{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"company":{"role-vendor":{"ru":"Производитель","_type":"localeString","en":"Vendor"},"role-supplier":{"_type":"localeString","en":"Supplier","ru":"Поставщик"},"products-popover":{"_type":"localeString","en":"Products","de":"die produkte","ru":"Продукты"},"introduction-popover":{"en":"introduction","ru":"внедрения","_type":"localeString"},"partners-popover":{"en":"partners","ru":"партнеры","_type":"localeString"},"update-profile-button":{"ru":"Обновить профиль","_type":"localeString","en":"Update profile"},"read-more-button":{"en":"Show more","ru":"Показать ещё","_type":"localeString"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"user-implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"categories":{"ru":"Компетенции","_type":"localeString","en":"Categories"},"description":{"en":"Description","ru":"Описание","_type":"localeString"},"role-user":{"ru":"Пользователь","_type":"localeString","en":"User"},"partnership-vendors":{"en":"Partnership with vendors","ru":"Партнерство с производителями","_type":"localeString"},"partnership-suppliers":{"ru":"Партнерство с поставщиками","_type":"localeString","en":"Partnership with suppliers"},"reference-bonus":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus 4 reference"},"partner-status":{"ru":"Статус партнёра","_type":"localeString","en":"Partner status"},"country":{"ru":"Страна","_type":"localeString","en":"Country"},"partner-types":{"_type":"localeString","en":"Partner types","ru":"Типы партнеров"},"branch-popover":{"en":"branch","ru":"область деятельности","_type":"localeString"},"employees-popover":{"en":"number of employees","ru":"количество сотрудников","_type":"localeString"},"partnership-programme":{"ru":"Партнерская программа","_type":"localeString","en":"Partnership program"},"partner-discounts":{"_type":"localeString","en":"Partner discounts","ru":"Партнерские скидки"},"registered-discounts":{"ru":"Дополнительные преимущества за регистрацию сделки","_type":"localeString","en":"Additional benefits for registering a deal"},"additional-advantages":{"en":"Additional Benefits","ru":"Дополнительные преимущества","_type":"localeString"},"additional-requirements":{"en":"Partner level requirements","ru":"Требования к уровню партнера","_type":"localeString"},"certifications":{"ru":"Сертификация технических специалистов","_type":"localeString","en":"Certification of technical specialists"},"sales-plan":{"_type":"localeString","en":"Annual Sales Plan","ru":"Годовой план продаж"},"partners-vendors":{"ru":"Партнеры-производители","_type":"localeString","en":"Partners-vendors"},"partners-suppliers":{"ru":"Партнеры-поставщики","_type":"localeString","en":"Partners-suppliers"},"all-countries":{"_type":"localeString","en":"All countries","ru":"Все страны"},"supplied-products":{"ru":"Поставляемые продукты","_type":"localeString","en":"Supplied products"},"vendored-products":{"ru":"Производимые продукты","_type":"localeString","en":"Produced products"},"vendor-implementations":{"ru":"Производимые внедрения","_type":"localeString","en":"Produced deployments"},"supplier-implementations":{"en":"Supplied deployments","ru":"Поставляемые внедрения","_type":"localeString"},"show-all":{"en":"Show all","ru":"Показать все","_type":"localeString"},"not-yet-converted":{"ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later."},"schedule-event":{"ru":"Pасписание событий","_type":"localeString","en":"Events schedule"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"register":{"en":"Register","ru":"Регистрация ","_type":"localeString"},"login":{"_type":"localeString","en":"Login","ru":"Вход"},"auth-message":{"ru":"Для просмотра ивентов компании авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString","en":"To view company events please log in or register on the sit."},"company-presentation":{"_type":"localeString","en":"Company presentation","ru":"Презентация компании"}},"header":{"help":{"de":"Hilfe","ru":"Помощь","_type":"localeString","en":"Help"},"how":{"de":"Wie funktioniert es","ru":"Как это работает","_type":"localeString","en":"How does it works"},"login":{"_type":"localeString","en":"Log in","de":"Einloggen","ru":"Вход"},"logout":{"ru":"Выйти","_type":"localeString","en":"Sign out"},"faq":{"de":"FAQ","ru":"FAQ","_type":"localeString","en":"FAQ"},"references":{"_type":"localeString","en":"Requests","de":"References","ru":"Мои запросы"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find-it-product":{"en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта","_type":"localeString"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"ru":"Матрица сравнения","_type":"localeString","en":"Comparison