{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"company":{"role-vendor":{"en":"Vendor","ru":"Производитель","_type":"localeString"},"role-supplier":{"en":"Supplier","ru":"Поставщик","_type":"localeString"},"products-popover":{"de":"die produkte","ru":"Продукты","_type":"localeString","en":"Products"},"introduction-popover":{"ru":"внедрения","_type":"localeString","en":"introduction"},"partners-popover":{"ru":"партнеры","_type":"localeString","en":"partners"},"update-profile-button":{"en":"Update profile","ru":"Обновить профиль","_type":"localeString"},"read-more-button":{"_type":"localeString","en":"Show more","ru":"Показать ещё"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"user-implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"categories":{"_type":"localeString","en":"Categories","ru":"Компетенции"},"description":{"en":"Description","ru":"Описание","_type":"localeString"},"role-user":{"_type":"localeString","en":"User","ru":"Пользователь"},"partnership-vendors":{"en":"Partnership with vendors","ru":"Партнерство с производителями","_type":"localeString"},"partnership-suppliers":{"ru":"Партнерство с поставщиками","_type":"localeString","en":"Partnership with suppliers"},"reference-bonus":{"_type":"localeString","en":"Bonus 4 reference","ru":"Бонус за референс"},"partner-status":{"ru":"Статус партнёра","_type":"localeString","en":"Partner status"},"country":{"ru":"Страна","_type":"localeString","en":"Country"},"partner-types":{"ru":"Типы партнеров","_type":"localeString","en":"Partner types"},"branch-popover":{"ru":"область деятельности","_type":"localeString","en":"branch"},"employees-popover":{"_type":"localeString","en":"number of employees","ru":"количество сотрудников"},"partnership-programme":{"en":"Partnership program","ru":"Партнерская программа","_type":"localeString"},"partner-discounts":{"en":"Partner discounts","ru":"Партнерские скидки","_type":"localeString"},"registered-discounts":{"ru":"Дополнительные преимущества за регистрацию сделки","_type":"localeString","en":"Additional benefits for registering a deal"},"additional-advantages":{"ru":"Дополнительные преимущества","_type":"localeString","en":"Additional Benefits"},"additional-requirements":{"_type":"localeString","en":"Partner level requirements","ru":"Требования к уровню партнера"},"certifications":{"ru":"Сертификация технических специалистов","_type":"localeString","en":"Certification of technical specialists"},"sales-plan":{"_type":"localeString","en":"Annual Sales Plan","ru":"Годовой план продаж"},"partners-vendors":{"_type":"localeString","en":"Partners-vendors","ru":"Партнеры-производители"},"partners-suppliers":{"ru":"Партнеры-поставщики","_type":"localeString","en":"Partners-suppliers"},"all-countries":{"en":"All countries","ru":"Все страны","_type":"localeString"},"supplied-products":{"en":"Supplied products","ru":"Поставляемые продукты","_type":"localeString"},"vendored-products":{"ru":"Производимые продукты","_type":"localeString","en":"Produced products"},"vendor-implementations":{"en":"Produced deployments","ru":"Производимые внедрения","_type":"localeString"},"supplier-implementations":{"_type":"localeString","en":"Supplied deployments","ru":"Поставляемые внедрения"},"show-all":{"ru":"Показать все","_type":"localeString","en":"Show all"},"not-yet-converted":{"_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later.","ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время."},"schedule-event":{"ru":"Pасписание событий","_type":"localeString","en":"Events schedule"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"register":{"ru":"Регистрация ","_type":"localeString","en":"Register"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"auth-message":{"ru":"Для просмотра ивентов компании авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString","en":"To view company events please log in or register on the sit."},"company-presentation":{"ru":"Презентация компании","_type":"localeString","en":"Company presentation"}},"header":{"help":{"de":"Hilfe","ru":"Помощь","_type":"localeString","en":"Help"},"how":{"de":"Wie funktioniert es","ru":"Как это работает","_type":"localeString","en":"How does it works"},"login":{"de":"Einloggen","ru":"Вход","_type":"localeString","en":"Log in"},"logout":{"ru":"Выйти","_type":"localeString","en":"Sign out"},"faq":{"de":"FAQ","ru":"FAQ","_type":"localeString","en":"FAQ"},"references":{"_type":"localeString","en":"Requests","de":"References","ru":"Мои запросы"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find-it-product":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"autoconfigurator":{"_type":"localeString","en":" Price calculator","ru":"Калькулятор цены"},"comparison-matrix":{"_type":"localeString","en":"Comparison Matrix","ru":"Матрица сравнения"},"roi-calculators":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"b4r":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference"},"business-booster":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"catalogs":{"ru":"Каталоги","_type":"localeString","en":"Catalogs"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"companies":{"_type":"localeString","en":"Companies","ru":"Компании"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"for-suppliers":{"en":"For