{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"company":{"role-vendor":{"_type":"localeString","en":"Vendor","ru":"Производитель"},"role-supplier":{"en":"Supplier","ru":"Поставщик","_type":"localeString"},"products-popover":{"ru":"Продукты","_type":"localeString","en":"Products","de":"die produkte"},"introduction-popover":{"ru":"внедрения","_type":"localeString","en":"introduction"},"partners-popover":{"ru":"партнеры","_type":"localeString","en":"partners"},"update-profile-button":{"ru":"Обновить профиль","_type":"localeString","en":"Update profile"},"read-more-button":{"en":"Show more","ru":"Показать ещё","_type":"localeString"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"user-implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"categories":{"en":"Categories","ru":"Компетенции","_type":"localeString"},"description":{"ru":"Описание","_type":"localeString","en":"Description"},"role-user":{"_type":"localeString","en":"User","ru":"Пользователь"},"partnership-vendors":{"ru":"Партнерство с производителями","_type":"localeString","en":"Partnership with vendors"},"partnership-suppliers":{"en":"Partnership with suppliers","ru":"Партнерство с поставщиками","_type":"localeString"},"reference-bonus":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus 4 reference"},"partner-status":{"_type":"localeString","en":"Partner status","ru":"Статус партнёра"},"country":{"ru":"Страна","_type":"localeString","en":"Country"},"partner-types":{"_type":"localeString","en":"Partner types","ru":"Типы партнеров"},"branch-popover":{"en":"branch","ru":"область деятельности","_type":"localeString"},"employees-popover":{"_type":"localeString","en":"number of employees","ru":"количество сотрудников"},"partnership-programme":{"en":"Partnership program","ru":"Партнерская программа","_type":"localeString"},"partner-discounts":{"ru":"Партнерские скидки","_type":"localeString","en":"Partner discounts"},"registered-discounts":{"en":"Additional benefits for registering a deal","ru":"Дополнительные преимущества за регистрацию сделки","_type":"localeString"},"additional-advantages":{"ru":"Дополнительные преимущества","_type":"localeString","en":"Additional Benefits"},"additional-requirements":{"en":"Partner level requirements","ru":"Требования к уровню партнера","_type":"localeString"},"certifications":{"en":"Certification of technical specialists","ru":"Сертификация технических специалистов","_type":"localeString"},"sales-plan":{"_type":"localeString","en":"Annual Sales Plan","ru":"Годовой план продаж"},"partners-vendors":{"_type":"localeString","en":"Partners-vendors","ru":"Партнеры-производители"},"partners-suppliers":{"_type":"localeString","en":"Partners-suppliers","ru":"Партнеры-поставщики"},"all-countries":{"ru":"Все страны","_type":"localeString","en":"All countries"},"supplied-products":{"ru":"Поставляемые продукты","_type":"localeString","en":"Supplied products"},"vendored-products":{"ru":"Производимые продукты","_type":"localeString","en":"Produced products"},"vendor-implementations":{"en":"Produced deployments","ru":"Производимые внедрения","_type":"localeString"},"supplier-implementations":{"en":"Supplied deployments","ru":"Поставляемые внедрения","_type":"localeString"},"show-all":{"en":"Show all","ru":"Показать все","_type":"localeString"},"not-yet-converted":{"en":"Data is moderated and will be published soon. Please, try again later.","ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString"},"schedule-event":{"en":"Events schedule","ru":"Pасписание событий","_type":"localeString"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"register":{"ru":"Регистрация ","_type":"localeString","en":"Register"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"auth-message":{"en":"To view company events please log in or register on the sit.","ru":"Для просмотра ивентов компании авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString"},"company-presentation":{"ru":"Презентация компании","_type":"localeString","en":"Company presentation"}},"header":{"help":{"de":"Hilfe","ru":"Помощь","_type":"localeString","en":"Help"},"how":{"_type":"localeString","en":"How does it works","de":"Wie funktioniert es","ru":"Как это работает"},"login":{"de":"Einloggen","ru":"Вход","_type":"localeString","en":"Log in"},"logout":{"_type":"localeString","en":"Sign out","ru":"Выйти"},"faq":{"_type":"localeString","en":"FAQ","de":"FAQ","ru":"FAQ"},"references":{"de":"References","ru":"Мои запросы","_type":"localeString","en":"Requests"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find-it-product":{"en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта","_type":"localeString"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"_type":"localeString","en":"Comparison Matrix","ru":"Матрица сравнения"},"roi-calculators":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"b4r":{"_type":"localeString","en":"Bonus for reference","ru":"Бонус за референс"},"business-booster":{"_type":"localeString","en":"Business boosting","ru":"Развитие бизнеса"},"catalogs":{"ru":"Каталоги","_type":"localeString","en":"Catalogs"},"products":{"_type":"localeString","en":"Products","ru":"Продукты"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"for-suppliers":{"_type":"localeString","en":"For suppliers","ru":"Поставщикам"},"blog":{"ru":"Блог","_type":"localeString","en":"Blog"},"agreements":{"_type":"localeString","en":"Deals","ru":"Сделки"},"my-account":{"_type":"localeString","en":"My account","ru":"Мой кабинет"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"comparison-deletion":{"en":"Deletion","ru":"Удаление","_type":"localeString"},"comparison-confirm":{"en":"Are you sure you want to delete","ru":"Подтвердите удаление","_type":"localeString"},"search-placeholder":{"ru":"Введите поисковый запрос","_type":"localeString","en":"Enter your search term"},"my-profile":{"ru":"Мои данные","_type":"localeString","en":"My profile"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"en":"IT catalogs","_type":"localeString"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"_type":"localeString","en":"Find IT product"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"en":"Create an avatar for the event","_type":"localeString"},"catalogs_new":{"_type":"localeString","en":"Products"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"en":"Our IT Catalogs","_type":"localeString"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"en":"Our Products","_type":"localeString"},"it_it_catalogs":{"_type":"localeString","en":"IT catalogs"}},"footer":{"copyright":{"ru":"Все права защищены","_type":"localeString","en":"All rights reserved","de":"Alle rechte vorbehalten"},"company":{"en":"My Company","de":"Über die Firma","ru":"О компании","_type":"localeString"},"about":{"_type":"localeString","en":"About us","de":"Über uns","ru":"О нас"},"infocenter":{"ru":"Инфоцентр","_type":"localeString","en":"Infocenter","de":"Infocenter"},"tariffs":{"_type":"localeString","en":"Subscriptions","de":"Tarife","ru":"Тарифы"},"contact":{"de":"Kontaktiere uns","ru":"Связаться с нами","_type":"localeString","en":"Contact us"},"marketplace":{"ru":"Marketplace","_type":"localeString","en":"Marketplace","de":"Marketplace"},"products":{"ru":"Продукты","_type":"localeString","en":"Products","de":"Produkte"},"compare":{"en":"Pick and compare","de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString"},"calculate":{"en":"Calculate the cost","de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString"},"get_bonus":{"_type":"localeString","en":"Bonus for reference","de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс"},"salestools":{"ru":"Salestools","_type":"localeString","en":"Salestools","de":"Salestools"},"automatization":{"de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов","_type":"localeString","en":"Settlement Automation"},"roi_calcs":{"en":"ROI calculators","de":"ROI-Rechner","ru":"ROI калькуляторы","_type":"localeString"},"matrix":{"de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString","en":"Comparison matrix"},"b4r":{"ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference"},"our_social":{"_type":"localeString","en":"Our social networks","de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети"},"subscribe":{"en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString"},"subscribe_info":{"_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews","ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта"},"policy":{"en":"Privacy Policy","ru":"Политика конфиденциальности","_type":"localeString"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"quote":{"ru":"Калькулятор цены","_type":"localeString","en":"Price calculator"},"boosting":{"_type":"localeString","en":"Business boosting","ru":"Развитие бизнеса"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"en":"blog","ru":"блог","_type":"localeString"},"pay4content":{"en":"we pay for content","ru":"платим за контент","_type":"localeString"},"categories":{"_type":"localeString","en":"categories","ru":"категории"},"showForm":{"_type":"localeString","en":"Show form","ru":"Показать форму"},"subscribe__title":{"_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!","ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!"},"subscribe__email-label":{"en":"Email","ru":"Email","_type":"localeString"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"en":"This field is required","ru":"Это поле обязательное","_type":"localeString"},"subscribe__notify-label":{"en":"Yes, please, notify me about news, events and propositions","ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString"},"subscribe__agree-label":{"ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data"},"subscribe__submit-label":{"ru":"Подписаться","_type":"localeString","en":"Subscribe"},"subscribe__email-message":{"_type":"localeString","en":"Please, enter the valid email","ru":"Пожалуйста, введите корректный адрес электронной почты"},"subscribe__email-placeholder":{"en":"username@gmail.com","ru":"username@gmail.com","_type":"localeString"},"subscribe__name-placeholder":{"ru":"Имя Фамилия","_type":"localeString","en":"Last, first name"},"subscribe__success":{"ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString","en":"You are successfully subscribed! Check you mailbox."},"subscribe__error":{"ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString","en":"Subscription is unsuccessful. Please, try again later."},"roi4presenter":{"en":"Roi4Presenter","de":"roi4presenter","ru":"roi4presenter","_type":"localeString"},"it_catalogs":{"en":"IT catalogs","_type":"localeString"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"en":"Bonus4Reference","_type":"localeString"}},"breadcrumbs":{"home":{"en":"Home","ru":"Главная","_type":"localeString"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"en":"Products","ru":"Продукты","_type":"localeString"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"login":{"_type":"localeString","en":"Login","ru":"Вход"},"registration":{"ru":"Регистрация","_type":"localeString","en":"Registration"},"b2b-platform":{"ru":"Портал для покупателей, поставщиков и производителей ИТ","_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers"}},"comment-form":{"title":{"en":"Leave comment","ru":"Оставить комментарий","_type":"localeString"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"en":"Last name","ru":"Фамилия","_type":"localeString"},"company":{"ru":"Компания","_type":"localeString","en":"Company name"},"position":{"ru":"Должность","_type":"localeString","en":"Position"},"actual-cost":{"ru":"Фактическая стоимость","_type":"localeString","en":"Actual cost"},"received-roi":{"_type":"localeString","en":"Received ROI","ru":"Полученный ROI"},"saving-type":{"ru":"Тип экономии","_type":"localeString","en":"Saving type"},"comment":{"en":"Comment","ru":"Комментарий","_type":"localeString"},"your-rate":{"en":"Your rate","ru":"Ваша оценка","_type":"localeString"},"i-agree":{"en":"I agree","ru":"Я согласен","_type":"localeString"},"terms-of-use":{"_type":"localeString","en":"With user agreement and privacy policy","ru":"С пользовательским соглашением и политикой конфиденциальности"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"ru":"{NAME} - это обязательное поле","_type":"localeString","en":"{NAME} is required filed"}},"maintenance":{"title":{"ru":"На сайте проводятся технические работы","_type":"localeString","en":"Site under maintenance"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}}},"translationsStatus":{"company":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"company":{"title":{"_type":"localeString","en":"ROI4CIO: Company","ru":"ROI4CIO: Компания"},"meta":[{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"},{"content":"website","name":"og:type"}],"translatable_meta":[{"name":"title","translations":{"en":"Company","ru":"Компания","_type":"localeString"}},{"name":"description","translations":{"ru":"Описание компании","_type":"localeString","en":"Company description"}},{"translations":{"ru":"Ключевые слова для компании","_type":"localeString","en":"Company keywords"},"name":"keywords"}]}},"pageMetaDataStatus":{"company":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{"siga-ot-solutions":{"id":5142,"title":"SIGA OT Solutions","logoURL":"https://old.roi4cio.com/uploads/roi/company/SIGA_logo.png","alias":"siga-ot-solutions","address":"","roles":[{"id":2,"type":"supplier"},{"id":3,"type":"vendor"}],"description":"SIGA is cyber security and OT security company that develops and markets solutions for Industrial Control Systems (ICS) and Supervisory Control and Data Acquisition (SCADA) systems used in critical infrastructures and industrial processes. Their proprietary device-based solution provides virtually infallible and uncircumventable early warning in the event of an anomaly – whether caused by a cyber attack or a system malfunction. This enables the operator to intervene before people are harmed or physical damage is caused to equipment or the environment in which it operates, in addition to reducing the risk of unexpected operational expenses caused by equipment damage, collateral damage, higher insurance premiums, and more, with no negative impact on operational safety, efficiency, and reliability. SIGA is led by an experienced team that served in senior positions in various government offices that shape cybersecurity policy, as well as a technical team well versed in electrical engineering, mathematics, machine learning, and other relevant fields.","companyTypes":["supplier","vendor"],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{"24":{"id":24,"title":"DLP - Data Leak Prevention","description":"Data leak prevention (DLP) is a suite of technologies aimed at stemming the loss of sensitive information that occurs in enterprises across the globe. By focusing on the location, classification and monitoring of information at rest, in use and in motion, this solution can go far in helping an enterprise get a handle on what information it has, and in stopping the numerous leaks of information that occur each day. DLP is not a plug-and-play solution. The successful implementation of this technology requires significant preparation and diligent ongoing maintenance. Enterprises seeking to integrate and implement DLP should be prepared for a significant effort that, if done correctly, can greatly reduce risk to the organization. Those implementing the solution must take a strategic approach that addresses risks, impacts and mitigation steps, along with appropriate governance and assurance measures.","materialsDescription":" <span style=\"font-weight: bold;\">How to protect the company from internal threats associated with leakage of confidential information?</span>\r\nIn order to protect against any threat, you must first realize its presence. Unfortunately, not always the management of companies is able to do this if it comes to information security threats. The key to successfully protecting against information leaks and other threats lies in the skillful use of both organizational and technical means of monitoring personnel actions.\r\n<span style=\"font-weight: bold;\">How should the personnel management system in the company be organized to minimize the risks of leakage of confidential information?</span>\r\nA company must have a special employee responsible for information security, and a large department must have a department directly reporting to the head of the company.\r\n<span style=\"font-weight: bold;\">Which industry representatives are most likely to encounter confidential information leaks?</span>\r\nMore than others, representatives of such industries as industry, energy, and retail trade suffer from leaks. Other industries traditionally exposed to leakage risks — banking, insurance, IT — are usually better at protecting themselves from information risks, and for this reason they are less likely to fall into similar situations.\r\n<span style=\"font-weight: bold;\">What should be adequate measures to protect against leakage of information for an average company?</span>\r\nFor each organization, the question of protection measures should be worked out depending on the specifics of its work, but developing information security policies, instructing employees, delineating access to confidential data and implementing a DLP system are necessary conditions for successful leak protection for any organization. Among all the technical means to prevent information leaks, the DLP system is the most effective today, although its choice must be taken very carefully to get the desired result. So, it should control all possible channels of data leakage, support automatic detection of confidential information in outgoing traffic, maintain control of work laptops that temporarily find themselves outside the corporate network...\r\n<span style=\"font-weight: bold;\">Is it possible to give protection against information leaks to outsourcing?</span>\r\nFor a small company, this may make sense because it reduces costs. However, it is necessary to carefully select the service provider, preferably before receiving recommendations from its current customers.\r\n<span style=\"font-weight: bold;\">What data channels need to be monitored to prevent leakage of confidential information?</span>\r\nAll channels used by employees of the organization - e-mail, Skype, HTTP World Wide Web protocol ... It is also necessary to monitor the information recorded on external storage media and sent to print, plus periodically check the workstation or laptop of the user for files that are there saying should not.\r\n<span style=\"font-weight: bold;\">What to do when the leak has already happened?</span>\r\nFirst of all, you need to notify those who might suffer - silence will cost your reputation much more. Secondly, you need to find the source and prevent further leakage. Next, you need to assess where the information could go, and try to somehow agree that it does not spread further. In general, of course, it is easier to prevent the leakage of confidential information than to disentangle its consequences.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Leak_Prevention.png","alias":"dlp-data-leak-prevention"},"25":{"id":25,"title":"Web filtering","description":" <span style=\"font-weight: bold; \">Web filtering</span> is a technology that stops users from viewing certain URLs or websites by preventing their browsers from loading pages from these sites. Web filters are made in different ways and deliver various solutions for individual, family, institutional or enterprise use.\r\nIn general, Web filters work in two distinct ways. They can <span style=\"font-weight: bold; \">block content</span> as determined by quality of the site, by consulting known lists which document and categorize popular pages across all genres of content. Or, they can <span style=\"font-weight: bold; \">evaluate the content</span> of the page live and block it accordingly. Many Web filter tools work off of a constantly updated URL database that shows which websites and domains are associated with hosting malware, phishing, viruses or other tools for harmful activities.\r\n<span style=\"font-weight: bold;\">Web Filtering Types.</span> <span style=\"font-style: italic;\">Blacklist & Whitelist Filters:</span>when using blacklists, an administrator (which might be a parent) manually enters all websites that are deemed inappropriate into the program, and those sites are subsequently blocked. Whitelists are used in exactly the same way, only in reverse – i.e. URLs are manually entered onto a whitelist, and all other websites are then off-limits.\r\n<span style=\"font-style: italic; \">Keyword And Content Filters: </span>this type of filtering is in many ways similar to black and whitelist filtering, though with a slightly broader scope. Keyword and content filters will filter out websites that contain specific keywords or predefined content (such as pornography, for example).\r\nSome website filtering software also provides reporting so that the installer can see what kind of traffic is being filtered and who has requested it. Some products provide soft blocking (in which a warning page is sent to the user instead of the requested page while still allowing access to the page) and an override capability that allows an administrator to unlock a page. \r\n<span style=\"font-weight: bold; \">Web Filtering Software for Business.</span> Most organizations have moved to cloud based-applications, making browsers a tool that employees use on a daily basis to access work. Browsers have become a conduit to not only the cloud, but also to immeasurable malware and distractions hosted on the web. In order to ensure that browsers do not bring in malicious traffic, web filtering software becomes necessary.\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">What is Enterprise Web Filtering Software?</h1>\r\nAntivirus and antimalware software are required to detect malicious programs that has been downloaded, but it is now important for enterprise web filtering software to be installed. Content filtering software is an invaluable protection against a wide range of web-borne threats. Rather than allowing malware and ransomware to be downloaded, it prevents end users from visiting websites that contain these malicious threats.\r\nInternet filtering software is also one of the most effective ways to neutralize the threat from phishing. Phishing is a technique used by cybercriminals to gain access to sensitive user information. Phishers trick end users into revealing login credentials or downloading malicious software onto their computers.\r\nPhishing involves sophisticated social engineering techniques to fool end users into visiting malicious websites. If employees can be convinced to reveal sensitive information or download ransomware or malware, cybercriminals can easily bypass even the most sophisticated of cybersecurity defenses.\r\n<h1 class=\"align-center\">What is URL Filtering?</h1>\r\nURL filtering is a type of network filtering software that helps businesses control their users’ and guests’ ability to access certain content on the web. If you’ve ever gotten a “block” page while surfing the internet at the office, then your company is using web filtering.\r\nSome employers may only be concerned about blocking access to websites that are known to spread malware or steal information. Other businesses may block content they find inappropriate, such as adult websites or sites that promote violence, or content that violates compliance regulations. They may also choose to activate web protection software to block social media or video streaming sites to minimize drains on productivity and network bandwidth.\r\nTypically, URL filtering software is provided by a cybersecurity service, firewall, or router. Each of these may use a variety of threat intelligence sources to determine which websites fit into their chosen acceptable and unacceptable categories. That’s where highly reliable web reputation services are most valuable. Sources that have extensive web histories and real-time active crawling services will provide the most accurate content determinations.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_filtering.png","alias":"web-filtering"},"40":{"id":40,"title":"Endpoint security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png","alias":"endpoint-security"},"41":{"id":41,"title":"Antispam","description":"In each system, which involves the communication of users, there is always the problem of spam, or the mass mailing of unsolicited emails, which is solved using the antispam system. An antispam system is installed to catch and filter spam at different levels. Spam monitoring and identification are relevant on corporate servers that support corporate email, here the antispam system filters spam on the server before it reaches the mailbox. There are many programs that help to cope with this task, but not all of them are equally useful. The main objective of such programs is to stop sending unsolicited letters, however, the methods of assessing and suppressing such actions can be not only beneficial but also detrimental to your organization. So, depending on the rules and policies of mail servers, your server, or even a domain, may be blacklisted and the transfer of letters will be limited through it, and you may not even be warned about it.\r\nThe main types of installation and use of anti-spam systems:\r\n<ul><li>installation of specialized equipment, a gateway that filters mail before it reaches the server;</li><li>use of external antispam systems for analyzing emails and content;</li><li>setting up an antispam system with the ability to learn on the mail server itself;</li><li>installation of spam filtering software on the client’s computer.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Anti-spam technologies:</span>\r\n<span style=\"font-weight: bold;\">Heuristic analysis</span>\r\nExtremely complex, highly intelligent technology for empirical analysis of all parts of a message: header fields, message bodies, etc. Not only the message itself is analyzed. The heuristic analyzer is constantly being improved, new rules are continuously added to it. It works “ahead of the curve” and makes it possible to recognize still unknown varieties of spam of a new generation before the release of available updates.\r\n<span style=\"font-weight: bold;\">Filtering counteraction</span>\r\nThis is one of the most advanced and effective anti-spam technologies. It is to recognize the tricks resorted to by spammers to bypass anti-spam filters.\r\n<span style=\"font-weight: bold;\">HTML based analysis</span>\r\nHTML code comparable to samples of HTML signatures in antispam. Such a comparison, using the available data on the size of typical spam images, protects users from spam messages using HTML-code, which are often included in the online image.