Matrix"},"roi-calculators":{"_type":"localeString","en":"ROI calculators","ru":"ROI калькуляторы"},"b4r":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference"},"business-booster":{"_type":"localeString","en":"Business boosting","ru":"Развитие бизнеса"},"catalogs":{"ru":"Каталоги","_type":"localeString","en":"Catalogs"},"products":{"_type":"localeString","en":"Products","ru":"Продукты"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"for-suppliers":{"en":"For suppliers","ru":"Поставщикам","_type":"localeString"},"blog":{"ru":"Блог","_type":"localeString","en":"Blog"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"en":"My account","ru":"Мой кабинет","_type":"localeString"},"register":{"en":"Register","ru":"Зарегистрироваться","_type":"localeString"},"comparison-deletion":{"_type":"localeString","en":"Deletion","ru":"Удаление"},"comparison-confirm":{"ru":"Подтвердите удаление","_type":"localeString","en":"Are you sure you want to delete"},"search-placeholder":{"ru":"Введите поисковый запрос","_type":"localeString","en":"Enter your search term"},"my-profile":{"en":"My profile","ru":"Мои данные","_type":"localeString"},"about":{"en":"About Us","_type":"localeString"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"en":"Pitch Avatar","_type":"localeString"},"sub_it_catalogs":{"_type":"localeString","en":"Find IT product"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"en":"Make online presentations","_type":"localeString"},"sub_roi4webinar":{"en":"Create an avatar for the event","_type":"localeString"},"catalogs_new":{"en":"Products","_type":"localeString"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"_type":"localeString","en":"Our IT Catalogs"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"en":"Our Products","_type":"localeString"},"it_it_catalogs":{"en":"IT catalogs","_type":"localeString"}},"footer":{"copyright":{"de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString","en":"All rights reserved"},"company":{"en":"My Company","de":"Über die Firma","ru":"О компании","_type":"localeString"},"about":{"en":"About us","de":"Über uns","ru":"О нас","_type":"localeString"},"infocenter":{"ru":"Инфоцентр","_type":"localeString","en":"Infocenter","de":"Infocenter"},"tariffs":{"de":"Tarife","ru":"Тарифы","_type":"localeString","en":"Subscriptions"},"contact":{"_type":"localeString","en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами"},"marketplace":{"de":"Marketplace","ru":"Marketplace","_type":"localeString","en":"Marketplace"},"products":{"de":"Produkte","ru":"Продукты","_type":"localeString","en":"Products"},"compare":{"_type":"localeString","en":"Pick and compare","de":"Wähle und vergleiche","ru":"Подобрать и сравнить"},"calculate":{"en":"Calculate the cost","de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString"},"get_bonus":{"en":"Bonus for reference","de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс","_type":"localeString"},"salestools":{"_type":"localeString","en":"Salestools","de":"Salestools","ru":"Salestools"},"automatization":{"ru":"Автоматизация расчетов","_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung"},"roi_calcs":{"en":"ROI calculators","de":"ROI-Rechner","ru":"ROI калькуляторы","_type":"localeString"},"matrix":{"_type":"localeString","en":"Comparison matrix","de":"Vergleichsmatrix","ru":"Матрица сравнения"},"b4r":{"ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference"},"our_social":{"de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети","_type":"localeString","en":"Our social networks"},"subscribe":{"_type":"localeString","en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку"},"subscribe_info":{"ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews"},"policy":{"en":"Privacy Policy","ru":"Политика конфиденциальности","_type":"localeString"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"quote":{"ru":"Калькулятор цены","_type":"localeString","en":"Price calculator"},"boosting":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"4vendors":{"_type":"localeString","en":"4 vendors","ru":"поставщикам"},"blog":{"ru":"блог","_type":"localeString","en":"blog"},"pay4content":{"ru":"платим за контент","_type":"localeString","en":"we pay for content"},"categories":{"ru":"категории","_type":"localeString","en":"categories"},"showForm":{"en":"Show form","ru":"Показать форму","_type":"localeString"},"subscribe__title":{"en":"We send a digest of actual news from the IT world once in a month!","ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString"},"subscribe__email-label":{"_type":"localeString","en":"Email","ru":"Email"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"ru":"Это