suppliers","ru":"Поставщикам","_type":"localeString"},"blog":{"en":"Blog","ru":"Блог","_type":"localeString"},"agreements":{"_type":"localeString","en":"Deals","ru":"Сделки"},"my-account":{"_type":"localeString","en":"My account","ru":"Мой кабинет"},"register":{"en":"Register","ru":"Зарегистрироваться","_type":"localeString"},"comparison-deletion":{"ru":"Удаление","_type":"localeString","en":"Deletion"},"comparison-confirm":{"_type":"localeString","en":"Are you sure you want to delete","ru":"Подтвердите удаление"},"search-placeholder":{"ru":"Введите поисковый запрос","_type":"localeString","en":"Enter your search term"},"my-profile":{"_type":"localeString","en":"My profile","ru":"Мои данные"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"en":"IT catalogs","_type":"localeString"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"en":"Pitch Avatar","_type":"localeString"},"sub_it_catalogs":{"en":"Find IT product","_type":"localeString"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"_type":"localeString","en":"Create an avatar for the event"},"catalogs_new":{"_type":"localeString","en":"Products"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"_type":"localeString","en":"Our IT Catalogs"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"_type":"localeString","en":"Our Products"},"it_it_catalogs":{"_type":"localeString","en":"IT catalogs"}},"footer":{"copyright":{"en":"All rights reserved","de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString"},"company":{"de":"Über die Firma","ru":"О компании","_type":"localeString","en":"My Company"},"about":{"en":"About us","de":"Über uns","ru":"О нас","_type":"localeString"},"infocenter":{"de":"Infocenter","ru":"Инфоцентр","_type":"localeString","en":"Infocenter"},"tariffs":{"en":"Subscriptions","de":"Tarife","ru":"Тарифы","_type":"localeString"},"contact":{"_type":"localeString","en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами"},"marketplace":{"de":"Marketplace","ru":"Marketplace","_type":"localeString","en":"Marketplace"},"products":{"de":"Produkte","ru":"Продукты","_type":"localeString","en":"Products"},"compare":{"_type":"localeString","en":"Pick and compare","de":"Wähle und vergleiche","ru":"Подобрать и сравнить"},"calculate":{"de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString","en":"Calculate the cost"},"get_bonus":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference","de":"Holen Sie sich einen Rabatt"},"salestools":{"_type":"localeString","en":"Salestools","de":"Salestools","ru":"Salestools"},"automatization":{"_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов"},"roi_calcs":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators","de":"ROI-Rechner"},"matrix":{"en":"Comparison matrix","de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString"},"b4r":{"ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference"},"our_social":{"de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети","_type":"localeString","en":"Our social networks"},"subscribe":{"ru":"Подпишитесь на рассылку","_type":"localeString","en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an"},"subscribe_info":{"en":"and be the first to know about promotions, new features and recent software reviews","ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString"},"policy":{"ru":"Политика конфиденциальности","_type":"localeString","en":"Privacy Policy"},"user_agreement":{"_type":"localeString","en":"Agreement","ru":"Пользовательское соглашение "},"solutions":{"en":"Solutions","ru":"Возможности","_type":"localeString"},"find":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"quote":{"_type":"localeString","en":"Price calculator","ru":"Калькулятор цены"},"boosting":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"ru":"блог","_type":"localeString","en":"blog"},"pay4content":{"en":"we pay for content","ru":"платим за контент","_type":"localeString"},"categories":{"ru":"категории","_type":"localeString","en":"categories"},"showForm":{"ru":"Показать форму","_type":"localeString","en":"Show form"},"subscribe__title":{"ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!"},"subscribe__email-label":{"ru":"Email","_type":"localeString","en":"Email"},"subscribe__name-label":{"_type":"localeString","en":"Name","ru":"Имя"},"subscribe__required-message":{"ru":"Это поле обязательное","_type":"localeString","en":"This field is required"},"subscribe__notify-label":{"ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString","en":"Yes, please, notify me about news, events and propositions"},"subscribe__agree-label":{"_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data","ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*"},"subscribe__submit-label":{"ru":"Подписаться","_type":"localeString","en":"Subscribe"},"subscribe__email-message":{"en":"Please, enter the valid email","ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"_type":"localeString","en":"Last, first name","ru":"Имя Фамилия"},"subscribe__success":{"ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString","en":"You are successfully subscribed! Check you mailbox."},"subscribe__error":{"ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString","en":"Subscription is unsuccessful. Please, try again later."