\r\n<span style=\"font-weight: bold;\">Spam detection technology for message envelopes</span>\r\nDetection of fakes in the "stamps" of SMTP-servers and in other elements of the e-mail header is the newest direction in the development of anti-spam methods. Email addresses can not be trusted. Fake emails contain more than just spam. For example, anonymous and even threats. Technologies of various anti-spam systems allow you to send such messages. Thus, it provides not only the economic movement, but also the protection of employees.\r\n<span style=\"font-weight: bold;\">Semantic analysis</span>\r\nMeaning in words and phrases is compared with typical spam vocabulary. Comparison of provisions for a special dictionary, for expression and symbols.\r\n<span style=\"font-weight: bold;\">Anti-camming technology</span>\r\nScamming is probably the most dangerous type of spam. All of them have the so-called "Nigerian letters", reports of winnings in the lottery, casino, fake letters and credit services.\r\n<span style=\"font-weight: bold;\">Technical spam filtering</span>\r\nAutomatic notification of e-mail - bounce-messages - to inform users about the malfunction of the postal system (for example, non-delivery of address letters). Attackers can use similar messages. Under the guise of a technical notification, computer service or ordinary spam can penetrate the computer.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Antispam.png","alias":"antispam"},"42":{"id":42,"title":"UTM - Unified threat management","description":"<span style=\"font-weight: bold; \">UTM (Unified Threat Management)</span> system is a type of network hardware appliance, virtual appliance or cloud service that protects businesses from security threats in a simplified way by combining and integrating multiple security services and features.\r\nUnified threat management <span style=\"font-weight: bold; \">devices </span>are often packaged as network security appliances that can help protect networks against combined security threats, including malware and attacks that simultaneously target separate parts of the network.\r\nUTM <span style=\"font-weight: bold; \">cloud services</span> and virtual network appliances are becoming increasingly popular for network security, especially for smaller and medium-sized businesses. They both do away with the need for on-premises network security appliances, yet still provide centralized control and ease of use for building network security defense in depth. While UTM systems and <span style=\"font-weight: bold; \">next-generation firewalls (NGFWs)</span> are sometimes comparable, unified threat management device includes added security features that NGFWs don't offer.\r\nOriginally developed to fill the network security gaps left by traditional firewalls, NGFWs usually include application intelligence and intrusion prevention systems, as well as denial-of-service protection. Unified threat management devices offer multiple layers of network security, including next-generation firewalls, intrusion detection/prevention systems, antivirus, virtual private networks (VPN), spam filtering and URL filtering for web content.\r\nUnified threat management appliance has gained traction in the industry due to the emergence of blended threats, which are combinations of different types of malware and attacks that target separate parts of the network simultaneously. By creating a single point of defense and providing a single console, unified security management make dealing with varied threats much easier.\r\nUnified threat management products provide increased protection and visibility, as well as control over network security, reducing complexity. Unified threat management system typically does this via inspection methods that address different types of threats. These methods include:\r\n<ul><li><span style=\"font-weight: bold; \">Flow-based inspection,</span> also known as stream-based inspection, samples data that enters a UTM device, and then uses pattern matching to determine whether there is malicious content in the data flow.</li><li> <span style=\"font-weight: bold; \">Proxy-based inspection</span> acts as a proxy to reconstruct the content entering a UTM device, and then executes a full inspection of the content to search for potential security threats. If the content is clean, the device sends the content to the user. However, if a virus or other security threat is detected, the device removes the questionable content, and then sends the file or webpage to the user.</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> How UTM is deployed?</h1>\r\nBusinesses can implement UTM as a UTM appliance that connects to a company's network, as a software program running on an existing network server, or as a service that works in a cloud environment.\r\nUTMs are particularly useful in organizations that have many branches or retail outlets that have traditionally used dedicated WAN, but are increasingly using public internet connections to the headquarters/data center. Using a UTM in these cases gives the business more insight and better control over the security of those branch or retail outlets.\r\nBusinesses can choose from one or more methods to deploy UTM to the appropriate platforms, but they may also find it most suitable to select a combination of platforms. Some of the options include installing unified threat management software on the company's servers in a data center; using software-based UTM products on cloud-based servers; using traditional UTM hardware appliances that come with preintegrated hardware and software; or using virtual appliances, which are integrated software suites that can be deployed in virtual environments.\r\n<h1 class=\"align-center\">Benefits of Using a Unified Threat Management Solution</h1>\r\nUTM solutions offer unique benefits to small and medium businesses that are looking to enhance their security programs. Because the capabilities of multiple specialized programs are contained in a single appliance, UTM threat management reduces the complexity of a company’s security system. Similarly, having one program that controls security reduces the amount of training that employees receive when being hired or migrating to a new system and allows for easy management in the future. This can also save money in the long run as opposed to having to buy multiple devices.\r\nSome UTM solutions provide additional benefits for companies in strictly regulated industries. Appliances that use identity-based security to report on user activity while enabling policy creation based on user identity meet the requirements of regulatory compliance such as HIPPA, CIPA, and GLBA that require access controls and auditing that meet control data leakage.\r\nUTM solutions also help to protect networks against combined threats. These threats consist of different types of malware and attacks that target separate parts of the network simultaneously. When using separate appliances for each security wall, preventing these combined attacks can be difficult. This is because each security wall has to be managed individually in order to remain up-to-date with the changing security threats. Because it is a single point of defense, UTM’s make dealing with combined threats easier.\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_UTM.jpg","alias":"utm-unified-threat-management"},"43":{"id":43,"title":"Data Encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png","alias":"data-encryption"},"45":{"id":45,"title":"SIEM - Security Information and Event Management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png","alias":"siem-security-information-and-event-management"},"47":{"id":47,"title":"Access Control Systems","description":"Access control is a security technique that regulates who or what can view or use resources in a computing environment. It is a fundamental concept in security that minimizes risk to the business or organization.\r\nThere are two types of access control: physical and logical. Physical access control limits access to campuses, buildings, rooms and physical IT assets. Logical access control limits connections to computer networks, system files and data.\r\nTo secure a facility, organizations use electronic access control systems that rely on user credentials, access card readers, auditing and reports to track employee access to restricted business locations and proprietary areas, such as data centers. Some of these systems incorporate access control panels to restrict entry to rooms and buildings as well as alarms and lockdown capabilities to prevent unauthorized access or operations.\r\nAccess control systems perform identification authentication and authorization of users and entities by evaluating required login credentials that can include passwords, personal identification numbers (PINs), biometric scans, security tokens or other authentication factors. Multifactor authentication, which requires two or more authentication factors, is often an important part of layered defense to protect access control systems.\r\nThese security controls work by identifying an individual or entity, verifying that the person or application is who or what it claims to be, and authorizing the access level and set of actions associated with the username or IP address. Directory services and protocols, including the Local Directory Access Protocol (LDAP) and the Security Assertion Markup Language (SAML), provide access controls for authenticating and authorizing users and entities and enabling them to connect to computer resources, such as distributed applications and web servers.\r\nOrganizations use different access control models depending on their compliance requirements and the security levels of information technology they are trying to protect.\r\nThe goal of access control is to minimize the risk of unauthorized access to physical and logical systems. Access control is a fundamental component of security compliance programs that ensures security technology and access control policies are in place to protect confidential information, such as customer data. Most organizations have infrastructure and procedures that limit access to networks, computer systems, applications, files and sensitive data, such as personally identifiable information and intellectual property.\r\nAccess control systems are complex and can be challenging to manage in dynamic IT environments that involve on-premises systems and cloud services. After some high-profile breaches, technology vendors have shifted away from single sign-on systems to unified access management, which offers access controls for on-premises and cloud environments.\r\nAccess control is a process that is integrated into an organization's IT environment. It can involve identity and access management systems. These systems provide access control software, a user database, and management tools for access control policies, auditing and enforcement.\r\nWhen a user is added to an access management system, system administrators use an automated provisioning system to set up permissions based on access control frameworks, job responsibilities and workflows.\r\nThe best practice of "least privilege" restricts access to only resources that an employee requires to perform their immediate job functions.\r\nA common security issue is failure to revoke credentials and access to systems and data when an individual moves into a different job internally or leaves the company.","materialsDescription":"<span style=\"font-weight: bold;\">What is an ACS?</span>\r\nInterpretation of the abbreviation "ACS" - access control system. Includes hardware and software.\r\n<span style=\"font-weight: bold;\">How does ACS work?</span>\r\nThe system allows only people and cars that it “recognizes” into the territory to be able to identify.\r\nFor access we use contact and contactless keys, cards, fingerprints, secret code. Doorphones unlock the locks manually - when you click the "Open" button.\r\nThe intellectual access control system generates daily reports for each employee. Upon arrival at work, the staff opens the door with personal cards or puts the cards to the reader at the reception. We fix the time of breaks and the end of the working day.\r\n<span style=\"font-weight: bold;\">What are the types of access control?</span>\r\nAccess control systems are divided into autonomous and networked:\r\n<span style=\"font-style: italic;\">Autonomous access control systems</span> are not connected to the computer. Suitable for small offices, cafes, shops, hotels. Autonomous systems are used on sites with 1–2 inputs.\r\n<span style=\"font-style: italic;\">Network access control systems</span> are connected to a computer. Such systems serve complex objects: business centers, manufacturing, research institutes, hospitals, etc.\r\n<span style=\"font-weight: bold;\">What is the access control system?</span>\r\nMain components:\r\n1. Blocking devices. Electromagnetic and electromechanical locks, barriers, gates, etc.\r\n2. Identifiers:\r\n<ul><li>Touch Memory contact keys - standard intercom keys;</li><li>Touch Memory Access Keys;</li><li>RFID contactless keys;</li><li>Biometric sensor - fingerprint access;</li><li>Keyboard for entering code.</li></ul>\r\n3. Readers. Card readers, scanners, etc.\r\n4. Controllers. Unlock the blocking device automatically or manually. Manual input is used in intercoms.\r\n<span style=\"font-weight: bold;\">Is it possible to combine an access control system with a security alarm?</span>\r\nThe unified access control system + security alarm system responds to an attempt to illegally pass through the access control point: open the door, unlock the turnstile. The alarm signal instantly arrives on the control panel of the security company, mobile phone manager or another responsible person.\r\n<span style=\"font-weight: bold;\">Why combine access control with video surveillance?</span>\r\nWhen integrating with video surveillance, you get video recordings of all passes through access control points. Information from the cameras is transmitted to the monitors of the security in real time - the situation at the facility is easy to control.\r\n<span style=\"font-weight: bold;\">Why do you need ACS maintenance?</span>\r\nMaintenance prolongs the life of the system. The equipment is inspected once a month, if necessary, fix minor problems and replace components. You save on capital repairs at the expense of preventive.<br /> ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Access_Control_Systems.png","alias":"access-control-systems"},"49":{"id":49,"title":"VPN - Virtual Private Network","description":"A <span style=\"font-weight: bold; \">virtual private network (VPN)</span> extends a private network across a public network, and enables users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network. Applications running on a computing device, e.g. a laptop, desktop, smartphone, across a VPN may therefore benefit from the functionality, security, and management of the private network. Encryption is a common though not an inherent part of a VPN connection.\r\nAt its most basic level, VPN tunneling creates a point-to-point connection that cannot be accessed by unauthorized users. To actually create the VPN tunnel, the endpoint device needs to be running a VPN client (software application) locally or in the cloud. The VPN client runs in the background and is not noticeable to the end user unless there are performance issues.\r\nThe performance of a VPN can be affected by a variety of factors, among them the speed of users' internet connections, the types of protocols an internet service provider may use and the type of encryption the VPN uses. In the enterprise, performance can also be affected by poor quality of service (QoS) outside the control of an organization's information technology (IT) department.\r\nConsumers use a virtual private network software to protect their online activity and identity. By using an anonymous VPN service, a user's Internet traffic and data remain encrypted, which prevents eavesdroppers from sniffing Internet activity. Personal VPN services are especially useful when accessing public Wi-Fi hotspots because the public wireless services might not be secure. In addition to public Wi-Fi security, it also provides consumers with uncensored Internet access and can help prevent data theft and unblock websites.\r\nCompanies and organizations will typically use a VPN security to communicate confidentially over a public network and to send voice, video or data. It is also an excellent option for remote workers and organizations with global offices and partners to share data in a private manner.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Types of VPNs</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Remote access VPN</span>. Remote access VPN clients connect to a VPN gateway server on the organization's network. The gateway requires the device to authenticate its identity before granting access to internal network resources such as file servers, printers and intranets. This type of VPN usually relies on either IP Security (IPsec) or Secure Sockets Layer (SSL) to secure the connection.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Site-to-site VPN.</span> In contrast, a site-to-site VPN uses a gateway device to connect an entire network in one location to a network in another location. End-node devices in the remote location do not need VPN clients because the gateway handles the connection. Most site-to-site VPNs connecting over the internet use IPsec. It is also common for them to use carrier MPLS clouds rather than the public internet as the transport for site-to-site VPNs. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Mobile VPN.</span> In a mobile VPN, a VPN server still sits at the edge of the company network, enabling secure tunneled access by authenticated, authorized VPN clients. Mobile VPN tunnels are not tied to physical IP addresses, however. Instead, each tunnel is bound to a logical IP address. That logical IP address sticks to the mobile device no matter where it may roam.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">VPN Hardware</span>. It offer a number of advantages over the software-based VPN. In addition to enhanced security, hardware VPNs can provide load balancing to handle large client loads. Administration is managed through a Web browser interface. A hardware VPN is more expensive than a software VPN. Because of the cost, hardware VPNs are a more realistic option for large businesses than for small businesses or branch offices. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">VPN appliance.</span> A VPN appliance, also known as a VPN gateway appliance, is a network device equipped with enhanced security features. Also known as an SSL (Secure Sockets Layer) VPN appliance, it is in effect a router that provides protection, authorization, authentication and encryption for VPNs.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Dynamic multipoint virtual private network (DMVPN</span>). A dynamic multipoint virtual private network (DMVPN) is a secure network that exchanges data between sites without needing to pass traffic through an organization's headquarter virtual private network (VPN) server or router. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">VPN Reconnect.</span> VPN Reconnect is a feature of Windows 7 and Windows Server 2008 R2 that allows a virtual private network connection to remain open during a brief interruption of Internet service. Usually, when a computing device using a VPN connection drops its Internet connection, the end user has to manually reconnect to the VPN. VPN Reconnect keeps the VPN tunnel open for a configurable amount of time so when Internet service is restored, the VPN connection is automatically restored as well. </li></ul>\r\n<p class=\"align-left\"> </p>","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is VPN software?</span></h1>\r\n<span style=\"font-weight: normal;\"></span>VPN software is a tool that allows users to create a secure, encrypted connection over a computer network such as the Internet. The platform was developed to allow for secure access to business applications and other resources.\r\n<header><h1 class=\"align-center\"><span style=\"font-weight: normal;\">How does VPN software work?</span></h1></header>\r\n<p class=\"align-left\">So what does VPN do? Basically, a VPN is a group of computers or networks, which are connected over the Internet. For businesses, VPN services serve as avenues for getting access to networks when they are not physically on the same network. Such a service can also be used to encrypt communications over public networks.</p>\r\n<p class=\"align-left\">VPNs are usually deployed through local installation or by logging on to a service’s website. To give you an idea as to how VPN works, the software allows your computer to basically exchange keys with a remote server, through which all data traffic is encrypted and kept secure, safe from prying eyes. It lets you browse the Internet without the worry of being tracked, monitored and identified without permission. A VPN also helps in accessing blocked sites and in circumventing censorship.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What are the features of VPN software?</span></h1>\r\n<p class=\"align-left\">There are a variety of ways by which you can determine what VPN suits you. Here are some features of software VPN solutions and buying factors that you should consider:<br /><br /></p>\r\n<ul><li><span style=\"font-weight: bold;\">Privacy</span>: You should know what kind of privacy you really need. Is it for surfing, downloading or simply accessing blocked sites? Best of VPN programs offer one or more of these capabilities.</li><li><span style=\"font-weight: bold;\">Software/features</span>: Platforms should not be limited to ease of use, they should include features such as kill switches and DNS leak prevention tools which provide a further layer of protection.</li><li><span style=\"font-weight: bold;\">Security</span>: One should consider the level of security that a service offers. This can prevent hackers and agencies from accessing your data.</li><li><span style=\"font-weight: bold;\">Cross-platform support</span>: A VPN solution should be able to run on any device. To do this, setup guides for different platforms should be provided by the vendor.</li><li><span style=\"font-weight: bold;\">The number of servers/countries</span>: For these services, the more servers VPN there are, the better the service. This allows users to connect from virtually all over the world. It will also enable them to change their locations at will.</li><li><span style=\"font-weight: bold;\">Speed</span>: It’s common knowledge that using VPN comes with reduction in Internet speed. This is due to the fact that signals need to travel long distances and the demands of the encryption and decryption processes. Choose a service that has minimal impact on Internet speed.</li><li><span style=\"font-weight: bold;\">Simultaneous connections</span>: Many services allow users to use only one device at a time. However, many VPN service providers allow customers to connect multiple devices all at the same time.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VPN_-_Virtual_Private_Network.png","alias":"vpn-virtual-private-network"},"50":{"id":50,"title":"IPC - Information Protection and Control","description":"Information Protection and Control (IPC) is a technology for protecting confidential information from internal threats. IPC solutions are designed to protect information from internal threats, prevent various types of information leaks, corporate espionage, and business intelligence. The term IPC combines two main technologies: encryption of storage media at all points of the network and control of technical channels of information leakage using Data Loss Prevention (DLP) technologies. Network, application and data access control is a possible third technology in IPC class systems. IPC includes solutions of the Data Loss Prevention (DLP) class, a system for encrypting corporate information and controlling access to it. The term IPC was one of the first to use IDC analyst Brian Burke in his report, Information Protection and Control Survey: Data Loss Prevention and Encryption Trends.\r\nIPC technology is a logical continuation of DLP technology and allows you to protect data not only from leaks through technical channels, that is, insiders, but also from unauthorized user access to the network, information, applications, and in cases where the direct storage medium falls into the hands of third parties. This allows you to prevent leaks in those cases when an insider or a person who does not have legal access to data gain access to the direct carrier of information. For example, removing a hard drive from a personal computer, an insider will not be able to read the information on it. This allows you to prevent the compromise of confidential data even in the event of loss, theft or seizure (for example, when organizing operational events by special services specialists, unscrupulous competitors or raiders).\r\nThe main objective of IPC systems is to prevent the transfer of confidential information outside the corporate information system. Such a transfer (leak) may be intentional or unintentional. Practice shows that most of the leaks (more than 75%) do not occur due to malicious intent, but because of errors, carelessness, carelessness, and negligence of employees - it is much easier to detect such cases. The rest is connected with the malicious intent of operators and users of enterprise information systems, in particular, industrial espionage and competitive intelligence. Obviously, malicious insiders, as a rule, try to trick IPC analyzers and other control systems.","materialsDescription":"<span style=\"font-weight: bold; \">What is Information Protection and Control (IPC)?</span>\r\nIPC (English Information Protection and Control) is a generic name for technology to protect confidential information from internal threats.\r\nIPC solutions are designed to prevent various types of information leaks, corporate espionage, and business intelligence. IPC combines two main technologies: media encryption and control of technical channels of information leakage (Data Loss Prevention - DLP). Also, the functionality of IPC systems may include systems of protection against unauthorized access (unauthorized access).\r\n<span style=\"font-weight: bold; \">What are the objectives of IPC class systems?