поле обязательное","_type":"localeString","en":"This field is required"},"subscribe__notify-label":{"ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString","en":"Yes, please, notify me about news, events and propositions"},"subscribe__agree-label":{"_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data","ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*"},"subscribe__submit-label":{"_type":"localeString","en":"Subscribe","ru":"Подписаться"},"subscribe__email-message":{"_type":"localeString","en":"Please, enter the valid email","ru":"Пожалуйста, введите корректный адрес электронной почты"},"subscribe__email-placeholder":{"en":"username@gmail.com","ru":"username@gmail.com","_type":"localeString"},"subscribe__name-placeholder":{"en":"Last, first name","ru":"Имя Фамилия","_type":"localeString"},"subscribe__success":{"_type":"localeString","en":"You are successfully subscribed! Check you mailbox.","ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик."},"subscribe__error":{"ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString","en":"Subscription is unsuccessful. Please, try again later."},"roi4presenter":{"en":"Roi4Presenter","de":"roi4presenter","ru":"roi4presenter","_type":"localeString"},"it_catalogs":{"en":"IT catalogs","_type":"localeString"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"ru":"Главная","_type":"localeString","en":"Home"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"products":{"en":"Products","ru":"Продукты","_type":"localeString"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"registration":{"ru":"Регистрация","_type":"localeString","en":"Registration"},"b2b-platform":{"_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers","ru":"Портал для покупателей, поставщиков и производителей ИТ"}},"comment-form":{"title":{"ru":"Оставить комментарий","_type":"localeString","en":"Leave comment"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"_type":"localeString","en":"Last name","ru":"Фамилия"},"company":{"ru":"Компания","_type":"localeString","en":"Company name"},"position":{"ru":"Должность","_type":"localeString","en":"Position"},"actual-cost":{"en":"Actual cost","ru":"Фактическая стоимость","_type":"localeString"},"received-roi":{"_type":"localeString","en":"Received ROI","ru":"Полученный ROI"},"saving-type":{"ru":"Тип экономии","_type":"localeString","en":"Saving type"},"comment":{"_type":"localeString","en":"Comment","ru":"Комментарий"},"your-rate":{"en":"Your rate","ru":"Ваша оценка","_type":"localeString"},"i-agree":{"_type":"localeString","en":"I agree","ru":"Я согласен"},"terms-of-use":{"en":"With user agreement and privacy policy","ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"ru":"{NAME} - это обязательное поле","_type":"localeString","en":"{NAME} is required filed"}},"maintenance":{"title":{"ru":"На сайте проводятся технические работы","_type":"localeString","en":"Site under maintenance"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}}},"translationsStatus":{"company":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"company":{"meta":[{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"},{"name":"og:type","content":"website"}],"translatable_meta":[{"translations":{"ru":"Компания","_type":"localeString","en":"Company"},"name":"title"},{"translations":{"en":"Company description","ru":"Описание компании","_type":"localeString"},"name":"description"},{"name":"keywords","translations":{"en":"Company keywords","ru":"Ключевые слова для компании","_type":"localeString"}}],"title":{"ru":"ROI4CIO: Компания","_type":"localeString","en":"ROI4CIO: Company"}}},"pageMetaDataStatus":{"company":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{"veracity":{"id":5137,"title":"Veracity","logoURL":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png","alias":"veracity","address":"Aliso Viejo, CA","roles":[{"id":2,"type":"supplier"},{"id":3,"type":"vendor"}],"description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial network that provides an on-premises, centralized configuration, control, and monitoring solution that tracks all connected devices and their communications. The Veracity platform is a secure-by-default network that moves beyond the detection and alerting of cyber events into a resilient network that reduces the attack surface by design. <br />The Veracity Industrial SDNTM network massively reduces the complexity of the network by repurposing the switch infrastructure to ensure communication between devices is determined by the system’s design. Veracity provides an innovative and comprehensive platform for critical networks that enables your business mission. ","companyTypes":["supplier","vendor"],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[{"id":752,"title":"Veracity for U.S. Department of Energy","description":"ALISO VIEJO, Calif. – July 19, 2017 — Veracity Industrial Networks, a leading developer of Industrial SDN-based technology for operational networks, today announced they have completed the first phase of delivery to the United States Department of Energy on their “Chess Master” project to ensure ICS network cybersecurity.