},"roi4presenter":{"de":"roi4presenter","ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"en":"Pitch Avatar","_type":"localeString"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"_type":"localeString","en":"Home","ru":"Главная"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"registration":{"_type":"localeString","en":"Registration","ru":"Регистрация"},"b2b-platform":{"_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers","ru":"Портал для покупателей, поставщиков и производителей ИТ"}},"comment-form":{"title":{"ru":"Оставить комментарий","_type":"localeString","en":"Leave comment"},"firstname":{"_type":"localeString","en":"First name","ru":"Имя"},"lastname":{"ru":"Фамилия","_type":"localeString","en":"Last name"},"company":{"ru":"Компания","_type":"localeString","en":"Company name"},"position":{"_type":"localeString","en":"Position","ru":"Должность"},"actual-cost":{"_type":"localeString","en":"Actual cost","ru":"Фактическая стоимость"},"received-roi":{"_type":"localeString","en":"Received ROI","ru":"Полученный ROI"},"saving-type":{"en":"Saving type","ru":"Тип экономии","_type":"localeString"},"comment":{"_type":"localeString","en":"Comment","ru":"Комментарий"},"your-rate":{"ru":"Ваша оценка","_type":"localeString","en":"Your rate"},"i-agree":{"ru":"Я согласен","_type":"localeString","en":"I agree"},"terms-of-use":{"ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString","en":"With user agreement and privacy policy"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"_type":"localeString","en":"{NAME} is required filed","ru":"{NAME} - это обязательное поле"}},"maintenance":{"title":{"ru":"На сайте проводятся технические работы","_type":"localeString","en":"Site under maintenance"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}}},"translationsStatus":{"company":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"company":{"meta":[{"content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg","name":"og:image"},{"name":"og:type","content":"website"}],"translatable_meta":[{"translations":{"en":"Company","ru":"Компания","_type":"localeString"},"name":"title"},{"name":"description","translations":{"ru":"Описание компании","_type":"localeString","en":"Company description"}},{"name":"keywords","translations":{"ru":"Ключевые слова для компании","_type":"localeString","en":"Company keywords"}}],"title":{"_type":"localeString","en":"ROI4CIO: Company","ru":"ROI4CIO: Компания"}}},"pageMetaDataStatus":{"company":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{"seclab":{"id":5319,"title":"Seclab","logoURL":"https://old.roi4cio.com/uploads/roi/company/Seclab_logo.jpg","alias":"seclab","address":"","roles":[{"id":2,"type":"supplier"},{"id":3,"type":"vendor"}],"description":" Seclab is a company that provides unique hardware defined security systems and solutions that can dramatically lower risk of internal or external attack for Operations Technology (OT) networks. Typical deployments may include those critical or traditional environments such as SCADA networks, Transportation, or Logistic where IoT, old systems, Internet and real-time, need to be combined. The technology is aimed to complement existing Firewalls to add a layer of robustness that does not exist today.\r\nSource: https://www.linkedin.com/company/seclab/about/","companyTypes":["supplier","vendor"],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{"59":{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png","alias":"scada-supervisory-control-and-data-acquisition"},"178":{"id":178,"title":"IoT - Internet of Things","description":"The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.\r\nThe definition of the Internet of things has evolved due to the convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation). and others all contribute to enabling the Internet of things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the "smart home", covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.\r\nThe IoT concept has faced prominent criticism, especially in regards to privacy and security concerns related to these devices and their intention of pervasive presence.","materialsDescription":"<span style=\"font-weight: bold;\">What is the Internet of Things (IoT)?</span>\r\nThe Internet of things refers to the network of things (physical objects) that can be connected to the Internet to collect and share data without human-to-human or human-to-computer interaction.\r\n<span style=\"font-weight: bold;\">Why is it called the Internet of Things?</span>\r\nThe term Internet of things was coined by Kevin Ashton in 1999. Stemming from Kevin Ashton’s experience with RFID, the term Internet of things originally described the concept of tagging every object in a person’s life with machine-readable codes. This would allow computers to easily manage and inventory all of these things.\r\nThe term IoT today has evolved to a much broader prospect. It now encompasses ubiquitous connectivity, devices, sensors, analytics, machine learning, and many other technologies.\r\n<span style=\"font-weight: bold;\">What is an IoT solution?