</span>\r\n<ul><li>preventing the transfer of confidential information beyond the corporate information system;</li><li>prevention of outside transmission of not only confidential but also other undesirable information (offensive expressions, spam, eroticism, excessive amounts of data, etc.);</li><li>preventing the transmission of unwanted information not only from inside to outside but also from outside to inside the organization’s information system;</li><li>preventing employees from using the Internet and network resources for personal purposes;</li><li>spam protection;</li><li>virus protection;</li><li>optimization of channel loading, reduction of inappropriate traffic;</li><li>accounting of working hours and presence at the workplace;</li><li>tracking the reliability of employees, their political views, beliefs, collecting dirt;</li><li>archiving information in case of accidental deletion or damage to the original;</li><li>protection against accidental or intentional violation of internal standards;</li><li>ensuring compliance with standards in the field of information security and current legislation.</li></ul>\r\n<span style=\"font-weight: bold; \">Why is DLP technology used in IPC?</span>\r\nIPC DLP technology supports monitoring of the following technical channels for confidential information leakage:\r\n<ul><li>corporate email;</li><li>webmail;</li><li>social networks and blogs;</li><li>file-sharing networks;</li><li>forums and other Internet resources, including those made using AJAX technology;</li><li>instant messaging tools (ICQ, Mail.Ru Agent, Skype, AOL AIM, Google Talk, Yahoo Messenger, MSN Messenger, etc.);</li><li>P2P clients;</li><li>peripheral devices (USB, LPT, COM, WiFi, Bluetooth, etc.);</li><li>local and network printers.</li></ul>\r\nDLP technologies in IPC support control, including the following communication protocols:\r\n<ul><li>FTP;</li><li>FTP over HTTP;</li><li>FTPS;</li><li>HTTP;</li><li>HTTPS (SSL);</li><li>NNTP;</li><li>POP3;</li><li>SMTP.</li></ul>\r\n<span style=\"font-weight: bold; \">What information protection facilities does IPC technology include?</span>\r\nIPC technology includes the ability to encrypt information at all key points in the network. The objects of information security are:\r\n<ul><li>Server hard drives;</li><li>SAN;</li><li>NAS;</li><li>Magnetic tapes;</li><li>CD/DVD/Blue-ray discs;</li><li>Personal computers (including laptops);</li><li>External devices.</li></ul>\r\nIPC technologies use various plug-in cryptographic modules, including the most efficient algorithms DES, Triple DES, RC5, RC6, AES, XTS-AES. The most used algorithms in IPC solutions are RC5 and AES, the effectiveness of which can be tested on the project [distributed.net]. They are most effective for solving the problems of encrypting data of large amounts of data on server storages and backups.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IPC_-_Information_Protection_and_Control.png","alias":"ipc-information-protection-and-control"},"52":{"id":52,"title":"SaaS - software as a service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png","alias":"saas-software-as-a-service"},"59":{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png","alias":"scada-supervisory-control-and-data-acquisition"},"77":{"id":77,"title":"SOC - Situation Centre","description":"One of the most pressing tasks facing government bodies and commercial structures is to increase the efficiency of management activities. A modern tool for solving this problem is situational centers, which are complex hardware and software systems for collecting, analyzing and displaying information in a form convenient for making critical decisions.\r\nSituational centers are created for the heads of federal, regional and municipal government bodies, ministries and departments, and large companies. Their main task is to provide information and analytical support for procedures and processes that allow managers to make effective decisions on the current management of headed structures, formulating their development strategies, as well as preventing or eliminating crisis and emergency situations. The structure and composition of the situational site are determined by the specifics of the tasks being solved. As a rule, this is a complex technical complex that includes many subsystems.\r\nThere are many types of command centers. They include: data center management, business application management, civil management, emergency (crisis) management.","materialsDescription":" <span style=\"font-weight: bold;\">What is a Security Operations Center (SOC)?</span>\r\nA SOC is an outsourced office that is completely dedicated to analyzing traffic flow and monitoring for threats and attacks. In today’s world of cyberattacks and data breaches, companies of all sizes need to place an emphasis on securing their technology assets. But due to budget constraints and competing priorities, many organizations can’t afford to employ a full-time in-house IT security team. The smart solution to this problem is to look at partnering with a SOC or security operations center.\r\n<span style=\"font-weight: bold;\">How does a security operations center work?</span>\r\nUntil the recent rise of cloud computing, standard security practice was for a company to choose a traditional software as a product (SaaP) malware scanning solution either via download or, in ancient days, a CD-Rom that arrived via mail. They’d add to that a firewall installed at the edge of the network, and trust that those measures would keep their data and systems safe. Today’s reality is a far different environment, with threats being cast all across the net as hackers invent new ways to launch profitable and sophisticated attacks like ransomware.\r\nA SOC is an example of the software as a service (SaaS) software model in that it operates in the cloud as a subscription service. In this context, it provides a layer of rented expertise to a company’s cybersecurity strategy that operates 24/7 so that networks and endpoints are constantly being monitored. If a vulnerability is found or an incident is discovered, the SOC will engage with the on-site IT team to respond to the issue and investigate the root cause.\r\nIndividual SOC cybersecurity providers offer different suites of products and services. However, there is a core set of operational functions that a SOC must perform in order to add value to an organization.\r\n<ol><li><span style=\"font-weight: bold;\">Asset Survey:</span> In order for a SOC to help a company stay secure, they must have a complete understanding of what resources they need to protect. Otherwise, they may not be able to protect the full scope of the network. An asset survey should identify every server, router, firewall under enterprise control, as well as any other cybersecurity tools actively in use.</li><li><span style=\"font-weight: bold;\">Log Collection:</span> Data is the most important thing for a SOC to function properly and logs serve as the key source of information regarding network activity. The SOC should set up direct feeds from enterprise systems so that data is collected in real-time. Obviously, humans cannot digest such large amounts of information, which is why log scanning tools powered by artificial intelligence algorithms are so valuable for SOCs, though they do pose some interesting side effects that humanity is still trying to iron out.</li><li><span style=\"font-weight: bold;\">Preventative Maintenance:</span> In the best-case scenario, the SOC is able to prevent cyberattacks from occurring by being proactive with their processes. This includes installing security patches and adjusting firewall policies on a regular basis. Since some cyberattacks actually begin as insider threats, a SOC must also look within the organization for risks also.</li><li><span style=\"font-weight: bold;\">Continuous Monitoring:</span> In order to be ready to respond to a cybersecurity incident, the SOC must be vigilant in its monitoring practices. A few minutes can be the difference between blocking an attack and letting it take down an entire system or website. SOC tools run scans across the company’s network to identify potential threats and other suspicious activity.</li><li><span style=\"font-weight: bold;\">Alert Management:</span> Automated systems are great at finding patterns and following scripts. But the human element of a SOC proves it's worth it when it comes to analyzing automated alerts and ranking them based on their severity and priority. SOC staff must know what responses to take and how to verify that an alert is legitimate.</li><li><span style=\"font-weight: bold;\">Root Cause Analysis:</span> After an incident occurs and is resolved, the job of the SOC is just beginning. Cybersecurity experts will analyze the root cause of the problem and diagnose why it occurred in the first place. This feeds into a process of continuous improvement, with security tools and rules being modified to prevent future occurrences of the same incident.</li><li><span style=\"font-weight: bold;\">Compliance Audits:</span> Companies want to know that their data and systems are safe but also that they are being managed in a lawful manner. SOC providers must perform regular audits to confirm their compliance in the regions where they operate. What is a SOC report and what is a SOC audit? Anything that pulls data or records from cybersecurity functions of an organization. What is SOC 2? It’s a special auditing procedure related to information security and privacy.</li></ol>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SOC_-_Situation_Centre.png","alias":"soc-situation-centre"},"78":{"id":78,"title":"PAM - privileged access management","description":"<span style=\"font-weight: bold;\">PAM - Privileged Access Management</span> tools help organizations provide secure privileged access to critical assets and meet compliance requirements by managing and monitoring privileged accounts and access. <span style=\"font-weight: bold;\">Privilege management tools offer features that enable security and risk leaders to:</span>\r\n<ul><li>Discover privileged accounts on systems, devices and applications for subsequent management.</li><li>Automatically randomize, manage and vault passwords and other credentials for administrative, service and application accounts.</li><li>Control access to privileged accounts, including shared and “firecall” (emergency access) accounts.</li><li>Isolate, monitor, record and audit privileged access sessions, commands and actions</li></ul>\r\nTo achieve these goals, privileged access management solutions typically take the credentials of privileged accounts – i.e. the admin accounts – and put them inside a secure repository (a vault), isolating the use of privileged accounts to reduce the risk of those credentials being stolen. Once inside the repository, system administrators need to go through the privilege management system to access their credentials, at which point they are authenticated and their access is logged. When a credential is checked back in, it is reset to ensure administrators have to go through the PAM system next time they want to use the credential.\r\n<span style=\"font-weight: bold;\">Privileged Access Management software by Gartner has the following subcategories:</span>\r\n<ol><li>Shared access password manager (SAPM)</li><li>Superuser password manager (SUPM)</li><li>Privileged session manager (PSM)</li><li>Application access password manager (AAPM)</li></ol>\r\nPAM password vaults (SAPM) provides an extra layer of control over admins and password policies, as well as monitoring trails of privileged access to critical systems. Passwords can follow a veriety of password policies and can even be disposable. Session brokers, or PSMs, take privileged access to another level, ensuring that administrators never see the passwords, their hardened proxy servers such as jump servers also monitor active sessions and enable reviewers to stop admin sessions if they see something wrong. Similarly, AAPMs can release credentials just-in-time for application-to-application communication, and even modify startup scripts to replace hard-coded passwords with API calls to the password vault.","materialsDescription":"<h1 class=\"align-center\">What are privileged accounts?</h1>\r\n<p class=\"align-left\">In a least privileged environment, most users are operating with non-privileged accounts 90-100% of the time. Non-privileged accounts, also called least privileged accounts (LUA) general consist of the following two types:</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold; \">Standard user accounts</span> have a limited set of privileges, such as for Internet browsing, accessing certain types of applications (e.g., MS Office, etc.), and for accessing a limited array of resources, which is often defined by role-based access policies.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold; \">Guest user accounts </span>possess fewer privileges than standard user accounts, as they are usually restricted to just basic application access and Internet browsing.</p>\r\n<p class=\"align-left\">A privileged account is considered to be any account that provides access and privileges beyond those of non-privileged accounts. A privileged user is any user currently leveraging privileged access, such as through a privileged account. Because of their elevated capabilities and access, privileged users/privileged accounts pose considerably larger risks than non-privileged accounts /non-privileged users. Here are <span style=\"font-weight: bold;\">examples of privileged accounts commonly in use across an organization: </span></p>\r\n<ul><li><span style=\"font-weight: bold; \">Local administrative accounts.</span> Non-personal accounts providing administrative access to the local host or instance only.<span style=\"font-weight: bold; \"></span></li><li><span style=\"font-weight: bold; \">Domain administrative accounts.</span> Privileged administrative access across all workstations and servers within the domain.<span style=\"font-weight: bold; \"></span></li><li><span style=\"font-weight: bold; \">Break glass (also called emergency or firecall) accounts. </span> Unprivileged users with administrative access to secure systems in the case of an emergency.<span style=\"font-weight: bold; \"></span></li><li><span style=\"font-weight: bold; \">Service accounts.</span> Privileged local or domain accounts that are used by an application or service to interact with the operating system.</li><li><span style=\"font-weight: bold; \">Active Directory</span> or domain service accounts. Enable password changes to accounts, etc.</li><li><span style=\"font-weight: bold; \">Application accounts.</span> Used by applications to access databases, run batch jobs or scripts, or provide access to other applications.</li></ul>\r\n<h1 class=\"align-center\"><span style=\"font-weight: bold; \">What are the Privileged Access Management features?</span></h1>\r\nPrivileged access management is important for companies that are growing or have a large, complex IT system. Many popular vendors have begun offering enterprise PAM tools such as BeyondTrust, Centrify, CyberArk, SecureLink and Thycotic.\r\n<span style=\"font-weight: bold;\">Privileged access management tools and software typically provide the following features:</span>\r\n<ul><li>Multi-factor authentication (MFA) for administrators.</li><li>An access manager that stores permissions and privileged user information.</li><li>A password vault that stores secured, privileged passwords.</li><li>Session tracking once privileged access is granted.</li><li>Dynamic authorization abilities. For example, only granting access for specific periods of time.</li><li>Automated provisioning and deprovisioning to reduce insider threats.</li><li>Audit logging tools that help organizations meet compliance.</li></ul>\r\n<h1 class=\"align-center\"><span style=\"font-weight: bold; \">How is PAM Different from Identity Access Management (IAM)?</span></h1>\r\nPrivileged access management system is sometimes confused with Identity Access Management (IAM). IAM focuses on authenticating and authorizing all types of users for an organization, often including employees, vendors, contractors, partners, and even customers. IAM manages general access to applications and resources, including on-prem and cloud and usually integrates with directory systems such as Microsoft Active Directory.\r\nPAM access management focuses on privileged users, administrators or those with elevated privileges in the organization. PAM systems are specifically designed to manage and guarantee secure privileged access of these users to critical resources.\r\nOrganizations need both tools if they are to protect against attacks. IAM systems cover the larger attack surface of access from the many users across the organization’s ecosystem. PAM focuses on privileged users—but privileged access management products are important because while they cover a smaller attack surface, it’s a high-value surface and requires an additional set of controls normally not relevant or even appropriate for regular users (such as session recording). ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/PAM_-_privileged_access_management.png","alias":"pam-privileged-access-management"},"80":{"id":80,"title":"VMS - Video Management Solution","description":"Video management systems and video analytics are intellectual elements of a comprehensive security system for any organization and enterprise.\r\nVideo Management Systems (VMS) provide video camera management, video stream distribution and image display to security monitors, quick and effective incident response, access rights to control video cameras and video archive and prompt notification of security incidents.\r\nVideo analytics is a key element of any video surveillance system, as it allows you to automate the main tasks of protecting objects and territories, namely, the prediction and detection of potential risks, tracking and recognition of objects.\r\nThe images from video surveillance cameras are transmitted to the video content storage server, and using specialized software, they are automatically analyzed and processed, and the results are output to the administrator or head of the security system.","materialsDescription":"<span style=\"font-weight: bold;\">What is Video Management Software?</span>\r\nVideo management software (VMS) is a part of a video surveillance system that allows the user to access real-time videos, record, store and playback recorded videos and derive useful insights of the surveillance site.\r\n<span style=\"font-weight: bold;\">When to upgrade a Video Surveillance System?</span>\r\nCurrent Video Management Systems are capable of offering much more than just surveillance, hence, upgrading a VMS system becomes as important as upgrading the other assets of the business. A VMS system can be upgraded when an organization is:\r\n<ul><li>Using a traditional CCTV surveillance system (Old equipment and cameras)</li><li>Incurring increased maintenance costs of the existing surveillance system</li><li>Expanding from Single site to multiple sites (Small to medium to large-sized enterprises)</li><li>In the need of Intelligent Video Analytics for monitoring sites, employees or business processes</li><li>Requiring Video Analytics to improve the site operations to benefit the customers, VMS users or employees</li><li>In need of VMS system equipment standardization</li></ul>\r\n<span style=\"font-weight: bold;\">What are the factors to consider while selecting video surveillance cameras for the VMS System?</span>\r\nVideo surveillance cameras come in a wide range of sizes, shapes, features, and functions, which are designed to perform in diverse environmental conditions at surveillance sites. There are a few things that users must consider while selecting video surveillance cameras for their VMS system. Users must check:\r\n<ul><li>The camera resolution (image quality)</li><li>Indoor or outdoor camera compatibility</li><li>Wired or wireless cameras</li><li>Light sensitivity of the camera (ability of a surveillance camera to work in low light)</li><li>Shape of the camera (box type, bullet camera or dome camera)</li><li>Frame rate (more frames per second –fps defines video clarity)</li></ul>\r\n<span style=\"font-weight: bold;\">Why should enterprises switch from traditional CCTV systems to cloud-based Video Management Systems?</span>\r\nTraditional CCTV systems are just analog devices with limited functionality to monitor and track the events in the camera vicinity, whereas new age cloud-based video management systems are smart enough to record, store, playback, and analyze the captured events in real-time and later. Cloud-based Video Surveillance systems are equipped with high-quality IP cameras, which provide a high-quality image with better fps for the system network. Storage is never an issue with these systems as all the data is stored on the cloud and can be fetched whenever required. Cloud-based video management systems are easy to install as users can just plug-and-play these devices for small setups. These systems are easily customizable in terms of camera numbers, software features, types of video analytics, etc.\r\n<span style=\"font-weight: bold;\">What are different deployment types of Video Management Software?</span>\r\nVideo Management Software can be classified into three deployment types:\r\n<span style=\"font-style: italic;\">On-premise VMS.</span> On-premise VMS solutions are best suited for managing video surveillance at a single site. All the streaming, recording and management servers, storage devices and applications are installed locally on-site. This allows user to manage their security and connected device ecosystem from the site itself.\r\n<span style=\"font-style: italic;\">Cloud based VMS.</span> The cloud-based VMS, unlike the on-premise VMS, possesses higher flexibility and scalability. It allows the user to manage multiple sites, all at the same time – from any location and at any time.\r\n<span style=\"font-style: italic;\">Hybrid VMS.</span> A hybrid VMS solution is a flexible surveillance solution, which generally comes with the capability of managing both analog and IP video signals simultaneously. It allows the enterprises to have a traditional VMS solution coexist with the functionalities of cloud Video Surveillance.\r\n<span style=\"font-weight: bold;\">What are the benefits of microservice architecture in cloud video management software?</span>\r\nMicroservice architecture based cloud video management software overcomes the limitations of a traditionally designed VMS solution (monolithic architecture) and addresses the evolving security needs of the business. Let’s see how it benefits cloud video management software:\r\n<span style=\"font-style: italic;\">Modularity:</span> Micro-services allows video management software to be designed as a suite of various independent modules that remain integrated through APIs.\r\n<span style=\"font-style: italic;\">Scalability:</span> Cloud-based video management software on microservices is easily scalable, i.e., any of the new services can be added or existing services can be upgraded in the software without affecting the video surveillance.\r\n<span style=\"font-style: italic;\">Flexibility: </span>Through microservice based cloud video management software, users can opt for any new VMS services to be added or removed in their existing software according to their evolving business needs. This can be of great help to the users, as they can follow the pay per feature business model. It also allows developers to choose the programming languages for its development.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VMS_-_Video_Management_Solution.png","alias":"vms-video-management-solution"},"199":{"id":199,"title":"Deception Techniques and Honeypots","description":"Deception technology is an emerging category of cyber security defense. Deception technology products can detect, analyze and defend against zero-day and advanced attacks, often in real time. They are automated, accurate and provide insight into malicious activity within internal networks, which may be unseen by other types of cyber defense. Deception technology enables a more proactive security posture by seeking to deceive the attackers, detect them and then defeat them, allowing the enterprise to return to normal operations.\r\nDeception technology automates the creation of traps (decoys) and/or lures, which are mixed among and within existing IT resources to provide a layer of protection to stop attackers that have penetrated the network. Traps (decoys) are IT assets that either use real licensed operating system software, or are emulations of these devices.\r\nTraps (decoys) which use emulations can also imitate medical devices, automated teller machines (ATMs), retail point of sale systems, switches, routers and much more. Lures are generally real information technology resources (files of varying kinds) which are placed on actual IT assets.\r\nUpon penetrating the network, attackers seek to establish a backdoor and then use this to identify and exfiltrate data and intellectual property. They begin moving laterally through the internal VLANs and almost immediately will "look at" one of the traps (decoys). Interacting with one of these "decoys" will trigger an alert. These alerts are very high probability and almost always coincide to an ongoing attack. The deception is designed to lure the attacker in – the attacker may consider this a worthy asset and continue by injecting malware. Deception technology generally allows for automated static and dynamic analysis of this injected malware and provides these reports through automation to the security operations personnel. Deception technology may also identify, through indicators of compromise (IOC), suspect end-points that are part of the compromise cycle. Automation also allows for an automated memory analysis of the suspect end-point, and then automatically isolates the suspect end-point. Many partner integrations allow for a variety of implementation paths for existing enterprise and government customers.\r\nInternet of things (IoT) devices are not usually scanned by legacy defense in depth cyber defense and remain prime targets for attackers within the network. Deception technology can identify attackers moving laterally into the network from within these devices.\r\nIntegrated turnkey devices that utilize embedded operating systems, but do not allow these operating systems to be scanned or closely protected by embedded end-point or intrusion detection software are also well protected by a deception technology deployment in the same network. Examples include process control systems (SCADA) used in many manufacturing applications on a global basis. Deception technology has been associated with the discovery of Zombie Zero, an attack vector wherein deception technology identified an attacker utilizing malware embedded in barcode readers which were manufactured overseas.\r\nMedical devices are particular vulnerable to cyber attacks within the healthcare networks. As FDA-certified devices they are closed systems and not accessible to standard cyber defense software. Deception technology can surround and protect these devices and identify attackers using these for backdoor placement and data exfiltration. Recently documented cyber attacks on medical devices include x-ray machines, CT scanners, MRI scanners, blood gas analyzers, PACS systems and many more. Networks utilizing these devices can be protected by deception technology. This attack vector, called medical device hijack or medjack, is estimated to have penetrated many hospitals worldwide.