<br /><span style=\"font-style: italic;\"><br />“We are very proud to make our first delivery of technology to the DOE on this all-important project”</span> said Veracity CEO, Paul Myer.<span style=\"font-style: italic;\">“Veracity is making significant progress in developing an OT Network platform that will strengthen cybersecurity of industrial networks with centralized visibility and control.”</span><br /><br />Recently, a dangerous piece of malware, alternately named “Industroyer” or “Crash Override,” purpose-built to disrupt physical systems, was discovered in the wild. This malware was used on an electric transmission station north of the city of Kiev, blacking out a portion of the Ukrainian capital. Veracity is working closely with the DOE to safeguard U. S. systems against such attacks.<br /><br />The Chess Master project was designed to research, develop, test, and commercialize a security validation and policy enforcement application that connects into a flow controller that manages all field networks centrally. Veracity is working with partners Schweitzer Engineering Laboratories and Sempra Energy to bring these capabilities to today’s industrial networks.<br /><br />Chess Master was preceded by “Watchdog,” a project focused on using industrial SDN networks for cybersecurity, in which the DOE concluded <span style=\"font-style: italic;\">“This project has forever changed the way critical infrastructure networks are designed, secured, deployed and maintained. The cybersecurity and performance advantages achieved are significant, simply put traditional networking has been obsoleted.”</span><br /><br />At the recent Grid Modernization Initiative Peer Review, leadership from DOE’s Western Area Power Administration spoke about the importance of ensuring the continued safe and reliable operation of the electric power grid. WAPA Senior VP and Sierra Nevada Regional Manager Subhash Paluru said, <span style=\"font-style: italic;\">“The emergence of new technologies create cyber and other physical-security related issues. We all need to continue to be forward looking, evolving our services to meet the changes the future will bring to our industry. By sustaining the partnership between industry and government represented here today we can continue to collaboratively power the energy frontier.”</span><br /><br /><span style=\"font-style: italic;\">“Veracity now has the industry’s first SDN-based industrial network management and security platform.”</span> added Myer.<span style=\"font-style: italic;\">“This is the foundation needed to implement true security and gain visibility into the illusive OT/ICS Network and is likely the future of networking for power related installations.”</span><br /><br />Veracity has developed a DOE/Chess Master resources page at www.veracity.io/doe where there is additional information on the history of the project and DOE’s original design, as well as other related content.","alias":"veracity-for-us-department-of-energy","roi":0,"seo":{"title":"Veracity for U.S. Department of Energy","keywords":"","description":"ALISO VIEJO, Calif. – July 19, 2017 — Veracity Industrial Networks, a leading developer of Industrial SDN-based technology for operational networks, today announced they have completed the first phase of delivery to the United States Department of Energy on th","og:title":"Veracity for U.S. Department of Energy","og:description":"ALISO VIEJO, Calif. – July 19, 2017 — Veracity Industrial Networks, a leading developer of Industrial SDN-based technology for operational networks, today announced they have completed the first phase of delivery to the United States Department of Energy on th"},"deal_info":"","user":{"id":5143,"title":"U.S. Department of Energy","logoURL":"https://old.roi4cio.com/uploads/roi/company/DOE_logo.png","alias":"ministerstvo-ehnergetiki-ssha","address":"","roles":[],"description":"The United States Department of Energy (DOE) is a cabinet-level department of the United States Government concerned with the United States' policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation's nuclear weapons program, nuclear reactor production for the United States Navy, energy conservation, energy-related research, radioactive waste disposal, and domestic energy production. It also directs research in genomics; the Human Genome Project originated in a DOE initiative. DOE sponsors more research in the physical sciences than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories. The agency is administered by the United States Secretary of Energy, and its headquarters are located in Southwest Washington, D.C., on Independence Avenue in the James V. Forrestal Building, named for James Forrestal, as well as in Germantown, Maryland.