</span>\r\nAn IoT solution is a combination of devices or other data sources, outfitted with sensors and Internet connected hardware to securely report information back to an IoT platform. This information is often a physical metric which can help users answer a question or solve a specific problem.\r\n<span style=\"font-weight: bold;\">What is an IoT Proof of Concept (PoC)?</span>\r\nThe purpose of a PoC is to experiment with a solution in your environment, collect data, and evaluate performance from a set timeline on a set budget. A PoC is a low-risk way to introduce IoT to an organization.\r\n<span style=\"font-weight: bold;\">What is an IoT cloud platform?</span>\r\nAn IoT platform provides users with one or more of these key elements — visualization tools, data security features, a workflow engine and a custom user interface to utilize the information collected from devices and other data sources in the field. These platforms are based in the cloud and can be accessed from anywhere.\r\n<span style=\"font-weight: bold;\">What is industrial equipment monitoring?</span>\r\nIndustrial equipment monitoring uses a network of connected sensors - either native to a piece of equipment or retrofitted - to inform owners/operators of a machine’s output, component conditions, need for service or impending failure. Industrial equipment monitoring is an IoT solution which can utilize an IoT platform to unify disparate data and enable decision-makers to respond to real-time data.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IoT_-_Internet_of_Things.png","alias":"iot-internet-of-things"},"461":{"id":461,"title":"Data Diode","description":"A unidirectional network (also referred to as a unidirectional gateway or data diode) is a network appliance or device that allows data to travel in only one direction. Data diodes can be found most commonly in high-security environments, such as defense, where they serve as connections between two or more networks of differing security classifications. Given the rise of Industrial IoT and Digitization, this technology can now be found at the industrial control level for such facilities as nuclear power plants, power generation and safety-critical systems like railway networks.<br />After years of development, the use of data diodes has increased, creating two variations:\r\n<ul><li>Data Diode: more often used to refer to the simple hardware version that physically enforces data to flow in only one direction.</li><li>Unidirectional Gateway: Used to describe a more sophisticated device that typically has a computer on both its critical and open side. Unidirectional gateways are a combination of hardware and software. The hardware (data diode) permits data to flow from one network to another but is physically unable to send any information at all back into the source network. The software replicates databases and emulates protocol servers and devices, enabling compatibility with existing network protocols, allowing organizations to gain their benefits without changes to their existing systems.</li></ul>\r\nOnce only commonly found in high-security military environments, unidirectional gateways are now becoming widely spread in sectors like Oil & Gas, water/wastewater, airplanes (between flight control units and in-flight entertainment systems), manufacturing and cloud connectivity for Industrial IoT primarily as a result of new regulations, increased demand and big industrial powerhouses. These industries/sectors and betting on this technology, which has had the effect of lowering the technology's core cost.","materialsDescription":"<span style=\"font-weight: bold;\">What Is Data Diode Technology & How Does It Work?</span>\r\nToday's business environment is increasingly digital and more vulnerable than ever to a cyber attack. Because of this, various network security technologies have been developed to protect organizational data and infrastructures. One of the most effective of these modern technologies is the data diode. Although it is one of the most effective network security tools available, you may not have heard of this technology and know little of what it does. Below, you'll find a description of what data diode technology is and how it works.\r\n<span style=\"font-weight: bold;\">What Is Data Diode Technology?</span>\r\nA data diode is a communication device that enables the safe, one-way transfer of data between segmented networks. Intelligent data diode design maintains physical and electrical separation of source and destination networks, establishing a non-routable, completely closed one-way data transfer protocol between networks. Intelligent data diodes effectively eliminate external points of entry to the sending system, preventing intruders and contagious elements from infiltrating the network. Securing all of a network’s data outflow with data diodes makes it impossible for an insecure or hostile network to pass along malware, access your system, or accidentally make harmful changes.\r\nData diodes allow companies to send process data in real time to information management systems for use in financial, customer service, and management decisions — without compromising the security of your network. This protects valuable information and network infrastructure from theft, destruction, tampering, and human error, mitigating the potential loss of thousands of dollars and countless hours of work.