\r\nSpecialized deception technology products are now capable of addressing the rise in ransomware. Select products can deceive ransomware into engaging in an attack on a decoy resource, while isolating the infection points and alerting the cyber defense software team.","materialsDescription":"<span style=\"font-weight: bold;\">Why Use Deception Technology?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Early Post-Breach Detection</span></span>\r\nNo security solution can stop all attacks from occurring on a network, but deception technology helps to give attackers a false sense of security by making them believe they have gained a foothold in your network. From here you can monitor and record their behavior, secure in the knowledge that they can do no damage to your decoy systems. The information you record about attacker behavior and techniques can be used to further secure your network from attack.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Reduced False Positives and Risk</span></span>\r\nDead ends, false positives and alert fatigue can all hamper security efforts and put a drain on resources, if they are even analyzed at all. Too much noise can result in IT teams becoming complacent and ignoring what could potentially be a legitimate threat. Deception technology reduces the noise with fewer false positives and high fidelity alerts packed full of useful data.\r\nDeception technology is also a low risk as it has no risk to data or impact on resources or operations. When a hacker accesses or attempts to use part of the deception layer, a real and accurate alert is generated that tells admins they need to take action.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Scale and Automate at Will</span></span>\r\nWhile the threat to corporate networks and data is a daily growing concern, security teams rarely get an increase in their budget to handle the deluge of new threats. For this reason, deception technology can be a very welcome solution. Automated alerts eliminate the need for manual effort and intervention while the design of the technology allows it to be scaled easily as the organization and threat level grows.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">From Legacy to IoT</span></span>\r\nDeception technology can be used to provide breadcrumbs for a vast range of different devices, including legacy environments, industry-specific environments and even IoT devices.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Deception_Techniques_and_Honeypots.png","alias":"deception-techniques-and-honeypots"},"204":{"id":204,"title":"Managed Detection and Response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png","alias":"managed-detection-and-response"},"205":{"id":205,"title":"NAC - Network Access Control","description":"<span style=\"font-weight: bold; \">Network Access Control (NAC)</span> is an approach to computer security that attempts to unify endpoint security technology (such as antivirus, host intrusion prevention, and vulnerability assessment), user or system authentication and network security enforcement. NAC solutions have become an extremely valuable tool in recent years, as mobile devices and the Internet of Things (IoT) have surged to prominence in various industries across the world. These new pieces of emerging technology come with their own set of vulnerabilities, which poses a challenge to IT security experts. \r\nNAC systems are put into place to make sure that anyone who enters the system, both in terms of users and devices, is authorized. After being routed the efforts at connection, the network access control system confirms privileges using an identity and access management (IAM, a program that checks users for appropriate permissions to access data materials, as indicated by internal policies). With the information from the IAM, along with a pre-established list of rules, the NAC software is able to smartly accept or deny access requests.\r\nFortunately, NAC products are designed to handle large enterprise networks that have a range of device types trying to connect at all times. Without a NAC in place, companies take on a huge amount of risk by adopting a bring-your-own-device (BYOD) policy, which allows employees and vendors to use their own smartphones and tablets on the local network. Network access control software and hardware require an upfront investment but prove their worth in the long run.","materialsDescription":"<h1 class=\"align-center\"> How a NAC solution works?</h1>\r\nWhen you adopt a network access control solution, the first thing it will do is find all devices currently accessing the system; identify what kind of device they are; and determine whether to validate them and how to treat them using preestablished protocols designed by the company’s security personnel. A network access control system has rules related to a wide spectrum of devices, along with finely grained settings to help you determine permissions. A unified administrative system houses these rules and applies them as needed.\r\nMany companies will utilize NAC as their staff grows and they have an increasing number of devices to manage. These solutions are also helpful for achieving data protection across a variety of different branch locations. The difficulty of securing an organization and managing access has become especially overwhelming in an era when widespread incorporation of IOT devices is becoming more common throughout business; NAC is the fix. The general issue with bring your own device (BYOD), though, is what drew many businesses to this service.\r\n<h1 class=\"align-center\">How to Choose a Network Access Control Solution</h1>\r\nTo help narrow down your search for NAC products, you should first focus on tools that offer native integration with your enterprise’s existing software. You don’t want to have to change your infrastructure or network design in order to bring the NAC solution online. If you are heavily dependent on a cloud architecture, then look for solutions that are fully supported by your hosting provider.\r\nNext, think about what kind of proactive tools come included with the NAC suite. Some vendors offer all-in-one packages that feature a full virus scanning utility and firewall mechanism alongside everything else in the NAC. If your IT security strategy is not very mature, this kind of suite may be very helpful.\r\nOf course, one key factor when looking at NAC options is the price point. Some vendors will sell their products at a flat rate, while others are quickly going the route of Software as a Service (SaaS) subscription, an increasingly-popular business model that requires a monthly payment and ongoing contract. Think about the state of your IT budget while remembering that the upfront investment could save you lots of money down the road.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/NAC_-_Network_Access_Control__1_.png","alias":"nac-network-access-control"},"206":{"id":206,"title":"Application Security Testing","description":" Applications form the lifeline of any business today – and they are under attack more than ever before. Where previously we focused our attention on securing organizations’ network parameters, today the application level is where the focus is for attackers.\r\nAccording to Verizon’s 2014 Data Breach Investigations Report, web applications “remain the proverbial punching bag of the internet,” with about 80% of attacks in the application layer, as Gartner has stated. Taking proactive measures to protect your company and customer data is no longer an option: It is a business imperative for enterprises across all industries.\r\nIn 2013, the Ponemon Institute’s ‘Cost of a Data Breach Report’ found that security incidents in the U.S. averaged a total cost of $5.4 million. Preventing just one similar security incident would more than cover the cost of application security and prove your security programs value.\r\nApplication Security is built around the concept of ensuring that the code written for an application does what it was built to do, and keeps the contained data secure.\r\nAccording to Gartner, application security puts a primary focus on three elements:\r\n<ul><li>Reducing security vulnerabilities and risks</li><li>Improving security features and functions such as authentication, encryption or auditing</li><li>Integrating with the enterprise security infrastructure</li></ul>","materialsDescription":" Security testing techniques scour for vulnerabilities or security holes in applications. These vulnerabilities leave applications open to exploitation. Ideally, security testing is implemented throughout the entire software development life cycle (SDLC) so that vulnerabilities may be addressed in a timely and thorough manner. Unfortunately, testing is often conducted as an afterthought at the end of the development cycle. With the growth of Continuous delivery and DevOps as popular software development and deployment models, continuous security models are becoming more popular.\r\nVulnerability scanners, and more specifically web application scanners, otherwise known as penetration testing tools (i.e. ethical hacking tools) have been historically used by security organizations within corporations and security consultants to automate the security testing of http request/responses; however, this is not a substitute for the need for actual source code review. Physical code reviews of an application's source code can be accomplished manually or in an automated fashion. Given the common size of individual programs (often 500,000 lines of code or more), the human brain cannot execute a comprehensive data flow analysis needed in order to completely check all circuitous paths of an application program to find vulnerability points. The human brain is suited more for filtering, interrupting and reporting the outputs of automated source code analysis tools available commercially versus trying to trace every possible path through a compiled code base to find the root cause level vulnerabilities.\r\nThere are many kinds of automated tools for identifying vulnerabilities in applications. Some require a great deal of security expertise to use and others are designed for fully automated use. The results are dependent on the types of information (source, binary, HTTP traffic, configuration, libraries, connections) provided to the tool, the quality of the analysis, and the scope of vulnerabilities covered. Common technologies used for identifying application vulnerabilities include:\r\n<span style=\"font-weight: bold;\">Static Application Security Testing (SAST)</span> is a technology that is frequently used as a Source Code Analysis tool. The method analyzes source code for security vulnerabilities prior to the launch of an application and is used to strengthen code. This method produces fewer false positives but for most implementations requires access to an application's source code and requires expert configuration and lots of processing power.\r\n<span style=\"font-weight: bold;\">Dynamic Application Security Testing (DAST)</span> is a technology, which is able to find visible vulnerabilities by feeding a URL into an automated scanner. This method is highly scalable, easily integrated and quick. DAST's drawbacks lie in the need for expert configuration and the high possibility of false positives and negatives.\r\n<span style=\"font-weight: bold;\">Interactive Application Security Testing (IAST)</span> is a solution that assesses applications from within using software instrumentation. This technique allows IAST to combine the strengths of both SAST and DAST methods as well as providing access to code, HTTP traffic, library information, backend connections and configuration information. Some IAST products require the application to be attacked, while others can be used during normal quality assurance testing.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Application_Security_Testing1.png","alias":"application-security-testing"},"335":{"id":335,"title":"Secure Content and Threat Management","description":" Secure content management is the set of processes and technologies that supports the collection, managing, and publishing of information. It involves processes for protecting the company from viruses, spam and undesirable web pages to not only provide enhanced security but also address productivity and potential human resources issues. Even after controlling the number of avenues through which information can enter, after the implementation of perimeter security, the cyber attackers still find ways to piggyback across valid communication channels.\r\nSecure Content Management technologies have evolved rapidly over the last few years due to the complexity of threats associated with email and web gateways. Businesses are increasingly focusing on eliminating this threat by adopting the 2 gateways, rather than the purely productive driven anti-spam and web-filtering techniques.\r\nSecure Content Management solutions are gaining traction due to the increased need for handling voluminous content that is getting generated in organizations on a daily basis. The rising adoption of digitalization, Bring Your Own Device (BYOD), growth of e-commerce, and social media has increased the amount of content generated in inter-organizations and intra-organizations.\r\nSCM solutions offer clients with the benefit of paper-free workflow, accurate searching of the required information, and better information sharing, and also addresses required industry standards and regulations. SCM solutions enable clients with handling essential enterprise information and save time and cost associated with searching for the required business data for making key business decisions.\r\nThe solutions offered for Secure Content Management includes:\r\n<span style=\"font-style: italic;\">Anti-Spam:</span> Spam Filters are introduced for spam e-mail which not only consumes time and money but also network and mail server resources.\r\n<span style=\"font-style: italic;\">Web Surfing:</span> Limiting the websites that end-users are allowed to access will increase work productivity, ensure maximum bandwidth availability and lower the liability issues.\r\n<span style=\"font-style: italic;\">Instant Messaging:</span> Convenient and growing, but difficult to handle, this technology serves as a back door for viruses and worms to enter your network. It also provides a way for sensitive information to be shared over the network.<br /><br /><br />","materialsDescription":" <span style=\"font-weight: bold;\">What are the reasons for adopting secure content management?</span>\r\nFollowing are the reasons for creating the need for secure content management:\r\n<ul><li>Lost productivity</li><li>Introduction of malicious code</li><li>Potential liability</li><li>Wasted network resources</li><li>Control over intellectual property</li><li>Regulatory Compliance</li></ul>\r\nBecause of these reasons, there is rising concern over the security of the organization and creating the need for the adoption of Secure content Management from the clients.\r\n<span style=\"font-weight: bold;\">Strategy Adopted for implementing Secure Content Management</span>\r\nThe strategy applied for Secure Content Management includes the 4 step process including\r\n<span style=\"font-weight: bold;\">Discover</span> involves Identifying and Defining the process of Data Management and collecting the data created.\r\n<span style=\"font-weight: bold;\">Classify</span> is the process of identifying critical data and segregating between secure information and unstructured information.\r\n<span style=\"font-weight: bold;\">Control</span> involves the process of data cleansing, Encrypting the digital content and Securing critical information.\r\n<span style=\"font-weight: bold;\">Govern</span> is the process of creating Service Level Agreements for usage rules, retention rules.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Secure_Content_and_Threat_Management.png","alias":"secure-content-and-threat-management"},"375":{"id":375,"title":"Mobile Enterprise Security","description":" Because mobile devices are easily lost or stolen, data on those devices is vulnerable. Enterprise mobility management is a set of systems intended to prevent unauthorized access to enterprise applications and/or corporate data on mobile devices. These can include password protection, encryption and/or remote wipe technology, which allows an administrator to delete all data from a misplaced device. With many systems, security policies can be centrally managed and enforced. Such device management systems are programmed to support and cooperate with the application programming interfaces (APIs) from various device makers to increase security compliance.\r\nThe data transfer between mobile device and the enterprise should always be encrypted, for example through a VPN tunnel or over HTTPS.\r\nMobile devices in companies with "bring your own device" (BYOD) policies are often used both personally and professionally. In these cases, corporate IT has less control over whether malware is on the device and what damage may be caused to corporate data. Apart from careful user behavior - data storage on the mobile device should be limited and centrally organized.","materialsDescription":" <span style=\"font-weight: bold;\">What is mobile security?</span>\r\nMobile security refers to the set of technologies and practices that aim to protect mobile devices against operating system vulnerabilities, network and app attacks, or mobile malware. Technologies such as enterprise mobility management (EMM) solutions manage compliance policies and issues relating to device privilege or loss.\r\n<span style=\"font-weight: bold;\">What are mobile security threats?</span>\r\nMobile security threats are vulnerabilities or attacks that attempt to compromise your phone's operating system, internet connection, Wi-Fi and Bluetooth connections, or apps. Smartphones possess very different behaviors and capabilities compared to PCs or laptops and need to be equipped to detect attacks specific to mobile devices. Mobile devices contain unique functions and behaviors making traditional IT security solutions ineffective for securing mobile devices. One of the primary differences in how mobile devices are different from PCs and laptops is administration privileges. There are several administrators for a PC or laptop making it simple for corporate IT to install security software and monitor computers for problems. On mobile devices, the administration is handled by the device owner. The device owner is the only one that can install apps or allow other management profiles on the device. This means the burden of securing the mobile device and its data falls entirely on the user--who may not have the time or expertise to provide proper mobile device security.\r\n<span style=\"font-weight: bold;\">Why is mobile security important?</span>\r\nMobile security is very important since our mobile device is now our primary computing device. On average, users spend more than 5 hours each day on a mobile device conducting company and personal business. The shift in device usage habits has also moved the prime target for hackers from PCs to our mobile devices. Since mobile devices are now a prime target, we need to secure them and arm them with threat detection and malware protection just like PCs. Smartphones are able to circumvent traditional security controls, and typically represent a massive blind spot for IT and security teams. Hackers know this, which no doubt contributed to the number of smartphone attacks recorded between January and July 2016. The number of attacks nearly doubled compared to the last six months of 2015. During that same time period, smartphones accounted for 78% of all mobile network infections.\r\n<span style=\"font-weight: bold;\">Which mobile security is best for enterprises?</span>\r\nThere are a number of mobile security solutions available on the market, but identifying which mobile security is best for enterprises entails using specific criteria. As is often the case, solutions designed for consumers and end-users may not be as robust, full-featured, reliable and scalable as solutions designed specifically for the enterprise. In particular, mobile security solutions that are suitable for enterprise use should include scalability, autonomous functionality, machine learning, on-device operation, and protection from zero-day threats. Enterprises also need to consider flexible deployment models to take advantage of existing infrastructure or cloud computing environments.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Mobile_Enterprise_Security.png","alias":"mobile-enterprise-security"},"379":{"id":379,"title":"SAM - Software Asset Management","description":"<span style=\"font-weight: bold; \">Software asset management (SAM)</span> tools automate many of the tasks required to maintain compliance with software licenses, thereby controlling software spending. They facilitate the in-depth analysis of software assets by decoding software license entitlements, automating the collection of software consumption data, establishing independent software vendor (ISV) effective license position (ELP), and optimizing software value delivery and information sharing. SAM software manage entitlements from enterprise license agreements, purchases and other records to automatically determine and optimize license position against discovered software. Infrastructure and operations (I&O) leaders use SAM tools for managing software entitlement, in lieu of using spreadsheets, due to the rising complexity of software-licensing schemes.\r\nFor many organizations, the goal of implementing an asset software program is very tactical in nature, focused specifically on balancing the number of software licenses purchased with the number of actual licenses consumed or used. In addition to software license management, an effective SAM program must also ensure that the usage of all installed software is in keeping with the terms and conditions of the specific vendor license agreement. In doing so, organizations can minimize liabilities associated with software piracy in the event of an audit by a software vendor or a third party such as the Business Software Alliance (BSA). \r\nThe key business benefits of SAM software be summarized as follows::\r\n<span style=\"font-weight: bold; \">Licenses.</span> Licenses are assets that need to be managed. Each license contains specific conditions for how the software product can be installed and used. As a user, your job is to make sure your company is compliant with the terms and conditions of the license agreement.\r\n<span style=\"font-weight: bold; \">Compliance </span>is the bedrock of asset management tools. Software vendors don’t want you to use more software than you licensed. Even though SAM is much bigger than compliance, compliance is where license management becomes an essential part of your business strategy. And it’s the first goal for most companies when starting SAM.\r\n<span style=\"font-weight: bold; \">Audits. </span>To check whether you are compliant, vendors will perform software asset management audit to see how their product is being used, how it’s configured, and whether your licenses cover all of it. There are two possible outcomes of an audit: either you’re compliant, or you’re not. Non-compliance can result in unexpected fees, which, if you’re not careful, can cost you big. An audit also disrupts your business and can take months to complete without license management technology to support the process.\r\n<span style=\"font-weight: bold; \">Optimization.</span> Often businesses are over-compliant simply because they have more licenses than they need. They prefer to over-pay upfront to outsmart the audit risk. So, while they aren’t losing a ton of money at once for failing an audit, they are losing it slowly. It may not hurt at first, but over time being over-licensed costs more than failing an audit. When you fail an audit, you buy just enough licenses to close the gap, and often vendors demand you pay back-maintenance for the licenses too. It’s expensive, but the problem is a one-time cost — that can also be reduced or completely eliminated with software license management solutions.","materialsDescription":"<h1 class=\"align-center\">5 Reasons to do Software Asset Management</h1>\r\n<span style=\"font-weight: bold; \">Cost savings.</span> With a full overview of your environment and your software needs, you know exactly what you’re using and exactly what you need. So you purchase the right licenses from the start, saving you money on maintenance fees, and helping to ensure compliance. In fact, you can reduce your licensing costs up to 30%.\r\nTime savings. Organizing your licenses and setting up software asset management process will save you time:\r\n<ul><li>Have a central database of your licensing terms and conditions, making it easier and quicker to get the information you need to make better software purchasing and IT budgeting decisions</li><li>Be able to respond to audit letters within days instead of weeks</li><li>Transparency means you can respond quicker to problems, sometimes even before they arise</li></ul>\r\n<span style=\"font-weight: bold; \">Automation.</span>Nothing says effortless like automation. Automating your processes frees you up to concentrate on other things. With alerts and regular reports, you don’t need to spend time watching out for problems and looking for areas to save. Just to name a few examples an asset management program tool can automate:\r\n<ul><li> Alerting you to over usage and non-compliance</li><li> Informing you about high-risk configurations</li><li> Suggesting optimization options</li><li> Filling software requests with existing licenses</li><li> Simulating your data center architecture and the resulting licensing costs</li></ul>\r\n<span style=\"color: rgb(97, 97, 97); \"><span style=\"font-weight: bold; \">Software License Optimization.</span> When you know what you have and use, you can go beyond compliance. You can compare your licenses. See what license schemes are possible and make the most sense in your environment—while easily keeping an eye on cost.</span>\r\n<span style=\"font-weight: bold; \">Strategy.</span> Enterprise asset management system gives you transparency into your current and past software needs. This in turn gives you valuable insights into your software future. It can help you plan in advance on multiple levels from data center architectures to budgets and service-charging. There are strategic benefits for every department in the company.