n<ul><li><span style=\"font-weight: bold; \">Injection</span></li></ul>\r\nThis is a vulnerability that affects the application databases. They occur when unreliable data is sent to an interpreter by means of a command or query. The attacker may inject malicious code to disrupt the normal operation of the application by making it access the data without authorization or execute involuntary commands.\r\n<ul><li><span style=\"font-weight: bold; \">Authentication failures</span></li></ul>\r\nIf a vulnerability scan in web applications finds a failure, it may be due to loss of authentication. This is a critical vulnerability, as it allows the attacker to impersonate another user. This can compromise important data such as usernames, passwords, session tokens, and more.\r\n<ul><li><span style=\"font-weight: bold; \">Sensitive data exposure</span></li></ul>\r\nA serious risk is the exposure of sensitive data especially financial information such as credit cards or account numbers, personal data such as place of residence, or health-related information. If an attacker scans for this type of vulnerability, he or she may modify or steal this data and use it fraudulently. Therefore, it is essential to use a web app scanning tools to find vulnerabilities in web applications.<br /><br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_Application_Vulnerability_Scanner.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"partnershipProgramme":null}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}