\r\n<span style=\"font-weight: bold;\">How Does Data Diode Technology Work?</span>\r\nA "diode" is an electronic component that only allows current to flow in one direction. Similarly, data diode technology lets information flow safely in only one direction, from secure areas to less secure systems, without permitting reverse access. A data diode also creates a physical barrier or “air gap” between the two points. This one-way connection prevents data leakage, eliminates the threat of malware, and fully protects the process control network. Moreover, a single data diode can handle data transfers from multiple servers or devices simultaneously, without bottlenecking.\r\n<span style=\"font-weight: bold;\">Where is it used?</span>\r\nIt’s typically used to guarantee information security or protection of critical digital systems, such as industrial control systems, from cyber attacks. While the use of these devices is common in high-security environments such as defense, where they serve as connections between two or more networks of differing security classifications, the technology is also being used to enforce one-way communications outbound from critical digital systems to untrusted networks connected to the Internet.\r\nThe physical nature of unidirectional networks only allows data to pass from one side of a network connection to another, and not the other way around. This can be from the "low side" or untrusted network to the "high side" or trusted network or vice versa. In the first case, data in the high side network is kept confidential and users retain access to data from the low side. Such functionality can be attractive if sensitive data is stored on a network which requires connectivity with the Internet: the high side can receive Internet data from the low side, but no data on the high side is accessible to Internet-based intrusion. In the second case, a safety-critical physical system can be made accessible for online monitoring, yet be insulated from all Internet-based attacks that might seek to cause physical damage. In both cases, the connection remains unidirectional even if both the low and the high network are compromised, as the security guarantees are physical in nature.\r\nThere are two general models for using unidirectional network connections. In the classical model, the purpose of the data diode is to prevent the export of classified data from a secure machine while allowing the import of data from an insecure machine. In the alternative model, the diode is used to allow export of data from a protected machine while preventing attacks on that machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Diode.png","alias":"data-diode"},"540":{"id":540,"title":"Security Hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png","alias":"security-hardware"},"542":{"id":542,"title":"UTM - Unified Threat Management Appliance","description":"A unified threat management (UTM) system is a type of network hardware appliance that protects businesses from security threats in a simplified way by combining and integrating multiple security services and features.<br />UTM devices are often packaged as network security appliances that can help protect networks against combined security threats, including malware and attacks that simultaneously target separate parts of the network.\r\nWhile UTM systems and next-generation firewalls (NGFWs) are sometimes comparable, UTM devices include added security features that NGFWs don't offer.\r\nUTM systems provide increased protection and visibility, as well as control over network security, which reduces complexity. UTM systems typically do this via inspection methods that address different types of threats.\r\nThese methods include:\r\n<ul><li>Flow-based inspection, also known as stream-based inspection, samples data that enters a UTM device, and then uses pattern matching to determine whether there is malicious content in the data flow.</li><li>Proxy-based inspection acts as a proxy to reconstruct the content entering a UTM device, and then executes a full inspection of the content to search for potential security threats. If the content is clean, the device sends the content to the user. However, if a virus or other security threat is detected, the device removes the questionable content, and then sends the file or webpage to the user.</li></ul>\r\nUTM devices provide a single platform for multiple network security functions and offer the benefit of a single interface for those security functions, as well as a single point of interface to monitor or analyze security logs for those different functions.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">How do UTM Appliances block a computer virus — or many viruses?</span>\r\nUnified threat management appliances have gained traction in the industry due to the emergence of blended threats, which are combinations of different types of malware and attacks that target separate parts of the network simultaneously. Preventing these types of attacks can be difficult when using separate appliances and vendors for each specific security task, as each aspect has to be managed and updated individually in order to remain current in the face of the latest forms of malware and cybercrime. By creating a single point of defense and providing a single console, UTM solutions make dealing with varied threats much easier.