\r\n<h1 class=\"align-center\">Choosing the Best Software Asset Management Software</h1>\r\n<span style=\"font-weight: bold; \">Software Discovery. </span>Enterprise asset management software enables IT organizations to keep track of their hardware and software inventory and monitor license compliance. In the past, this was largely a manual process where IT operators would maintain spreadsheets with information about IT assets. Each time a configuration item changed, a manual update would have to be performed which made it difficult to determine if your SAM database was truly accurate.\r\n<span style=\"font-weight: bold; \">Software and Hardware Inventory and Cataloging.</span> Software and hardware inventory cataloging is one of the main drivers of software asset management. Without sufficient oversight of inventory within the IT organization, waste is inevitable as IT managers order excess licenses, servers, and workstations without any knowledge of viable alternatives that may already be at their disposal. \r\nSoftware inventory is another key feature for SAM tools. IT organizations should look for a tool that tracks instances of software installations on the network and that can be used to determine exactly how many used or unused licenses the organization has for each application.\r\n<span style=\"font-weight: bold; \">License Compliance Monitoring.</span>Today's the leading software on asset management market include features that can help you proactively monitor your inventory of software licenses and detect non-compliance issues before they can ever be discovered in a software vendor audit. IT organizations can receive automated updates and notifications when a change in the system affects license compliance and take steps to correct the non-compliance.\r\n<span style=\"font-weight: bold; \">Asset Depreciation. </span>Software purchased for use is considered a fixed asset by general accounting principles, meaning that corporate organizations can depreciate purchased software on their taxes to obtain an income reduction and reduce their tax liability. Your software asset management system should track the total cost of any software your organization purchases and depreciate the software over time according to your accounting rules. \r\n<span style=\"font-weight: bold; \">Geo-location.</span> Software asset management tools provide IT organizations with unprecedented oversight into their hardware and software inventory and configuration items. The ability to detect hardware and software on the network, collect attribution data for those configuration items and organize that information into a searchable database that drives better asset management is already revolutionary for most IT organizations.\r\n<span style=\"font-weight: bold; \">Audit Scheduling.</span> If your IT organization purchases software licenses from a major software vendor, you should anticipate that you will receive at least one software audit request every three years. As your number of vendor partners grow, you may even receive audit requests annually. If you purchased the right software asset management application, you should be conducting your own software compliance audits on a monthly basis to truly verify your compliance with software license agreements.\r\n<span style=\"font-weight: bold;\">User-Friendly, Automated Reporting.</span> SAM tools with automated reporting features make it easy for IT managers and executive decision-makers to quickly access the high-impact information needed to make important decisions. Most software vendors have developed SAM tools that can collect software usage data or manage license compliance, but IT managers should also look at SAM tools with automated reporting features that promote ease-of-use and seamlessly deliver the information that users need from the system in a digestible and actionable format. \r\n\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Software_Asset_Management.png","alias":"sam-software-asset-management"},"437":{"id":437,"title":"PSM - Privileged Session Management","description":" Session management is a comprehensive IT Security process to control, monitor and record administrative access to servers, databases, and network devices. Properly implemented RBAC controls should include lock down based on day, date, time and location. Monitoring and recording should be fine-grained enough to capture keystrokes, text/graphical screen output, and mouse movements.\r\nOrganizations use session management to improve oversight and accountability over privileged accounts and credentials. Privileged session management refers to the monitoring, recording, and control over privileged sessions. IT needs to be able to audit privileged activity for both securities and to meet regulations from SOX, HIPAA, ICS CERT, GLBA, PCI DSS, FDCC, FISMA and more. Auditing activities may also include capturing keystrokes and screens (allowing for live view and playback).\r\nWhile you can manually implement some processes – such as screen recording – integrated solutions allow you to accomplish it seamlessly and at the scale of hundreds or thousands of concurrent sessions. Moreover, some third-party solutions can provide automated workflows giving IT granular control over privileged sessions, such as allowing them to pinpoint an anomalous session, and terminate it, or alternatively pause/lock it until a determination is made that the activity is appropriate.","materialsDescription":" <span style=\"font-weight: bold;\">What is Privileged Session Management?</span>\r\nPrivileged session management allows security administrators to monitor, control, and audit work sessions of privileged users. The session manager provides proxy-access to all critical resources and therefore prevents direct access to those resources. A session manager is central to privileged access management (PAM) and is generally integrated with an access manager and a password manager.\r\nPrivileged session management allows you to identify suspicious or unauthorized actions and stop them in their tracks. What’s more, session management provides an unimpeachable audit trail that allows for compliance and incident investigation.\r\n<span style=\"font-weight: bold;\">What features has Privileged Session Management?</span>\r\nThe key features of a privileged session management solution include:\r\n<ul><li>Real-time monitoring and alerting.</li><li>Real-time control systems.</li><li>RDP/SSH access control.</li><li>Authorization workflow.</li><li>Compliance and audit systems.</li></ul>\r\n<span style=\"font-weight: bold;\">Session Management: Why do you want it?</span>\r\nPrivileged session management will allow security teams to:\r\n<ul><li>Monitor, audit, and control privileged sessions across on-premises and cloud-based applications and resources.</li><li>Prevent insider attacks, privileged account escalation, and third-party access problems.</li><li>Prove regulatory compliance for HIPAA, GDPR, PCI, SOX, NYCRR 500, and other regulations.</li><li>Provide an easy-to-utilize workflow that enables the easy provisioning and de-provisioning of privileged credentials while creating 100% accountability for those privileged users.</li><li>Revolutionize incident response by enabling both automatic response and mitigation while at the same time providing a searchable database and video record that allows for a start-to-finish post-mortem analysis.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_PSM_Privileged_Session_Management.png","alias":"psm-privileged-session-management"},"445":{"id":445,"title":"Penetration Testing","description":" A <span style=\"font-weight: bold; \">penetration test</span>, colloquially known as a pen test, <span style=\"font-weight: bold; \">pentest </span>or <span style=\"font-weight: bold; \">ethical hacking</span>, is an authorized simulated cyberattack on a computer system, performed to evaluate the security of the system.\r\nStandard penetration test is performed to identify both weaknesses (also referred to as <span style=\"font-weight: bold; \">vulnerabilities</span>), including the potential for unauthorized parties to gain access to the system's features and data, as well as strengths, enabling a full risk assessment to be completed. \r\nThe main objective of system penetration testing is to identify security weaknesses. Vulnerability testing can also be used to test an organization's security policy, its adherence to compliance requirements, its employees' security awareness and the organization's ability to identify and respond to security incidents.\r\nTypically,<span style=\"font-size:11pt; font-family:Arial; font-style:normal; \">professional penetration testing</span>provides information about security weaknesses that are identified or exploited through pen testing is aggregated and provided to the organization's IT and network system managers, enabling them to make strategic decisions and prioritize remediation efforts. \r\nA wide variety of <span style=\"font-weight: bold; \">software security testing tools </span>are available to assist with penetration testing, including free-of-charge, free software, and commercial software. Penetration tools scan code in order to identity malicious code in applications that could result in a security breach. Pen testing tools examine data encryption techniques and can identify hard-coded values, such as usernames and passwords, to verify security vulnerabilities in the system.\r\n Important aspect of any penetration testing program is defining the scope within which the pen testers must operate. Usually, the scope defines what systems, locations, techniques and tools can be used in a penetration test. Limiting the scope of the penetration test helps focus team members - and defenders - on the systems over which the organization has control.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Here are several of the main vulnerability penetration testing approaches:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Targeted testing</span> is performed by the organization's IT team and the penetration testing team working together. It's sometimes referred to as a "lights turned on" approach because everyone can see the test being carried out.</li><li><span style=\"font-weight: bold;\">External testing</span> targets a company's externally visible servers or devices including domain name servers, email servers, web servers or firewalls. The<span style=\"font-size:11pt; font-family:Arial; font-style:normal; \">objective of penetration testing</span>is to find out if an outside attacker can get in and how far they can get in once they've gained access.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Internal testing</span> mimics an inside attack behind the firewall by an authorized user with standard access privileges. This kind of test is useful for estimating how much damage a disgruntled employee could cause.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Blind testing simulates</span> the actions and procedures of a real attacker by severely limiting the information given to the person or team performing the test beforehand. Typically, the pen testers may only be given the name of the company.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Double-blind testing</span> takes the blind test and carries it a step further. In this type of pen test, only one or two people within the organization might be aware a test is being conducted. Double-blind tests can be useful for testing an organization's security monitoring and incident identification as well as its response procedures.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Black box</span> testing is basically the same as blind testing, but the tester receives no information before the test takes place. Rather, the pen testers must find their own way into the system.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">White box</span> testing provides the penetration testers information about the target network before they start their work. This information can include such details as IP addresses, network infrastructure schematics and the protocols used plus the source code.</li></ul>","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What Is Penetration Testing?</span></h1>\r\nThere is a considerable amount of confusion in the industry regarding the differences between vulnerability assessment and penetration testing tool,as the two phrases are commonly interchanged. However, their meaning and implications are very different. A <span style=\"font-weight: bold; \">vulnerability assessment </span>simply identifies and reports noted vulnerabilities, whereas a pentest attempts to exploit the vulnerabilities to determine whether unauthorized access or other malicious activity is possible.<span style=\"font-weight: bold; \"> Penetration testing</span> typically includes network penetration testing and web application security testing as well as controls and processes around the networks and applications, and should occur from both outside the network trying to come in (external testing) and from inside the network.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is a pentesting tool ?</span></h1>\r\n<p class=\"align-left\">Penetration tools are used as part testing to automate certain tasks, improve testing efficiency and discover issues that might be difficult to find using manual analysis techniques alone. Two common penetration testing tools are <span style=\"font-weight: bold; \">static analysis </span>tools and <span style=\"font-weight: bold; \">dynamic analysis</span> tools. Tools for attack include software designed to produce <span style=\"font-weight: bold; \">brute-force attacks</span> or <span style=\"font-weight: bold; \">SQL injections</span>. There is also hardware specifically designed for pen testing, such as small inconspicuous boxes that can be plugged into a computer on the network to provide the hacker with remote access to that network. In addition, an ethical hacker may use social engineering techniques to find vulnerabilities. For example, sending phishing emails to company employees, or even disguising themselves as delivery people to gain physical access to the building.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What are the benefits of penetration testing?</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Manage the Risk Properly. </span>For many organizations, one of the most popular benefits of pen testing services is that they will give you a baseline to work upon to cure the risk in a structured and optimal way. It will show you the list of vulnerabilities in the target environment and the risks associated with it.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Increase Business Continuity.</span> Business continuity is the prime concern for any successful organization. A break in the business continuity can happen for many reasons. Lack of security loopholes is one of them. Insecure systems suffer more breaches in their availability than the secured ones. Today attackers are hired by other organizations to stop the continuity of business by exploiting the vulnerabilities to gain the access and to produce a denial of service condition which usually crashes the vulnerable service and breaks the server availability.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Protect Clients, Partners, and Third Parties.</span> A security breach can affect not only the target organization but also their associated clients, partners and third parties working with it. However, if company schedules a penetration test regularly and takes necessary actions towards security, it will help professionals build trust and confidence in the organization.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Helps to Evaluate Security Investment. </span> The pen test results will give us an independent view of the effectiveness of existing security processes, ensuring that configuration management practices have been followed correctly. This is an ideal opportunity to review the efficiency of the current security investment. What needs to be improved and what is working and what is not working and how much investment needed to build the more secure environment in the organization.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Help Protect Public Relationships and Guard the reputation of your company.</span>A good public relationship and company reputation are built up after taking many years struggle and hard work and with a huge amount of investment. This can be suddenly changed due to a single security breach.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Protection from Financial Damage.</span> A simple breach of the security system may cause millions of dollars of damage. Penetration testing can protect your organization from such damages.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Helps to tests cyber-defense capability.</span> During a penetration test, the target company’s security team should be able to detect multiple attacks and respond accordingly on time. Furthermore, if an intrusion is detected, the security and forensic teams should start investigations, and the penetration testers should be blocked and their tools removed. The effectiveness of your protection devices like IDS, IPS or WAF can also be tested during a penetration test.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Client-side Attacks. </span>Pen tests are an effective way of ensuring that successful highly targeted client-side attacks against key members of your staff. Security should be treated with a holistic approach. Companies only assessing the security of their servers run the risk of being targeted with client-side attacks exploiting vulnerabilities in software like web browsers, pdf readers, etc. It is important to ensure that the patch management processes are working properly updating the operating system and third-party applications.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Penetration_Testing.png","alias":"penetration-testing"},"457":{"id":457,"title":"DDoS Protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png","alias":"ddos-protection"},"465":{"id":465,"title":"UEBA - User and Entity Behavior Analytics","description":"Developments in UBA technology led Gartner to evolve the category to user and entity behavior analytics (UEBA). In September 2015, Gartner published the Market Guide for User and Entity Analytics by Vice President and Distinguished Analyst, Avivah Litan, that provided a thorough definition and explanation. UEBA was referred to in earlier Gartner reports but not in much depth. Expanding the definition from UBA includes devices, applications, servers, data, or anything with an IP address. It moves beyond the fraud-oriented UBA focus to a broader one encompassing "malicious and abusive behavior that otherwise went unnoticed by existing security monitoring systems, such as SIEM and DLP." The addition of "entity" reflects that devices may play a role in a network attack and may also be valuable in uncovering attack activity. "When end users have been compromised, malware can lay dormant and go undetected for months. Rather than trying to find where the outsider entered, UEBAs allow for quicker detection by using algorithms to detect insider threats."\r\nParticularly in the computer security market, there are many vendors for UEBA applications. They can be "differentiated by whether they are designed to monitor on-premises or cloud-based software as a service (SaaS) applications; the methods in which they obtain the source data; the type of analytics they use (i.e., packaged analytics, user-driven or vendor-written), and the service delivery method (i.e., on-premises or a cloud-based)." According to the 2015 market guide released by Gartner, "the UEBA market grew substantially in 2015; UEBA vendors grew their customer base, market consolidation began, and Gartner client interest in UEBA and security analytics increased." The report further projected, "Over the next three years, leading UEBA platforms will become preferred systems for security operations and investigations at some of the organizations they serve. It will be—and in some cases already is—much easier to discover some security events and analyze individual offenders in UEBA than it is in many legacy security monitoring systems."","materialsDescription":"<span style=\"font-weight: bold;\">What is UEBA?</span>\r\nHackers can break into firewalls, send you e-mails with malicious and infected attachments, or even bribe an employee to gain access into your firewalls. Old tools and systems are quickly becoming obsolete, and there are several ways to get past them.\r\nUser and entity behavior analytics (UEBA) give you more comprehensive way of making sure that your organization has top-notch IT security, while also helping you detect users and entities that might compromise your entire system.\r\nUEBA is a type of cybersecurity process that takes note of the normal conduct of users. In turn, they detect any anomalous behavior or instances when there are deviations from these “normal” patterns. For example, if a particular user regularly downloads 10 MB of files every day but suddenly downloads gigabytes of files, the system would be able to detect this anomaly and alert them immediately.\r\nUEBA uses machine learning, algorithms, and statistical analyses to know when there is a deviation from established patterns, showing which of these anomalies could result in, potentially, a real threat. UEBA can also aggregate the data you have in your reports and logs, as well as analyze the file, flow, and packet information.\r\nIn UEBA, you do not track security events or monitor devices; instead, you track all the users and entities in your system. As such, UEBA focuses on insider threats, such as employees who have gone rogue, employees who have already been compromised, and people who already have access to your system and then carry out targeted attacks and fraud attempts, as well as servers, applications, and devices that are working within your system.\r\n<span style=\"font-weight: bold;\">What are the benefits of UEBA?</span>\r\nIt is the unfortunate truth that today's cybersecurity tools are fast becoming obsolete, and more skilled hackers and cyber attackers are now able to bypass the perimeter defenses that are used by most companies. In the old days, you were secure if you had web gateways, firewalls, and intrusion prevention tools in place. This is no longer the case in today’s complex threat landscape, and it’s especially true for bigger corporations that are proven to have very porous IT perimeters that are also very difficult to manage and oversee.\r\nThe bottom line? Preventive measures are no longer enough. Your firewalls are not going to be 100% foolproof, and hackers and attackers will get into your system at one point or another. This is why detection is equally important: when hackers do successfully get into your system, you should be able to detect their presence quickly in order to minimize the damage.\r\n<span style=\"font-weight: bold;\">How Does UEBA Work?</span>\r\nThe premise of UEBA is actually very simple. You can easily steal an employee’s user name and password, but it is much harder to mimic the person’s normal behavior once inside the network.\r\nFor example, let’s say you steal Jane Doe’s password and user name. You would still not be able to act precisely like Jane Doe once in the system unless given extensive research and preparation. Therefore, when Jane Doe’s user name is logged in to the system, and her behavior is different than that of typical Jane Doe, that is when UEBA alerts start to sound.\r\nAnother relatable analogy would be if your credit card was stolen. A thief can pickpocket your wallet and go to a high-end shop and start spending thousands of dollars using your credit card. If your spending pattern on that card is different from the thief’s, the company’s fraud detection department will often recognize the abnormal spending and block suspicious purchases, issuing an alert to you or asking you to verify the authenticity of a transaction.\r\nAs such, UEBA is a very important component of IT security, allowing you to:\r\n1. Detect insider threats. It is not too far-fetched to imagine that an employee, or perhaps a group of employees, could go rogue, stealing data and information by using their own access. UEBA can help you detect data breaches, sabotage, privilege abuse and policy violations made by your own staff.\r\n2. Detect compromised accounts. Sometimes, user accounts are compromised. It could be that the user unwittingly installed malware on his or her machine, or sometimes a legitimate account is spoofed. UEBA can help you weed out spoofed and compromised users before they can do real harm.\r\n3. Detect brute-force attacks. Hackers sometimes target your cloud-based entities as well as third-party authentication systems. With UEBA, you are able to detect brute-force attempts, allowing you to block access to these entities.\r\n4. Detect changes in permissions and the creation of super users. Some attacks involve the use of super users. UEBA allows you to detect when super users are created, or if there are accounts that were granted unnecessary permissions.\r\n5. Detect breach of protected data. If you have protected data, it is not enough to just keep it secure. You should know when a user accesses this data when he or she does not have any legitimate business reason to access it.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_User_and_Entity_Behavior_Analytics.png","alias":"ueba-user-and-entity-behavior-analytics"},"467":{"id":467,"title":"Network Forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png","alias":"network-forensics"},"469":{"id":469,"title":"Secure E-mail Gateway","description":" According to technology research firm Gartner, secure email gateways “provide basic message transfer agent functions; inbound filtering of spam, phishing, malicious and marketing emails; and outbound data loss prevention (DLP) and email encryption.”\r\nTo put that in simpler language, a secure email gateway (also called an email security gateway) is a cybersecurity solution that monitors incoming and outgoing messages for suspicious behavior, preventing them from being delivered. Secure email gateways can be deployed via an email server, public cloud, on-premises software, or in a hybrid system. According to cybersecurity experts, none of these deployment options are inherently superior; each one has its own strengths and weaknesses that must be assessed by the individual enterprise.