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.energy.gov/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"U.S. Department of Energy","keywords":"","description":"The United States Department of Energy (DOE) is a cabinet-level department of the United States Government concerned with the United States' policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation's nuclear we","og:title":"U.S. Department of Energy","og:description":"The United States Department of Energy (DOE) is a cabinet-level department of the United States Government concerned with the United States' policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation's nuclear we","og:image":"https://old.roi4cio.com/uploads/roi/company/DOE_logo.png"},"eventUrl":""},"supplier":{"id":5137,"title":"Veracity","logoURL":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png","alias":"veracity","address":"Aliso Viejo, CA","roles":[],"description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial network that provides an on-premises, centralized configuration, control, and monitoring solution that tracks all connected devices and their communications. The Veracity platform is a secure-by-default network that moves beyond the detection and alerting of cyber events into a resilient network that reduces the attack surface by design. <br />The Veracity Industrial SDNTM network massively reduces the complexity of the network by repurposing the switch infrastructure to ensure communication between devices is determined by the system’s design. Veracity provides an innovative and comprehensive platform for critical networks that enables your business mission. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://veracity.io/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Veracity","keywords":"","description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:title":"Veracity","og:description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:image":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png"},"eventUrl":""},"vendors":[{"id":5137,"title":"Veracity","logoURL":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png","alias":"veracity","address":"Aliso Viejo, CA","roles":[],"description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial network that provides an on-premises, centralized configuration, control, and monitoring solution that tracks all connected devices and their communications. The Veracity platform is a secure-by-default network that moves beyond the detection and alerting of cyber events into a resilient network that reduces the attack surface by design. <br />The Veracity Industrial SDNTM network massively reduces the complexity of the network by repurposing the switch infrastructure to ensure communication between devices is determined by the system’s design. Veracity provides an innovative and comprehensive platform for critical networks that enables your business mission. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://veracity.io/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Veracity","keywords":"","description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:title":"Veracity","og:description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:image":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png"},"eventUrl":""}],"products":[{"id":3269,"logo":false,"scheme":false,"title":"Veracity Cerebellum","vendorVerified":0,"rating":"1.40","implementationsCount":1,"suppliersCount":0,"alias":"veracity-cerebellum","companyTypes":[],"description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smooth and balanced muscular activity. It is also important for learning motor behaviors. The Veracity “Cerebellum” platform is designed to serve a similar function for industrial networks.<br />Veracity’s Cerebellum provides a system level approach that responds to sensory data and orchestrates the pre-designed production process response.<br />Cerebellum is designed for operational and engineering efficiency; a logical workflow-based approach to network configuration, orchestration, security and resilience.