\r\nWhile unified threat management solutions do solve some network security issues, they aren't without some drawbacks, with the biggest one being that the single point of defense that an UTM appliance provides also creates a single point of failure. Because of this, many organizations choose to supplement their UTM device with a second software-based perimeter to stop any malware that got through or around the UTM firewall.\r\nWhat kind of companies use a Unified Threat Management system?\r\nUTM was originally for small to medium office businesses to simplify their security systems. But due to its almost universal applicability, it has since become popular with all sectors and larger enterprises. Developments in the technology have allowed it to scale up, opening UTM up to more types of businesses that are looking for a comprehensive gateway security solution.\r\n<span style=\"font-weight: bold;\">What security features does Unified Threat Management have?</span>\r\nAs previously mentioned, most UTM services include a firewall, antivirus and intrusion detection and prevention systems. But they also can include other services that provide additional security.\r\n<ul><li>Data loss prevention software to stop data from exfiltrating the business, which in turn prevents a data leak from occurring.</li><li>Security information and event management software for real-time monitoring of network health, which allows threats and points of weakness to be identified.</li><li>Bandwidth management to regulate and prioritize network traffic, ensuring everything is running smoothly without getting overwhelmed.</li><li>Email filtering to remove spam and dangerous emails before they reach the internal network, lowering the chance of a phishing or similar attack breaching your defenses.</li><li>Web filtering to prevent connections to dangerous or inappropriate sites from a machine on the network. This lowers the chance of infection through malvertising or malicious code on the page. It can also be used to increase productivity within a business, i.e. blocking or restricting social media, gaming sites, etc.</li><li>Application filtering to either a blacklist or whitelist which programs can run, preventing certain applications from communicating in and out of the network, i.e. Facebook messenger.</li></ul>\r\n<span style=\"font-weight: bold;\">What are the benefits of Unified Threat Management?</span>\r\n<ul><li><span style=\"font-weight: bold;\">Simplifies the network</span></li></ul>\r\nBy consolidating multiple security appliances and services into one, you can easily reduce the amount of time spent on maintaining many separate systems that may have become disorganized. This can also improve the performance of the network as there is less bloat. A smaller system also requires less energy and space to run.\r\n<ul><li><span style=\"font-weight: bold;\">Provides greater security and visibility</span></li></ul>\r\nA UTM system can include reporting tools, application filtering and virtual private network (VPN) capabilities, all of which defend your network from more types of threats or improve the existing security. Additionally, monitoring and analysis tools can help locate points of weakness or identify ongoing attacks.\r\n<ul><li><span style=\"font-weight: bold;\">Can defend from more sophisticated attacks</span></li></ul>\r\nBecause UTM defends multiple parts of a network it means that an attack targeting multiple points simultaneously can be repelled more easily. With cyber-attacks getting more sophisticated, having defenses that can match them is of greater importance.\r\nHaving several ways of detecting a threat also means a UTM system is more accurate at identifying potential attacks and preventing them from causing damage.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_UTM_Unified_Threat_Management_Appliance.png","alias":"utm-unified-threat-management-appliance"},"834":{"id":834,"title":"IoT - Internet of Things Security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png","alias":"iot-internet-of-things-security"},"852":{"id":852,"title":"Network security","description":" Network security consists of the policies and practices adopted to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs; conducting transactions and communications among businesses, government agencies and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: it secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.\r\nNetwork security starts with authentication, commonly with a username and a password. Since this requires just one detail authenticating the user name — i.e., the password—this is sometimes termed one-factor authentication. With two-factor authentication, something the user 'has' is also used (e.g., a security token or 'dongle', an ATM card, or a mobile phone); and with three-factor authentication, something the user 'is' is also used (e.g., a fingerprint or retinal scan).