\r\nGartner defines the secure email gateway market as mature, with the key capabilities clearly defined by market demands and customer satisfaction. These capabilities include:\r\n<ul><li>Basic and Next-Gen Anti-Phishing and Anti-Spam</li><li>Additional Security Features</li><li>Customization of the Solution’s Management Features</li><li>Low False Positive and False Negative Percentages</li><li>External Processes and Storage</li></ul>\r\nSecure email gateways are designed to surpass the traditional detection capabilities of legacy antivirus and anti-phishing solutions. To do so, they offer more sophisticated detection and prevention capabilities; secure email gateways can make use of threat intelligence to stay up-to-date with the latest threats.\r\nAdditionally, SEGs can sandbox suspicious emails, observing their behavior in a safe, enclosed environment that resembles the legitimate network. Security experts can then determine if it is a legitimate threat or a false positive.\r\nSecure email gateway solutions will often offer data loss prevention and email encryption capabilities to protect outgoing communications from prying and unscrupulous eyes.\r\nMuch like SIEM or endpoint detection and response (EDR), secure email gateways can produce false positives and false negatives, although they do tend to be far less than rates found in SIEM and EDR alerts.","materialsDescription":" <span style=\"font-weight: bold;\">How Does a Secure Email Gateway Work?</span>\r\nA secure email gateway offers a robust framework of technologies that protect against these email-borne threats. It is effectively a firewall for your email and scans both outbound and inbound email for any malicious content. At a minimum, most secure gateways offer a minimum of four security features: virus and malware blocking, spam filtering, content filtering and email archiving. Let's take a look at these features in more detail:\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Virus and Malware Blocking</span></span>\r\nEmails infected with viruses or malware can make up approximately 1% of all email received by an organization. For a secure email gateway to effectively prevent these emails from reaching their intended recipients and delivering their payload, it must scan every email and be constantly kept up-to-date with the latest threat patterns and characteristics.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Spam Filtering</span></span>\r\nBelieve it or not, spam filtering is where the majority of a secure email gateway's processing power is focused. Spam is blocked in a number of different ways. Basic spam filtering usually involves a prefiltering technology that blocks or quarantines any emails received from known spammers. Spam filtering can also detect patterns commonly found in spam emails, such as preferred keywords used by spammers and the inclusion of links that could take the email recipient to a malicious site if clicked. Many email clients also allow users to flag spam messages that arrive in their mailbox and to block senders.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Content Filtering</span></span>\r\nContent filtering is typically applied to an outbound email sent by users within the company. For example, you can configure your secure email gateway to prevent specific sensitive documents from being sent to an external recipient, or put a block on image files or specific keywords within them being sent through the email system.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Email Archiving</span></span>\r\nEmail services, whether they are in the cloud or on-premise, need to be managed efficiently. Storage has been a problem for email administrators for many years, and while you may have almost infinite cloud storage available, email archiving can help to manage both user mailboxes and the efficiency of your systems. Compliance is also a major concern for many companies and email archiving is a must if you need to keep emails for a certain period of time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Secure_Email_Gateway.jpg","alias":"secure-e-mail-gateway"},"481":{"id":481,"title":"WAF-web application firewall","description":"A <span style=\"font-weight: bold; \">WAF (Web Application Firewall)</span> helps protect web applications by filtering and monitoring HTTP traffic between a web application and the Internet. It typically protects web applications from attacks such as cross-site forgery, cross-site-scripting (XSS), file inclusion, and SQL injection, among others. A WAF is a protocol layer 7 defense (in the OSI model), and is not designed to defend against all types of attacks. This method of attack mitigation is usually part of a suite of tools which together create a holistic defense against a range of attack vectors.\r\nIn recent years, web application security has become increasingly important, especially after web application attacks ranked as the most common reason for breaches, as reported in the Verizon Data Breach Investigations Report. WAFs have become a critical component of web application security, and guard against web application vulnerabilities while providing the ability to customize the security rules for each application. As WAF is inline with traffic, some functions are conveniently implemented by a load balancer.\r\nAccording to the PCI Security Standards Council, WAFs function as “a security policy enforcement point positioned between a web application and the client endpoint. This functionality can be implemented in software or hardware, running in an appliance device, or in a typical server running a common operating system. It may be a stand-alone device or integrated into other network components.”\r\nBy deploying a WAF firewall in front of a web application, a shield is placed between the web application and the Internet. While a proxy server protects a client machine’s identity by using an intermediary, a web firewall is a type of reverse-proxy, protecting the server from exposure by having clients pass through the WAF before reaching the server.\r\nA WAF operates through a set of rules often called <span style=\"font-weight: bold; \">policies.</span> These policies aim to protect against vulnerabilities in the application by filtering out malicious traffic. The value of a WAF management comes in part from the speed and ease with which policy modification can be implemented, allowing for faster response to varying attack vectors; during a DDoS attack, rate limiting can be quickly implemented by modifying WAF policies.\r\nWAF solutions can be deployed in several ways—it all depends on where your applications are deployed, the services needed, how you want to manage it, and the level of architectural flexibility and performance you require. Do you want to manage it yourself, or do you want to outsource that management? Is it a better model to have a cloud WAF service, option or do you want your WAF to sit on-premises?\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">A WAF products can be implemented one of three different ways:</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">A network-based WAF</span> is generally hardware-based. Since they are installed locally they minimize latency, but network-based WAFs are the most expensive option and also require the storage and maintenance of physical equipment.</li><li><span style=\"font-weight: bold; \">A host-based WAF</span> may be fully integrated into an application’s software. This solution is less expensive than a network-based WAF and offers more customizability. The downside of a host-based WAF is the consumption of local server resources, implementation complexity, and maintenance costs. These components typically require engineering time, and may be costly.</li><li><span style=\"font-weight: bold; \">Cloud-based WAFs</span> offer an affordable option that is very easy to implement; they usually offer a turnkey installation that is as simple as a change in DNS to redirect traffic. Cloud-based WAFs also have a minimal upfront cost, as users pay monthly or annually for security as a service. Cloud-based WAFs can also offer a solution that is consistently updated to protect against the newest threats without any additional work or cost on the user’s end. The drawback of a cloud-based WAF is that users hand over the responsibility to a third-party, therefore some features of the WAF may be a black box to them. </li></ul>\r\n<p class=\"align-left\"> </p>\r\n\r\n","materialsDescription":"<p class=\"align-center\"><span style=\"color: rgb(97, 97, 97); \"><span style=\"font-weight: bold; \">What types of attack WAF prevents?</span></span></p>\r\n<p class=\"align-left\"><span style=\"color: rgb(97, 97, 97); \">WAFs can prevent many attacks, including:</span></p>\r\n<ul><li><span style=\"color: rgb(97, 97, 97); \">Cross-site Scripting (XSS) — Attackers inject client-side scripts into web pages viewed by other users.</span></li><li><span style=\"color: rgb(97, 97, 97); \">SQL injection — Malicious code is inserted or injected into an web entry field that allows attackers to compromise the application and underlying systems.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Cookie poisoning — Modification of a cookie to gain unauthorized information about the user for purposes such as identity theft.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Unvalidated input — Attackers tamper with HTTP request (including the url, headers and form fields) to bypass the site’s security mechanisms.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Layer 7 DoS — An HTTP flood attack that utilizes valid requests in typical URL data retrievals.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Web scraping — Data scraping used for extracting data from websites.</span><span style=\"font-weight: bold; \"></span></li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">What are some WAFs Benefits?</span></p>\r\nWeb app firewall prevents attacks that try to take advantage of the vulnerabilities in web-based applications. The vulnerabilities are common in legacy applications or applications with poor coding or designs. WAFs handle the code deficiencies with custom rules or policies.\r\nIntelligent WAFs provide real-time insights into application traffic, performance, security and threat landscape. This visibility gives administrators the flexibility to respond to the most sophisticated attacks on protected applications.\r\nWhen the Open Web Application Security Project identifies the OWASP top vulnerabilities, WAFs allow administrators to create custom security rules to combat the list of potential attack methods. An intelligent WAF analyzes the security rules matching a particular transaction and provides a real-time view as attack patterns evolve. Based on this intelligence, the WAF can reduce false positives.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">What is the difference between a firewall and a Web Application Firewall?</span></p>\r\nA traditional firewall protects the flow of information between servers while a web application firewall is able to filter traffic for a specific web application. Network firewalls and web application firewalls are complementary and can work together.\r\nTraditional security methods include network firewalls, intrusion detection systems (IDS) and intrusion prevention systems (IPS). They are effective at blocking bad L3-L4 traffic at the perimeter on the lower end (L3-L4) of the Open Systems Interconnection (OSI) model. Traditional firewalls cannot detect attacks in web applications because they do not understand Hypertext Transfer Protocol (HTTP) which occurs at layer 7 of the OSI model. They also only allow the port that sends and receives requested web pages from an HTTP server to be open or closed. This is why web application firewalls are effective for preventing attacks like SQL injections, session hijacking and Cross-Site Scripting (XSS).","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_WAF_web_application_firewall.png","alias":"waf-web-application-firewall"},"487":{"id":487,"title":"Secure Web Gateway","description":" <span style=\"font-weight: bold; \">Secure Web gateway</span> solutions protect Web-surfing PCs from infection and enforce company policies. A secure Web gateway is a solution that filters unwanted software/malware from user-initiated Web/Internet traffic and enforces corporate and regulatory policy compliance. \r\nThese gateways must, at a minimum, include URL filtering, malicious-code detection and filtering, and application controls for popular Web-based applications, such as instant messaging (IM) and Skype. Native or integrated data leak prevention is also increasingly included. Data leak prevention features are also essential. Let's take a look at some of these features in more detail:\r\n<span style=\"font-weight: bold;\">Real-Time Traffic Inspection.</span> A secure web gateway inspects web traffic in real-time, analyzing content against corporate policies and ensuring any content that is inappropriate or which contravenes company policy is blocked. The majority of secure web gateways allow administrators to enforce common security policy templates straight off the shelf and also configure policies that are suited to their business model or compliance requirements.\r\n<span style=\"font-weight: bold;\">Protection for Off-Grid Workers.</span> As workforces become more distributed, there is a need for security solutions to offer protection on an anywhere, anytime and any device basis. A secure web gateway allows roaming users to authenticate seamlessly and to have the same security policies applies to their devices as they would if they were in the office. The result is a protected connection no matter where they are working and total peace of mind that all internet traffic is secure.\r\n<span style=\"font-weight: bold;\">Time and Content-Based Access.</span> Whether you need to restrict access to the internet at specific times, or you wish to control access to particular web content, your secure web gateway can be configured to suit your acceptable use policy and compliance requirements. Individual users can be allocated time quotas or schedules that ensure maximum productivity or only permitted access to websites that are relevant to their job roles.\r\n<span style=\"font-weight: bold;\">Data Leak Prevention.</span> As its name suggests, data leak prevention stops your corporate data from being leaked to or stolen by a third party. From detecting common business terms such as payment card industry (PCI) number patterns and phrases or personally identifiable information, a web security gateway coupled with data leak prevention software can be a very robust line of defense from both internal and external threats.","materialsDescription":"<h1 class=\"align-center\"> Secure web gateway market</h1>\r\nThere are a variety of <span style=\"font-weight: bold;\">secure web gateway vendors</span> operating - among them Symantec, iboss, F5, Check Point Software, zScaler, Barracuda, Forcepoint, McAfee and Cisco<span style=\"font-style: italic;\">. </span>Most of these companies are now emphasizing <span style=\"font-weight: bold;\">cloud web gateway</span>. Although many still carry, maintain and market their on-premises versions, the competitive battleground has largely shifted to the cloud.\r\nAccording to Gartner, Symantec and Cisco are the market leaders in terms of revenue. Their efforts in this space give an indication of where the market is heading. Symantec favors proxy-based SWG appliances and services. Cisco, on the other hand, has concentrated on a hybrid of DNS and proxy capabilities. Both have acquired CASB technology and have been integrating it with their secure web gateway services. Cisco has also added DNS-based inspection into its package. This allows it to use DNS for most inspection traffic to raise performance. More involved content inspection of potentially risky websites can be done using HTTP/HTTPS proxying.\r\nCloud based secure web gateway offerings have been growing at around 30 percent per year for the last several years, according to Gartner. When coupled with growing integration with other security features, on-premises standalone secure web gateways are slowly giving way to larger cloud-based suites that incorporate gateway security. \r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Secure_Web_Gateway.png","alias":"secure-web-gateway"},"489":{"id":489,"title":"Network Security Policy Management","description":" <span style=\"font-weight: bold; \">Network security policy management </span>streamlines security policy design and enforcement. It applies rules and best practices to manage firewalls and other devices more effectively, efficiently, and consistently. Administrators need network security management solutions to get a high level of visibility into network behavior, automate device configuration, enforce global policies, view firewall traffic, generate reports, and provide a single management interface for physical and virtual systems.\r\nSecurity policies govern the integrity and safety of the network. They provide rules for accessing the network, connecting to the Internet, adding or modifying devices or services, and more. However, rules are only effective when they are implemented. Network security management policy helps organizations stay compliant and secure by ensuring that their policies are simplified, consistent, and enforced. It helps reduce manual tasks and human errors by simplifying administration with security policy and workflow tools through a centralized management interface.\r\nNetwork security management can reduce risk across the network and protect data by leveraging the information on threats, network vulnerabilities and their criticality, evaluating potential options to block an attack, and providing intelligence for decision support. Policy administration is improved by unifying common policy tasks within a single interface, automating policy change workflow, including compliance audits and the management of multiple firewall vendors. This simplified and automated security policy management enables IT teams to save time, avoid manual errors, and reduce risk. \r\nThere are the whole network security policy management market with different tools and solutions available. Businesses use them to automate administrative tasks, which can improve accuracy and save time. The solutions can make management processes less tedious and time consuming, and can free up personnel for higher-value projects. These solutions also help IT teams avoid misconfigurations that can cause vulnerabilities in their networks. And if problems arise, network security policy management solutions can ease troubleshooting and remediation. ","materialsDescription":"<h1 class=\"align-center\">Benefits of network security policy management</h1>\r\n<span style=\"font-weight: bold;\">Streamline security policy design and enforcement</span>\r\nA network security policy management solution can help organizations achieve:\r\n<ul><li><span style=\"font-weight: bold;\">Better security.</span> Network security policy management streamlines security policy design and enforcement.</li><li><span style=\"font-weight: bold;\">Ease of use.</span> Network security policy management tools orchestrate policy design and implementation.</li><li><span style=\"font-weight: bold;\">Consistency. </span>Solutions provide templates, model policies, and configurations.</li><li><span style=\"font-weight: bold;\">Time savings.</span> Deployments are faster, and automation helps empower staff to focus on other business priorities.</li><li><span style=\"font-weight: bold;\">Lower costs.</span> Cloud-based solutions scale to thousands of devices, requiring fewer resources and allowing for centralized management.</li></ul>\r\n<span style=\"font-weight: bold;\">Apply best practices to meet challenges in firewall management</span>\r\nOver time, firewalls collect more and more configuration rules and objects. Network security policy management solutions can help combat this bloat and improve security by addressing:\r\n<ul><li><span style=\"font-weight: bold;\">Object auditing.</span> Administrators need to merge and reduce duplicate objects, determine which unused objects should be deleted, and identify inconsistent objects. Network security policy management tools help them achieve a cleaner, more consistent configuration that is less of a nuisance to manage and less vulnerable to attacks.</li><li><span style=\"font-weight: bold;\">Policy inconsistencies.</span> The network security policy management tools locate unused or shadow policies and assist IT to fix possible problems.</li><li><span style=\"font-weight: bold;\">Version control and upgrades.</span> Network security policy management solutions ease these transitions with filters that simplify and automate processes and ensure high availability.</li></ul>\r\n<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Security_Policy_Management.png","alias":"network-security-policy-management"},"750":{"id":750,"title":"Biometric Identification","description":"<p itemprop=\"headline\">Biometric systems use people’s intrinsic physical characteristics to verify their identification. The characteristics that can be used by biometric systems include fingerprints, facial identification systems, voice recognition systems and in new developments – the analysis of DNA. Biometric security systems are applied wherever there is a need for personal identification where control of access to material objects or information is required.</p>\r\n<p itemprop=\"headline\" class=\"align-center\"><span style=\"font-weight: bold; \">Types of biometric identification</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">DNA Matching.</span> The identification of an individual using the analysis of segments from DNA.</li><li><span style=\"font-weight: bold; \">Ear.</span> The identification of an individual using the shape of the ear.</li><li><span style=\"font-weight: bold; \">Eyes - Iris Recognition.</span> The use of the features found in the iris to identify an individual.</li><li><span style=\"font-weight: bold; \">Eyes - Retina Recognition.</span> The use of patterns of veins in the back of the eye to accomplish recognition.</li><li><span style=\"font-weight: bold; \">Face Recognition. </span>The analysis of facial features or patterns for the authentication or recognition of an individuals identity. Most face recognition systems either use eigenfaces or local feature analysis.</li><li><span style=\"font-weight: bold; \">Fingerprint Recognition.</span> The use of the ridges and valleys (minutiae) found on the surface tips of a human finger to identify an individual.</li><li><span style=\"font-weight: bold; \">Finger Geometry Recognition.</span> The use of 3D geometry of the finger to determine identity.</li><li><span style=\"font-weight: bold; \">Gait.</span> The use of an individuals walking style or gait to determine identity.</li><li><span style=\"font-weight: bold; \">Odour. </span>The use of an individuals odor to determine identity.</li><li><span style=\"font-weight: bold; \">Hand Geometry Recognition. </span>The use of the geometric features of the hand such as the lengths of fingers and the width of the hand to identify an individual.</li><li><span style=\"font-weight: bold; \">Typing Recognition. </span>The use of the unique characteristics of a persons typing for establishing identity.</li><li><span style=\"font-weight: bold; \">Hand Vein Recognition. </span>Vein recognition is a type of biometrics that can be used to identify individuals based on the vein patterns in the human finger or palm.</li><li><span style=\"font-weight: bold; \">Voice - Speaker Identification. </span>Identification is the task of determining an unknown speaker’s identity. Speaker identification is a 1:N (many) match where the voice is compared against N templates. Speaker identification systems can also be implemented covertly without the user’s knowledge to identify talkers in a discussion, alert automated systems of speaker changes, check if a user is already enrolled in a system, etc.</li><li><span style=\"color: rgb(97, 97, 97); \"><span style=\"font-weight: bold; \">Voice - Speaker Verification/Authentication.</span>The use of the voice as a method of determining the identity of a speaker for access control. If the speaker claims to be of a certain identity and the voice is used to verify this claim. Speaker verification is a 1:1 match where one speaker’s voice is matched to one template (also called a “voice print” or “voice model”). Speaker verification is usually employed as a “gatekeeper” in order to provide access to a secure system (e.g.: telephone banking). These systems operate with the user’s knowledge and typically require their cooperation.</span></li><li> <span style=\"font-weight: bold; \">Signature Recognition.</span> The authentication of an individual by the analysis of handwriting style, in particular the signature. There are two key types of digital handwritten signature authentication, Static and Dynamic. Static is most often a visual comparison between one scanned signature and another scanned signature, or a scanned signature against an ink signature. Technology is available to check two scanned signatures using advances algorithms. Dynamic is becoming more popular as ceremony data is captured along with the X,Y,T and P Coordinates of the signor from the signing device. This data can be utilised in a court of law using digital forensic examination tools, and to create a biometric template from which dynamic signatures can be authenticated either at time of signing or post signing, and as triggers in workflow processes.</li></ul>\r\n<br /><br />","materialsDescription":"<h1 class=\"align-center\"> Biometric Identification or Biometric Authentication?<span style=\"font-weight: bold; \"><br /></span></h1>\r\n<span style=\"font-weight: bold; \">Biometric identification</span> answers the question “who are you” and can be applied to both physical and digital scenarios. It is an established solution that is being used in many applications including law enforcement, defense, and border control.\r\nBiometric identification system usually applies to a situation where an organization needs to identify a person. The organization captures a biometric from that individual and then searches a biometric id system repository in an attempt to correctly identify the person. The biometric repository could be managed by a law enforcement agency, such as the Integrated Automated Fingerprint System (IAFIS) run by the FBI in the USA, or be part of a national identity system like India’s UIDAI system.\r\n<span style=\"font-weight: bold; \">Biometric authentication </span>asks the question “can you prove who you are” and is predominantly related to proof of identity in digital scenarios. A <span style=\"font-size:10pt; font-family:Arial; font-style:normal; \">biometric identity verification</span>system will challenge someone to prove their identity and the person has to respond in order to allow them access to a system or service.\r\nBiometric authentication involves use of a factor that is something a person is – a biometric identifier from a person can include a fingerprint, their voice, face, or even their behavior. This biometric is indexed against other identifiers, such as a user id or employee number, with the identifier being matched against a single stored biometric template – one-to-one match.\r\n<h1 class=\"align-center\">Where is biometric identification technology used?</h1>\r\nHistorically, applications using have been predominantly initiated by authorities for military access control, criminal or civil identification under a tightly regulated legal and technical framework. \r\nToday, sectors, including banking, retail, and mobile commerce, are demonstrating a real appetite for the benefits of biometric identity systems.<br />Most importantly, awareness and acceptance have been boosted in the past seven years, as millions of smartphone users are unlocking their phones with a fingerprint or a face. The most typical use cases of biometric technologies are:\r\n<ul><li>Law enforcement and public security (criminal/suspect identification)</li><li>Military (enemy/ally identification)</li><li>Border, travel, and migration control (traveler/migrant/passenger identification)</li><li>Civil identification (citizen/resident/voter identification)</li><li>Healthcare and subsidies (patient/beneficiary/healthcare professional identification)</li><li>Physical and logical access (owner/user/employee/contractor/partner identification)</li><li>Commercial applications (consumer/customer identification)</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Biometric_Identification.png","alias":"biometric-identification"},"782":{"id":782,"title":"NGFW - next-generation firewall","description":"A next-generation firewall (NGFW) is a part of the third generation of firewall technology that is implemented in either hardware or software and is capable of detecting and blocking sophisticated attacks by enforcing security policies at the application, port and protocol levels.\r\nNGFWs typically feature advanced functions including:\r\n<ul><li>application awareness;</li><li>integrated intrusion prevention systems (IPS);</li><li>identity awareness -- user and group control;</li><li>bridged and routed modes;</li><li> the ability to use external intelligence sources.</li></ul>\r\nOf these offerings, most next-generation firewalls integrate at least three basic functions: enterprise firewall capabilities, an intrusion prevention system (IPS) and application control.\r\nLike the introduction of stateful inspection in traditional firewalls, NGFWs bring additional context to the firewall's decision-making process by providing it with the ability to understand the details of the web application traffic passing through it and to take action to block traffic that might exploit vulnerabilities.\r\nThe different features of next-generation firewalls combine to create unique benefits for users. NGFWs are often able to block malware before it enters a network, something that wasn't previously possible.\r\nNGFWs are also better equipped to address advanced persistent threats (APTs) because they can be integrated with threat intelligence services. NGFWs can also offer a low-cost option for companies trying to improve basic device security through the use of application awareness, inspection services, protection systems and awareness tools.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What is a next-generation firewall (NGFW)?</span>\r\nA NGFW contains all the normal defenses that a traditional firewall has as well as a type of intrusion prevention software and application control, alongside other additional security features. NGFWs are also capable of deep packet inspection, which enables more robust filters.\r\nIntrusion prevention software monitors network activity to detect and stop vulnerability exploits from occurring. This is usually done by monitoring for breaches against the network policies in place as a breach is usually indicative of malicious activity.\r\nApplication control software simply sets up a hard filter for programs that are trying to send or receive data over the Internet. This can either be done by a blacklist (programs in the filter are blocked) or by a whitelist (programs not in the filter are blocked).","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_NGFW.png","alias":"ngfw-next-generation-firewall"},"791":{"id":791,"title":"Vulnerability Scanner","description":" A <span style=\"font-weight: bold;\">vulnerability scanner</span> is a computer program designed to assess computers, network vulnerability or applications for known weaknesses. In plain words, these scanners are used to discover the weaknesses of a given system. They are utilized in the identification and detection of vulnerabilities arising from mis-configurations or flawed programming within a network-based asset such as a firewall, router, web server, application server, etc. They are typically available as SaaS (Software as a service); provided over the internet and delivered as a web application. \r\nMost vulnerability scanners will also attempt to log in to systems using default or other credentials in order to build a more detailed picture of the system. After building up an inventory, the vulnerability scanner checks each item in the inventory against one or more databases of known vulnerabilities to see if any items are subject to any of these vulnerabilities. The result of such scan is a systems vulnerability analysis, highlighting any that have known vulnerabilities that may need threat and vulnerability management.\r\n<span style=\"font-weight: bold;\">How vulnerability scanning works</span>. Vulnerability scanning finds systems and software that have known security vulnerabilities, but this information is only useful to IT security teams when it is used as the first part of a four-part vulnerability management process. <span style=\"font-weight: bold;\">Vulnerability management process involves:</span>\r\n<ul><li>Identification of vulnerabilities</li><li>Evaluation of the risk posed by any vulnerabilities identified</li><li>Treatment of any identified vulnerabilities</li><li>Reporting on vulnerabilities and how they have been handled</li></ul>\r\n<br /><span style=\"font-weight: bold;\">Types of vulnerability scans. </span>Not all vulnerability scans are alike, and to ensure compliance with certain regulations (such as those set by the PCI Security Standards Council) it is necessary to carry out two distinct types of vulnerability scans: an internal and an external vulnerability scan. \r\n<span style=\"font-weight: bold;\">External vulnerability scan.</span> As the name suggests, an external vulnerability scan is carried out from outside an organization's network, and its principal purpose is to detect vulnerabilities in the perimeter defenses such as open ports in the network firewall or specialized web application firewall. An external vulnerability scan can help organizations fix security issues that could enable hackers to gain access to the organization's network.\r\n<span style=\"font-weight: bold;\">Internal vulnerability scan. </span>By contrast, an internal vulnerability scan is carried out from inside an organization's perimeter defenses. Its purpose is to detect vulnerabilities that could be exploited by hackers who successfully penetrate the perimeter defenses, or equally by "insider threats" such as contractors or disgruntled employees who have legitimate access to parts of the network.\r\n<span style=\"font-weight: bold;\">Unauthenticated and authenticated vulnerability scans.</span> A similar but not always identical variation of internal and external vulnerability scans is the concept of unauthenticated and authenticated vulnerability scans. Unauthenticated scans, like external scans, search for weaknesses in the network perimeter, while authenticated scans provide vulnerability scanners with various privileged credentials, allowing them to probe the inside of the network for weak passwords, configuration issues, and misconfigured databases or applications.<br /><br />","materialsDescription":"<h1 class=\"align-center\">What is Vulnerability Assessment?</h1>\r\nVulnerability Assessment is also known as Vulnerability Testing, is a vulnerability scanning software performed to evaluate the security risks in the software system in order to reduce the probability of a threat. Vulnerability Analysis depends upon two mechanisms namely Vulnerability Assessment and Penetration Testing (VAPT).\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Types of a vulnerability scanner:</span></p>\r\n<span style=\"font-weight: bold;\">Host Based. </span>Identifies the issues in the host or the system. The process is carried out by using host-based scanners and diagnose the vulnerabilities. The host-based tools will load a mediator software onto the target system; it will trace the event and report it to the security analyst.\r\n<span style=\"font-weight: bold;\">Network-Based.</span> It will detect the open port, and identify the unknown services running on these ports. Then it will disclose possible vulnerabilities associated with these services. This process is done by using Network-based Scanners.\r\n<span style=\"font-weight: bold;\">Database-Based.</span> It will identify the security exposure in the database systems using tools and techniques to prevent from SQL Injections. (SQL Injections: - Injecting SQL statements into the database by the malicious users, which can read the sensitive data's from a database and can update the data in the Database.)\r\n<h1 class=\"align-center\">How vulnerability scanners works?</h1>\r\nVulnerability scanning is an inspection of the potential points of exploit on a computer or network to identify security holes.\r\nA security scan detects and classifies system weaknesses in computers, networks and communications equipment and predicts the effectiveness of countermeasures. A scan may be performed by an organization’s IT department or a security service provide, possibly as a condition imposed by some authority. Vulnerability scans are also used by attackers looking for points of entry.\r\nA vulnerability scanner runs from the end point of the person inspecting the attack surface in question. The software compares details about the target attack surface to a database of information about known security holes in services and ports, anomalies in packet construction, and potential paths to exploitable programs or scripts. The scanner software attempts to exploit each vulnerability that is discovered.\r\nRunning a vulnerability scan can pose its own risks as it is inherently intrusive on the target machine’s running code. As a result, the scan can cause issues such as errors and reboots, reducing productivity.\r\n<h1 class=\"align-center\">How to choose the best vulnerability scanning tool?</h1>\r\nWhen researching vulnerability scanners, it's important to find out how they're rated for accuracy (the most important metric) as well as reliability, scalability and reporting. If accuracy is lacking, you'll end up running two different scanners, hoping that one picks up vulnerabilities that the other misses. This adds cost and effort to the scanning process. \r\n<span style=\"font-weight: bold;\">Software-Based Vulnerability Scanners.</span> These types of scanning products generally include configuration auditing, target profiling, penetration testing and detailed vulnerability analysis. They integrate with Windows products, such as Microsoft System Center, to provide intelligent patch management; some work with mobile device managers. They can scan not only physical network devices, servers and workstations, but extend to virtual machines, BYOD mobile devices and databases.\r\n<span style=\"font-weight: bold;\">Cloud-Based Vulnerability Scanners: </span>Continuous, On-Demand Monitoring. A newer type of vulnerability finder is delivered on-demand as Software as a Service (SaaS). Like software-based scanners, on-demand scanners incorporate links for downloading vendor patches and updates for identified vulnerabilities, reducing remediation effort. These services also include scanning thresholds to prevent overloading devices during the scanning process, which can cause devices to crash.\r\n<h1 class=\"align-center\">What is mobile application security scanner?</h1>\r\nMobile application security testing can help ensure there aren’t any loopholes in the software that may cause data loss. The sets of tests are meant to attack the app to identify possible threats and vulnerabilities that would allow external persons or systems to access private information stored on the mobile device. \r\nMobile application vulnerability scanner can help to ensure that applications are free from the flaws and weaknesses that hackers use to gain access to sensitive information. From backdoors, malicious code and other threats, these flaws may be present both in commercial and open source applications as well as software developed in-house.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Vulnerability_Scanner.png","alias":"vulnerability-scanner"},"793":{"id":793,"title":"Web Application Vulnerability Scanner","description":" A <span style=\"font-weight: bold; \">web application vulnerability scanner,</span> also known as a <span style=\"font-weight: bold; \">web application security scanner,</span> is an automated security tool. It scans web applications for malware, vulnerabilities, and logical flaws. Web application scanner use black box tests, as these tests do not require access to the source code but instead launch external attacks to test for security vulnerabilities. These simulated attacks can detect path traversal, cross-site scripting(XSS), and command injection.\r\nWeb app scanners are categorized as <span style=\"font-weight: bold; \">Dynamic Application Security Testing (DAST) tools.</span> DAST tools provide insight into how your web applications behave while they are in production, enabling your business to address potential vulnerabilities before a hacker uses them to stage an attack. As your web applications evolve, DAST solutions continue to scan them so that your business can promptly identify and remediate emerging issues before they develop into serious risks.\r\nWeb app vulnerability scanner first crawls the entire website, analyzing in-depth each file it finds, and displaying the entire website structure. After this discovery stage, it performs an automatic audit for common security vulnerabilities by launching a series of Web attacks. Web application scanners check for vulnerabilities on the Web server, proxy server, Web application server and even on other Web services. Unlike source code scanners, web application scanners don't have access to the source code and therefore detect vulnerabilities by actually performing attacks.\r\nA web application vulnerability assessment is very different than a general vulnerability assessment where security focus on networks and hosts. App vulnerability scanner scans ports, connect to services, and use other techniques to gather information revealing the patch levels, configurations, and potential exposures of our infrastructure.\r\nAutomated web application scanning tools help the user making sure the whole website is properly crawled, and that no input or parameter is left unchecked. Automated web vulnerability scanners also help in finding a high percentage of the technical vulnerabilities, and give you a very good overview of the website’s structure, and security status. \r\nThe best way to identify web application security threats is to perform web application vulnerability assessment. The importance of these threats could leave your organization exposed if they are not properly identified and mitigated. Therefore, implementing a web app security scanner solution should be of paramount importance for your organizations security plans in the future. \r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Why Web Application Vulnerability Scanning is important?</h1>\r\nWeb applications are the technological base of modern companies. That’s why more and more businesses are betting on the development of this type of digital platforms. They stand out because they allow to automate processes, simplify tasks, be more efficient and offer a better service to the customer.<br /><br />The objective of web applications is that the user completes a task, be it buying, making a bank transaction, accessing e-mail, editing photos, texts, among many other things. In fact, they are very useful for an endless number of services, hence their popularity. Their disadvantages are few, but there is one that requires special attention: vulnerabilities.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Main web application security risks</span></p>\r\nA web vulnerability scanner tools will help you keep your services protected. However, it is important to be aware of the major security risks that exist so that both developers and security professionals are always alert and can find the most appropriate solutions in a timely manner.\r\n<ul><li><span style=\"font-weight: bold; \">Injection</span></li></ul>\r\nThis is a vulnerability that affects the application databases. They occur when unreliable data is sent to an interpreter by means of a command or query. The attacker may inject malicious code to disrupt the normal operation of the application by making it access the data without authorization or execute involuntary commands.\r\n<ul><li><span style=\"font-weight: bold; \">Authentication failures</span></li></ul>\r\nIf a vulnerability scan in web applications finds a failure, it may be due to loss of authentication. This is a critical vulnerability, as it allows the attacker to impersonate another user. This can compromise important data such as usernames, passwords, session tokens, and more.\r\n<ul><li><span style=\"font-weight: bold; \">Sensitive data exposure</span></li></ul>\r\nA serious risk is the exposure of sensitive data especially financial information such as credit cards or account numbers, personal data such as place of residence, or health-related information. If an attacker scans for this type of vulnerability, he or she may modify or steal this data and use it fraudulently. Therefore, it is essential to use a web app scanning tools to find vulnerabilities in web applications.<br /><br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_Application_Vulnerability_Scanner.png","alias":"web-application-vulnerability-scanner"},"826":{"id":826,"title":"Sandbox","description":" In computer security, a "sandbox" is a security mechanism for separating running programs, usually in an effort to mitigate system failures or software vulnerabilities from spreading. It is often used to execute untested or untrusted programs or code, possibly from unverified or untrusted third parties, suppliers, users or websites, without risking harm to the host machine or operating system. A sandbox typically provides a tightly controlled set of resources for guest programs to run in, such as scratch space on disk and memory. Network access, the ability to inspect the host system or read from input devices are usually disallowed or heavily restricted.\r\nIn the sense of providing a highly controlled environment, sandboxes may be seen as a specific example of virtualization. Sandboxing is frequently used to test unverified programs that may contain a virus or other malicious code, without allowing the software to harm the host device.","materialsDescription":" <span style=\"font-weight: bold;\">What is the sandbox?</span>\r\nThe sandbox is like a ''virtual machine'', which runs on the device. It is a section of the device, for which a user account has been set in the system. In this section, programs can be started, data can be collected and services can be provided, which are not available within the system of the router. Inside the sandbox, the environment is like it is inside a Linux PC. The sandbox is an area separate from the router part of the system, which ensures that the router can fulfill its task without interference from the sandbox.\r\n<span style=\"font-weight: bold;\">What is the use of the sandbox?</span>\r\nBesides its actual tasks, the device can fulfill additional tasks via sandbox. Without the sandbox, these tasks would have to be carried out by an additional industrial computer.\r\nNot having to install and run the computer saves space inside the switching cabinet, money, as additional hardware is not required, and energy, which also reduces industrial waste heat. The device establishes the connection into the internet or to the control center. The programs in the sandbox use this connection. The configuration of the connection to the internet or to the control center can be set comfortably via the web interface.\r\n<span style=\"font-weight: bold;\">Which things can you NOT do with the sandbox?</span>\r\nAll the things that do require root permissions on the device.\r\nIt is not possible to execute commands or programs, which require root rights. Examples for such commands or programs are the raw connections (like ICMP - "ping"). This ensures that the device doesn't interfere with its tasks.\r\n<span style=\"font-weight: bold;\">Which hardware interfaces are available in the sandbox?</span>\r\nSerial interface, Ethernet of the LAN connection (4-port-switch), WAN connection depending on the make of the device (LAN, GPRS, EDGE, UMTS, PSTN and ISDN).\r\nVia the web interface, you can assign the serial interface to be used by applications in the sandbox. If assigned to the sandbox, the serial interface is not available for the device. In this case, neither serial-Ethernet-gateway nor the connection of a further, redundant communication device will be possible. The LAN, as well as the WAN connection, can be used in the way they are configured for the device. Network settings can be configured via the web interface and not via the sandbox. Depending on the configuration and the type of the device also the sandbox can communicate in various ways via LAN, GPRS, EDGE, UMTS, PSTN or ISDN.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon-sandbox.png","alias":"sandbox"},"832":{"id":832,"title":"CASB - Cloud Access Security Broker","description":"A cloud access security broker (CASB) (sometimes pronounced cas-bee) is on-premises or cloud-based software that sits between cloud service users and cloud applications, and monitors all activity and enforces security policies. A CASB can offer a variety of services, including but not limited to monitoring user activity, warning administrators about potentially hazardous actions, enforcing security policy compliance, and automatically preventing malware.\r\nA CASB may deliver security, the management or both. Broadly speaking, "security" is the prevention of high-risk events, whilst "management" is the monitoring and mitigation of high-risk events.\r\nCASBs that deliver security must be in the path of data access, between the user and the cloud. Architecturally, this might be achieved with proxy agents on each end-point device, or in agentless fashion without requiring any configuration on each device. Agentless CASB allows for rapid deployment and delivers security on all devices, company-managed or unmanaged BYOD. Agentless CASB also respects user privacy, inspecting only corporate data. Agent-based CASB is difficult to deploy and effective only on devices that are managed by the corporation. Agent-based CASB typically inspects both corporate and personal data.\r\nCASBs that deliver management may use APIs to inspect data and activity in the cloud to alert of risky events after the fact. Another management capability of a CASB is to inspect firewall or proxy logs for the usage of cloud applications.","materialsDescription":"<span style=\"font-weight: bold;\">What is CASB?</span> A Cloud Access Security Broker (CASB) is a policy enforcement point that secures data & apps in the cloud and on any device, anywhere.\r\n<span style=\"font-weight: bold;\">What is the difference between security and management?</span> Security is preventing risky events from happening, management is cleaning up after high-risk events.\r\n<span style=\"font-weight: bold;\">What is Shadow IT?</span> Cloud applications used by business users without IT oversight, also known as unmanaged apps.\r\n<span style=\"font-weight: bold;\">What are managed apps?</span> Cloud Applications that are managed by IT, e.g.Office 365.\r\n<span style=\"font-weight: bold;\">What are the types of CASB?</span> Three types of Cloud Access Security Broker\r\n<ul><li>a) API-only CASB offer basic management</li><li>b) multi-mode first-gen CASB offer management & security</li><li>c) Next-Gen CASB deliver management, security & Zero-Day protection.</li></ul>\r\n<span style=\"font-weight: bold;\">What is a forward proxy?</span> A proxy where traffic must be forwarded by the end-point Such proxies requires agents and configuration on client devices.\r\n<span style=\"font-weight: bold;\">What is a reverse proxy?</span> A proxy where traffic is automatically routed, requiring no agent or configuration on the end-point.\r\n<span style=\"font-weight: bold;\">What is AJAX-VM?</span> Acronym for "Adaptive Javascript and XML- Virtual Machine." AJAX-VM virtualizes cloud apps on the fly so they can be proxied without agents. Reverse-proxy CASB are brittle without AJAX-VM and break frequently with app changes.\r\n<span style=\"font-weight: bold;\">What are the types of CASB architecture?</span> There are three types of CASB architecture: API-only, forward proxy, and reverse proxy. Some CASB are API-only, others API and forward proxy. Next-Gen CASBs offer all three with AJAX-VM.\r\n<span style=\"font-weight: bold;\">What is CASB encryption?</span> Encryption/decryption of data prior to upload/download to a cloud application.\r\n <span style=\"font-weight: bold;\">What is searchable encryption?</span> An encryption system that combines full encryption with a clear-text index to enable search and sort without compromising encryption strength.\r\n<span style=\"font-weight: bold;\">What is tokenization?</span> Obfuscation by encoding each input string as a unique output string.\r\n<span style=\"font-weight: bold;\">What is agentless MDM?</span> Mobile security for BYOD that does not require agents. Easy to deploy and has no access to personal data or apps, thereby preserving user privacy.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CASB.png","alias":"casb-cloud-access-security-broker"},"834":{"id":834,"title":"IoT - Internet of Things Security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png","alias":"iot-internet-of-things-security"},"836":{"id":836,"title":"DRP - Digital Risk Protection","description":"Digital risks exist on social media and web channels, outside most organization's line of visibility. Organizations struggle to monitor these external, unregulated channels for risks targeting their business, their employees or their customers.