\r\nOnce authenticated, a firewall enforces access policies such as what services are allowed to be accessed by the network users. Though effective to prevent unauthorized access, this component may fail to check potentially harmful content such as computer worms or Trojans being transmitted over the network. Anti-virus software or an intrusion prevention system (IPS) help detect and inhibit the action of such malware. An anomaly-based intrusion detection system may also monitor the network like wireshark traffic and may be logged for audit purposes and for later high-level analysis. Newer systems combining unsupervised machine learning with full network traffic analysis can detect active network attackers from malicious insiders or targeted external attackers that have compromised a user machine or account.\r\nCommunication between two hosts using a network may be encrypted to maintain privacy.\r\nHoneypots, essentially decoy network-accessible resources, may be deployed in a network as surveillance and early-warning tools, as the honeypots are not normally accessed for legitimate purposes. Techniques used by the attackers that attempt to compromise these decoy resources are studied during and after an attack to keep an eye on new exploitation techniques. Such analysis may be used to further tighten security of the actual network being protected by the honeypot. A honeypot can also direct an attacker's attention away from legitimate servers. A honeypot encourages attackers to spend their time and energy on the decoy server while distracting their attention from the data on the real server. Similar to a honeypot, a honeynet is a network set up with intentional vulnerabilities. Its purpose is also to invite attacks so that the attacker's methods can be studied and that information can be used to increase network security. A honeynet typically contains one or more honeypots.","materialsDescription":" <span style=\"font-weight: bold;\">What is Network Security?</span>\r\nNetwork security is any action an organization takes to prevent malicious use or accidental damage to the network’s private data, its users, or their devices. The goal of network security is to keep the network running and safe for all legitimate users.\r\nBecause there are so many ways that a network can be vulnerable, network security involves a broad range of practices. These include:\r\n<ul><li><span style=\"font-weight: bold;\">Deploying active devices:</span> Using software to block malicious programs from entering, or running within, the network. Blocking users from sending or receiving suspicious-looking emails. Blocking unauthorized use of the network. Also, stopping the network's users accessing websites that are known to be dangerous.</li><li><span style=\"font-weight: bold;\">Deploying passive devices:</span> For instance, using devices and software that report unauthorized intrusions into the network, or suspicious activity by authorized users.</li><li><span style=\"font-weight: bold;\">Using preventative devices:</span> Devices that help identify potential security holes, so that network staff can fix them.</li><li><span style=\"font-weight: bold;\">Ensuring users follow safe practices:</span> Even if the software and hardware are set up to be secure, the actions of users can create security holes. Network security staff is responsible for educating members of the organization about how they can stay safe from potential threats.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is Network Security Important?</span>\r\nUnless it’s properly secured, any network is vulnerable to malicious use and accidental damage. Hackers, disgruntled employees, or poor security practices within the organization can leave private data exposed, including trade secrets and customers’ private details.\r\nLosing confidential research, for example, can potentially cost an organization millions of dollars by taking away competitive advantages it paid to gain. While hackers stealing customers’ details and selling them to be used in fraud, it creates negative publicity and public mistrust of the organization.\r\nThe majority of common attacks against networks are designed to gain access to information, by spying on the communications and data of users, rather than to damage the network itself.\r\nBut attackers can do more than steal data. They may be able to damage users’ devices or manipulate systems to gain physical access to facilities. This leaves the organization’s property and members at risk of harm.\r\nCompetent network security procedures keep data secure and block vulnerable systems from outside interference. This allows the network’s users to remain safe and focus on achieving the organization’s goals.\r\n<span style=\"font-weight: bold;\">Why Do I Need Formal Education to Run a Computer Network?</span>\r\nEven the initial setup of security systems can be difficult for those unfamiliar with the field. A comprehensive security system is made of many pieces, each of which needs specialized knowledge.\r\nBeyond setup, each aspect of security is constantly evolving. New technology creates new opportunities for accidental security leaks, while hackers take advantage of holes in security to do damage as soon as they find them. Whoever is in charge of the network’s security needs to be able to understand the technical news and changes as they happen, so they can implement safety strategies right away.\r\nProperly securing your network using the latest information on vulnerabilities helps minimize the risk that attacks will succeed. Security Week reported that 44% of breaches in 2014 came from exploits that were 2-4 years old.\r\nUnfortunately, many of the technical aspects of network security are beyond those who make hiring decisions. So, the best way an organization can be sure that their network security personnel are able to properly manage the threats is to hire staff with the appropriate qualifications.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_security.png","alias":"network-security"}},"branches":"Information Technology","companySizes":"1 to 50 Employees","companyUrl":"https://www.seclab-security.com/","countryCodes":["FRA"],"certifications":[],"isSeller":true,"isSupplier":true,"isVendor":true,"presenterCodeLng":"","seo":{"title":"Seclab","keywords":"","description":" Seclab is a company that provides unique hardware defined security systems and solutions that can dramatically lower risk of internal or external attack for Operations Technology (OT) networks. Typical deployments may include those critical or traditional env","og:title":"Seclab","og:description":" Seclab is a company that provides unique hardware defined security systems and solutions that can dramatically lower risk of internal or external attack for Operations Technology (OT) networks. Typical deployments may include those critical or traditional env","og:image":"https://old.roi4cio.com/uploads/roi/company/Seclab_logo.jpg"},"eventUrl":"","vendorPartners":[],"supplierPartners":[],"vendoredProducts":[{"id":4949,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Secure_Xchange_Network.png","logo":true,"scheme":false,"title":"Seclab Secure Xchange Network","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"seclab-secure-xchange-network","companyTitle":"Seclab","companyTypes":["supplier","vendor"],"companyId":5319,"companyAlias":"seclab","description":"<span style=\"font-weight: bold;\">FILE TRANSFER FEATURES:</span>\r\n<ul><li>Software and firmware secure updates</li><li>Operational Technology updates</li></ul>\r\n<span style=\"font-weight: bold;\">OTHER FEATURES:</span>\r\n<ul><li>Logs Transfers</li><li>Industrial Processes Supervision</li><li>Database Replication</li></ul>","shortDescription":"Provide your critical network with the highest end-to-end security.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":17,"sellingCount":7,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Seclab Secure Xchange Network","keywords":"","description":"<span style=\"font-weight: bold;\">FILE TRANSFER FEATURES:</span>\r\n<ul><li>Software and firmware secure updates</li><li>Operational Technology updates</li></ul>\r\n<span style=\"font-weight: bold;\">OTHER FEATURES:</span>\r\n<ul><li>Logs Transfers</li><li>Industrial P","og:title":"Seclab Secure Xchange Network","og:description":"<span style=\"font-weight: bold;\">FILE TRANSFER FEATURES:</span>\r\n<ul><li>Software and firmware secure updates</li><li>Operational Technology updates</li></ul>\r\n<span style=\"font-weight: bold;\">OTHER FEATURES:</span>\r\n<ul><li>Logs Transfers</li><li>Industrial P","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Secure_Xchange_Network.png"},"eventUrl":"","translationId":4950,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"suppliedProducts":[{"id":4949,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Secure_Xchange_Network.png","logo":true,"scheme":false,"title":"Seclab Secure Xchange Network","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"seclab-secure-xchange-network","companyTitle":"Seclab","companyTypes":["supplier","vendor"],"companyId":5319,"companyAlias":"seclab","description":"<span style=\"font-weight: bold;\">FILE TRANSFER FEATURES:</span>\r\n<ul><li>Software and firmware secure updates</li><li>Operational Technology updates</li></ul>\r\n<span style=\"font-weight: bold;\">OTHER FEATURES:</span>\r\n<ul><li>Logs Transfers</li><li>Industrial Processes Supervision</li><li>Database Replication</li></ul>","shortDescription":"Provide your critical network with the highest end-to-end security.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":17,"sellingCount":7,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Seclab Secure Xchange Network","keywords":"","description":"<span style=\"font-weight: bold;\">FILE TRANSFER FEATURES:</span>\r\n<ul><li>Software and firmware secure updates</li><li>Operational Technology updates</li></ul>\r\n<span style=\"font-weight: bold;\">OTHER FEATURES:</span>\r\n<ul><li>Logs Transfers</li><li>Industrial P","og:title":"Seclab Secure Xchange Network","og:description":"<span style=\"font-weight: bold;\">FILE TRANSFER FEATURES:</span>\r\n<ul><li>Software and firmware secure updates</li><li>Operational Technology updates</li></ul>\r\n<span style=\"font-weight: bold;\">OTHER FEATURES:</span>\r\n<ul><li>Logs Transfers</li><li>Industrial P","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Secure_Xchange_Network.png"},"eventUrl":"","translationId":4950,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"partnershipProgramme":null}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}