\r\nCategories of risk include cyber (insider threat, phishing, malware, data loss), revenue (customer scams, piracy, counterfeit goods) brand (impersonations, slander) and physical (physical threats, natural disasters).\r\nDue to the explosive growth of digital risks, organizations need a flexible, automated approach that can monitor digital channels for organization-specific risks, trigger alerts and remediate malicious posts, profiles, content or apps.\r\nDigital risk protection (DRP) is the process of protecting social media and digital channels from security threats and business risks such as social engineering, external fraud, data loss, insider threat and reputation-based attacks. DRP reduces risks that emerge from digital transformation, protecting against the unwanted exposure of a company’s data, brand, and attack surface and providing actionable insight on threats from the open, deep, and dark web.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What is a digital risk?</span>\r\nDigital risks can take many forms. Most fundamentally, what makes a risk digital? Digital risk is any risk that plays out in one form or another online, outside of an organization’s IT infrastructure and beyond the security perimeter. This can be a cyber risk, like a phishing link or ransomware via LinkedIn, but can also include traditional risks with a digital component, such as credit card money flipping scams on Instagram.\r\n<span style=\"font-weight: bold;\">What are the features of Digital Risk Protection?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">The features are:</span></span>\r\n<ul><li>Protecting yourself from digital risk by building a watchtower, not a wall. A new Forrester report identifies two objectives for any digital risk protection effort: identifying risks and resolving them.</li><li>Digital risk comes in many forms, like unauthorized data disclosure, threat coordination from cybercriminals, risks inherent in the technology you use and in your third-party associates and even from your own employees.</li><li>The best solutions should automate the collection of data and draw from many sources; should have the capabilities to map, monitor, and mitigate digital risk and should be flexible enough to be applied in multiple use cases — factors that many threat intelligence solutions excel in.</li></ul>\r\n<span style=\"font-weight: bold;\">What elements constitute a digital risk?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Unauthorized Data Disclosure</span></span>\r\nThis includes the theft or leakage of any kind of sensitive data, like the personal financial information of a retail organization’s customers or the source code for a technology company’s proprietary products.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Threat Coordination Activity</span></span>\r\nMarketplaces and criminal forums on the dark web or even just on the open web are potent sources of risk. Here, a vulnerability identified by one group or individual who can’t act on it can reach the hands of someone who can. This includes the distribution of exploits in both targeted and untargeted campaigns.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supply Chain Issues</span></span>\r\nBusiness partners, third-party suppliers, and other vendors who interact directly with your organization but are not necessarily following the same security practices can open the door to increased risk.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Employee Risk</span></span>\r\nEven the most secure and unbreakable lock can still easily be opened if you just have the right key. Through social engineering efforts, identity or access management and manipulation, or malicious insider attacks coming from disgruntled employees, even the most robust cybersecurity program can be quickly subverted.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Technology Risks</span></span>\r\nThis broad category includes all of the risks you must consider across the different technologies your organization might rely on to get your work done, keep it running smoothly, and tell people about it.\r\n<ul><li><span style=\"font-weight: bold;\">Physical Infrastructure:</span> Countless industrial processes are now partly or completely automated, relying on SCADA, DCS, or PLC systems to run smoothly — and opening them up to cyber- attacks (like the STUXNET attack that derailed an entire country’s nuclear program).</li><li><span style=\"font-weight: bold;\">IT Infrastructure:</span> Maybe the most commonsensical source of digital risk, this includes all of the potential vulnerabilities in your software and hardware. The proliferation of the internet of things devices poses a growing and sometimes underappreciated risk here.</li><li><span style=\"font-weight: bold;\">Public-Facing Presence:</span> All of the points where you interact with your customers and other public entities, whether through social media, email campaigns, or other marketing strategies, represent potential sources of risk.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Digital_Risk_Protection.png","alias":"drp-digital-risk-protection"},"838":{"id":838,"title":"Endpoint Detection and Response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png","alias":"endpoint-detection-and-response"},"840":{"id":840,"title":"ICS/SCADA Cyber Security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png","alias":"icsscada-cyber-security"},"848":{"id":848,"title":"Multi-factor authentication","description":" Multi-factor authentication (MFA) is an authentication method in which a computer user is granted access only after successfully presenting two or more pieces of evidence (or factors) to an authentication mechanism: knowledge (something the user and only the user knows), possession (something the user and only the user has), and inherence (something the user and only the user is).\r\nTwo-factor authentication (also known as 2FA) is a type, or subset, of multi-factor authentication. It is a method of confirming users' claimed identities by using a combination of two different factors: 1) something they know, 2) something they have, or 3) something they are.\r\nA good example of two-factor authentication is the withdrawing of money from an ATM; only the correct combination of a bank card (something the user possesses) and a PIN (something the user knows) allows the transaction to be carried out.\r\nTwo other examples are to supplement a user-controlled password with a one-time password (OTP) or code generated or received by an authenticator (e.g. a security token or smartphone) that only the user possesses.\r\nTwo-step verification or two-step authentication is a method of confirming a user's claimed identity by utilizing something they know (password) and a second factor other than something they have or something they are. An example of a second step is the user repeating back something that was sent to them through an out-of-band mechanism. Or, the second step might be a six digit number generated by an app that is common to the user and the authentication system.","materialsDescription":" <span style=\"font-weight: bold;\">What is MFA?</span>\r\nMulti-factor authentication (MFA) combines two or more independent authentication factors. For example, suppose your website required your clients to enter something only they would know upon login (password), something they have (like a one-time smartphone authentication token provided by special software), and a biometric identifier (like a thumbprint). It is pretty hard for a mortgage cyber-attacker to have all three of those items, especially the biometric identifier.\r\n<span style=\"font-weight: bold;\">Why do I need MFA? What are the benefits?</span>\r\nPasswords are becoming increasingly easy to compromise. They can be stolen, “phished”, guessed, and hacked. New technology and hacking techniques combined with the limited pool of passwords most people use for multiple accounts increases vulnerability.\r\n<span style=\"font-weight: bold;\">How does MFA work?</span>\r\nMulti-factor authentication throws a few roadblocks in the hacker's pathway. Location factors are one way for a security system to identify a person's identity. For example, work schedules and location can determine whether a user is who he says he is. Time is another example of a security layer. If a person uses his phone at a job in the US, it is physically impossible for him to use it again from Europe 15 minutes later. These are especially helpful in online bank fraud and, by extension, mortgage company fraud.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Multi-factor_authentication.png","alias":"multi-factor-authentication"},"850":{"id":850,"title":"Mobile Data Protection (BYOD)","description":"The first and best defense in securing BYODs begins with the same requirements you apply to devices that are already on your network. These security measures include enforcing strong passcodes on all devices, antivirus protection and data loss prevention (DLP), full-disk encryption for disk, removable media and cloud storage, mobile device management (MDM) to wipe sensitive data when devices are lost or stolen, and application control.\r\nYou should always extend encryption to both data in transit and data at rest. Protecting your devices with strong passwords means you make it incredibly difficult for someone to break in and steal data. But if somehow your device-level password is compromised, encrypting the data stored on the device provides a second level of security a hacker must get through in order to steal your data.\r\nYou should encourage users to think of the extra layers of security as helpful tools that give them the ability to use their own devices within the workplace. By password protecting devices, a user acknowledges accountability and responsibility for protecting their data.\r\nIn addition to applying passcodes and antivirus prevention to your devices, you should apply a custom level of application control to BYODs. If applications are available to employees on the internal network, they should be able to access them offsite through a VPN or email software.\r\nA successful BYOD program allows your users to be productive outside of their scheduled work hours while also giving them the flexibility to do the things they like to do when they’re not working—like update their status or enjoy playing an interactive game.\r\nWhatever decision you make for your BYOD policy, be sure that it’s enforceable and enables IT to deploy software remotely.","materialsDescription":" <span style=\"font-weight: bold;\">How can I control apps on BYOD devices?</span>\r\nThe best way IT can control apps on BYOD devices is to have an acceptable use policy in place. Since BYOD adoption has picked up, IT pros have less control over the apps employees use. A policy that lays out expectations and consequences for users can improve the success of your BYOD initiative. Mobile device management (MDM) systems also offer application controls through their blacklisting and whitelisting features. In addition, those with auto-quarantine or remote wipe capabilities also help in the event that a user installs non-compliant apps on his or her device.\r\n<span style=\"font-weight: bold;\">How can my organization create a BYOD policy?</span>\r\nEvery organization’s BYOD policy is a little different because policies are most effective when they’re organization-specific. The most important thing you can do is create a policy as soon as you decide to allow users to bring their own devices to work. The basic points of good BYOD programs address the same things: how users should protect devices, what they can and can’t access and what will happen if and when they leave the company.\r\nA strong BYOD policy should also consider device selection, reimbursement, MDM, device security and mobile application security. Also think about how you’ll enforce BYOD policy once it’s in place.\r\n<span style=\"font-weight: bold;\">What mobile app delivery options does my department have?</span>\r\nThere are four good mobile app delivery approaches, but each has pitfalls.\r\nEnterprise app stores give IT licensing and compliance control and let users download pre-approved mobile applications, but they require a lot of maintenance and resources. Web apps are compatible with different devices and don’t need a distribution system, but without an Internet connection, they aren’t practical. Cloud file-sharing services are good for app delivery since most employees are already familiar with services such as Dropbox. If you chose the cloud option, you’ll have to use or develop cloud-based mobile apps or pay for cloud storage services. And mobile desktop virtualization lets users connect to a PC environment and stores all sensitive data on servers instead of devices. But for desktop virtualization on mobile devices to work, users need a reasonably large screen and a reliable Internet connection.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_BYOD.png","alias":"mobile-data-protection-byod"},"852":{"id":852,"title":"Network security","description":" Network security consists of the policies and practices adopted to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs; conducting transactions and communications among businesses, government agencies and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: it secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.\r\nNetwork security starts with authentication, commonly with a username and a password. Since this requires just one detail authenticating the user name — i.e., the password—this is sometimes termed one-factor authentication. With two-factor authentication, something the user 'has' is also used (e.g., a security token or 'dongle', an ATM card, or a mobile phone); and with three-factor authentication, something the user 'is' is also used (e.g., a fingerprint or retinal scan).\r\nOnce authenticated, a firewall enforces access policies such as what services are allowed to be accessed by the network users. Though effective to prevent unauthorized access, this component may fail to check potentially harmful content such as computer worms or Trojans being transmitted over the network. Anti-virus software or an intrusion prevention system (IPS) help detect and inhibit the action of such malware. An anomaly-based intrusion detection system may also monitor the network like wireshark traffic and may be logged for audit purposes and for later high-level analysis. Newer systems combining unsupervised machine learning with full network traffic analysis can detect active network attackers from malicious insiders or targeted external attackers that have compromised a user machine or account.\r\nCommunication between two hosts using a network may be encrypted to maintain privacy.\r\nHoneypots, essentially decoy network-accessible resources, may be deployed in a network as surveillance and early-warning tools, as the honeypots are not normally accessed for legitimate purposes. Techniques used by the attackers that attempt to compromise these decoy resources are studied during and after an attack to keep an eye on new exploitation techniques. Such analysis may be used to further tighten security of the actual network being protected by the honeypot. A honeypot can also direct an attacker's attention away from legitimate servers. A honeypot encourages attackers to spend their time and energy on the decoy server while distracting their attention from the data on the real server. Similar to a honeypot, a honeynet is a network set up with intentional vulnerabilities. Its purpose is also to invite attacks so that the attacker's methods can be studied and that information can be used to increase network security. A honeynet typically contains one or more honeypots.","materialsDescription":" <span style=\"font-weight: bold;\">What is Network Security?</span>\r\nNetwork security is any action an organization takes to prevent malicious use or accidental damage to the network’s private data, its users, or their devices. The goal of network security is to keep the network running and safe for all legitimate users.\r\nBecause there are so many ways that a network can be vulnerable, network security involves a broad range of practices. These include:\r\n<ul><li><span style=\"font-weight: bold;\">Deploying active devices:</span> Using software to block malicious programs from entering, or running within, the network. Blocking users from sending or receiving suspicious-looking emails. Blocking unauthorized use of the network. Also, stopping the network's users accessing websites that are known to be dangerous.</li><li><span style=\"font-weight: bold;\">Deploying passive devices:</span> For instance, using devices and software that report unauthorized intrusions into the network, or suspicious activity by authorized users.</li><li><span style=\"font-weight: bold;\">Using preventative devices:</span> Devices that help identify potential security holes, so that network staff can fix them.</li><li><span style=\"font-weight: bold;\">Ensuring users follow safe practices:</span> Even if the software and hardware are set up to be secure, the actions of users can create security holes. Network security staff is responsible for educating members of the organization about how they can stay safe from potential threats.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is Network Security Important?</span>\r\nUnless it’s properly secured, any network is vulnerable to malicious use and accidental damage. Hackers, disgruntled employees, or poor security practices within the organization can leave private data exposed, including trade secrets and customers’ private details.\r\nLosing confidential research, for example, can potentially cost an organization millions of dollars by taking away competitive advantages it paid to gain. While hackers stealing customers’ details and selling them to be used in fraud, it creates negative publicity and public mistrust of the organization.\r\nThe majority of common attacks against networks are designed to gain access to information, by spying on the communications and data of users, rather than to damage the network itself.\r\nBut attackers can do more than steal data. They may be able to damage users’ devices or manipulate systems to gain physical access to facilities. This leaves the organization’s property and members at risk of harm.\r\nCompetent network security procedures keep data secure and block vulnerable systems from outside interference. This allows the network’s users to remain safe and focus on achieving the organization’s goals.\r\n<span style=\"font-weight: bold;\">Why Do I Need Formal Education to Run a Computer Network?</span>\r\nEven the initial setup of security systems can be difficult for those unfamiliar with the field. A comprehensive security system is made of many pieces, each of which needs specialized knowledge.\r\nBeyond setup, each aspect of security is constantly evolving. New technology creates new opportunities for accidental security leaks, while hackers take advantage of holes in security to do damage as soon as they find them. Whoever is in charge of the network’s security needs to be able to understand the technical news and changes as they happen, so they can implement safety strategies right away.\r\nProperly securing your network using the latest information on vulnerabilities helps minimize the risk that attacks will succeed. Security Week reported that 44% of breaches in 2014 came from exploits that were 2-4 years old.\r\nUnfortunately, many of the technical aspects of network security are beyond those who make hiring decisions. So, the best way an organization can be sure that their network security personnel are able to properly manage the threats is to hire staff with the appropriate qualifications.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_security.png","alias":"network-security"}},"companyUrl":"https://sigasec.com/","countryCodes":["USA"],"certifications":[],"isSeller":true,"isSupplier":true,"isVendor":true,"presenterCodeLng":"","seo":{"title":"SIGA OT Solutions","keywords":"","description":"SIGA is cyber security and OT security company that develops and markets solutions for Industrial Control Systems (ICS) and Supervisory Control and Data Acquisition (SCADA) systems used in critical infrastructures and industrial processes. Their proprietary de","og:title":"SIGA OT Solutions","og:description":"SIGA is cyber security and OT security company that develops and markets solutions for Industrial Control Systems (ICS) and Supervisory Control and Data Acquisition (SCADA) systems used in critical infrastructures and industrial processes. Their proprietary de","og:image":"https://old.roi4cio.com/uploads/roi/company/SIGA_logo.png"},"eventUrl":"","vendorPartners":[],"supplierPartners":[],"vendoredProducts":[{"id":3283,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SIGA_logo.png","logo":true,"scheme":false,"title":"SigaPlatform","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"the-sigaplatform","companyTitle":"SIGA OT Solutions","companyTypes":["supplier","vendor"],"companyId":5142,"companyAlias":"siga-ot-solutions","description":"Uniquely located between sensors or actuators and PLCs, SigaPlatform provides real-time alerts at the very first sign of a process anomaly, whether caused by an electrical/mechanical fault or a cyber-attack.\r\n<ul><li><span style=\"font-weight: bold;\">Non-IT-based maintenance and monitoring.</span> Full monitoring of raw electrical signals. Fully out-of-band.</li><li><span style=\"font-weight: bold;\">Raw electrical signal monitoring.</span> Transcends sensory data output limitations including amplification, filtering, range matching and much more.</li><li><span style=\"font-weight: bold;\">Protocol agnostic.</span> Any vendor. Any packet information. Any protocol. Any device.</li></ul>\r\n\r\n<span style=\"font-weight: bold;\">Real value from day one</span>\r\n<span style=\"font-weight: bold;\">Quick & easy to install</span>\r\nUniquely located between the critical process sensors and PLCs.\r\n<span style=\"font-weight: bold;\">Accurate</span>\r\nReal-world operational status of your monitored equipment.\r\n<span style=\"font-weight: bold;\">No false alarms</span>\r\nEarly warning with virtually no false alarms or missed anomalies.\r\n<span style=\"font-weight: bold;\">Reliable</span>\r\nFully integrated on an electrical level. The most reliable source of information.\r\n<span style=\"font-weight: bold;\">Machine learning</span>\r\nArtificial intelligence algorithms remove the need for complicated rule setups.\r\n<span style=\"font-weight: bold;\">Uncircumventable</span>\r\n100% out-of-band. Installed on-site in complete isolation from externally-connected communications networks.","shortDescription":"SigaPlatform - Incipient Failure Detection. Enhance the reliability, safety and cybersecurity of your industrial assets.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"SigaPlatform","keywords":"","description":"Uniquely located between sensors or actuators and PLCs, SigaPlatform provides real-time alerts at the very first sign of a process anomaly, whether caused by an electrical/mechanical fault or a cyber-attack.\r\n<ul><li><span style=\"font-weight: bold;\">Non-IT-bas","og:title":"SigaPlatform","og:description":"Uniquely located between sensors or actuators and PLCs, SigaPlatform provides real-time alerts at the very first sign of a process anomaly, whether caused by an electrical/mechanical fault or a cyber-attack.\r\n<ul><li><span style=\"font-weight: bold;\">Non-IT-bas","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SIGA_logo.png"},"eventUrl":"","translationId":3284,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":5,"title":"Security Software","alias":"security-software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"suppliedProducts":[{"id":3283,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SIGA_logo.png","logo":true,"scheme":false,"title":"SigaPlatform","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"the-sigaplatform","companyTitle":"SIGA OT Solutions","companyTypes":["supplier","vendor"],"companyId":5142,"companyAlias":"siga-ot-solutions","description":"Uniquely located between sensors or actuators and PLCs, SigaPlatform provides real-time alerts at the very first sign of a process anomaly, whether caused by an electrical/mechanical fault or a cyber-attack.\r\n<ul><li><span style=\"font-weight: bold;\">Non-IT-based maintenance and monitoring.</span> Full monitoring of raw electrical signals. Fully out-of-band.</li><li><span style=\"font-weight: bold;\">Raw electrical signal monitoring.</span> Transcends sensory data output limitations including amplification, filtering, range matching and much more.</li><li><span style=\"font-weight: bold;\">Protocol agnostic.</span> Any vendor. Any packet information. Any protocol. Any device.</li></ul>\r\n\r\n<span style=\"font-weight: bold;\">Real value from day one</span>\r\n<span style=\"font-weight: bold;\">Quick & easy to install</span>\r\nUniquely located between the critical process sensors and PLCs.\r\n<span style=\"font-weight: bold;\">Accurate</span>\r\nReal-world operational status of your monitored equipment.\r\n<span style=\"font-weight: bold;\">No false alarms</span>\r\nEarly warning with virtually no false alarms or missed anomalies.\r\n<span style=\"font-weight: bold;\">Reliable</span>\r\nFully integrated on an electrical level. The most reliable source of information.\r\n<span style=\"font-weight: bold;\">Machine learning</span>\r\nArtificial intelligence algorithms remove the need for complicated rule setups.\r\n<span style=\"font-weight: bold;\">Uncircumventable</span>\r\n100% out-of-band. Installed on-site in complete isolation from externally-connected communications networks.","shortDescription":"SigaPlatform - Incipient Failure Detection. Enhance the reliability, safety and cybersecurity of your industrial assets.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"SigaPlatform","keywords":"","description":"Uniquely located between sensors or actuators and PLCs, SigaPlatform provides real-time alerts at the very first sign of a process anomaly, whether caused by an electrical/mechanical fault or a cyber-attack.\r\n<ul><li><span style=\"font-weight: bold;\">Non-IT-bas","og:title":"SigaPlatform","og:description":"Uniquely located between sensors or actuators and PLCs, SigaPlatform provides real-time alerts at the very first sign of a process anomaly, whether caused by an electrical/mechanical fault or a cyber-attack.\r\n<ul><li><span style=\"font-weight: bold;\">Non-IT-bas","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SIGA_logo.png"},"eventUrl":"","translationId":3284,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":5,"title":"Security Software","alias":"security-software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"partnershipProgramme":null}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}