</span>\r\n\r\n<span style=\"font-weight: bold;\">What Does Veracity Cerebellum Offer:</span>\r\n<span style=\"text-decoration: underline;\"><br />Security Level Model</span>\r\n<ul> <li>Cerebellum provides the first fully functional visual based security level model builder.</li> </ul>\r\n<ul> <li>The security level allows for a user to quickly build the Purdue Manufacturing Model, ISA-95, ISA-99, or even create a model from scratch.</li> </ul>\r\n<ul> <li>The user can quickly define the functional levels in their model and drag & drop device types from the industry library to their respective functional levels.</li> </ul>\r\n<ul> <li>Finally, the user can easily define rules for each level (e.g. communication between levels)</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">Authorize Networked Devices</span>\r\n<ul> <li>Cerebellum makes device management simple.</li> </ul>\r\n<ul> <li>With Veracity’s INDUSTRIAL SDN™, 100% of all devices connected to the network are identified.</li> </ul>\r\n<ul> <li>During the learning/identification mode, the system is also characterizing the network devices to classify the functional role and device type (e.g., PLC, RTU, SCADA Server, etc.).</li> </ul>\r\n<ul> <li>Device management provides information to the user to define whether a device should be authorized or not.</li> </ul>\r\n<ul> <li>The user can also decide to quarantine a device (e.g., an unauthorized integrator laptop).</li> </ul>\r\n<span style=\"text-decoration: underline;\"><br />Security Zone Management</span>\r\n<ul> <li>Cerebellum provides an innovative approach to network segmentation via the creation of security zones.</li> </ul>\r\n<ul> <li>This workflow-based approach allows the user to easily create security zones or logical groups and assign devices to those groups.</li> </ul>\r\n<ul> <li>This can be accomplished in multiple ways from Cerebellum’s single pane of glass – by asset/network drag and drop or command line interface.</li> </ul>\r\n\r\n<span style=\"text-decoration: underline;\">Authorized Communication</span>\r\n<ul> <li>Cerebellum provides an innovative approach to traffic engineering which the abstracts complexity at scale while allowing fine-grained control.</li> </ul>\r\n<ul> <li>The user can manage traffic at a high level – e.g. what zone to zone communications are permitted – or via very granular rules such as “a specific PLC is allowed to communicate with a specific HMI over DNP-3.”</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">Visual Validation</span>\r\n<ul> <li>Where engineers are very comfortable working with spreadsheet-like interfaces for managing complex data, what is lacking is a visual representation.</li> </ul>\r\n<ul> <li>Visual validation is an important step to identify the rules that are being configured in a simplified and consumable manner.</li> </ul>\r\n<ul> <li>This enables the user to maximize their efficiency and accuracy.</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">System Policy Management</span>\r\n<ul> <li>In addition to simplified traffic engineering via zones and device types, Cerebellum provides dynamic, API-based control by allowing configuration change sets to be grouped as policies.</li> </ul>\r\n<ul> <li>These policies can be enabled or disabled at any time, vastly simplifying operational workflows.</li> </ul>\r\n<ul> <li>For instance, during normal operation it may not be required to allow engineering workstations network access to control (e.g., PLCs) devices.</li> </ul>\r\n<ul> <li>The system will support both a default policy of denying that access alongside an operational policy of allowing that access, and switching between them can be done via a remote but authorized process driven by a change management workflow or via a few clicks in the user interface.</li> </ul>","shortDescription":"Veracity Cerebellum is designed for operational and engineering efficiency; a logical workflow-based approach to network configuration, orchestration, security and resilience.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":7,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Veracity Cerebellum","keywords":"","description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smoot","og:title":"Veracity Cerebellum","og:description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smoot"},"eventUrl":"","translationId":3278,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":220,"title":"United States","name":"USA"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":10,"title":"Ensure Compliance"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":177,"title":"Decentralized IT systems"},{"id":282,"title":"Unauthorized access to corporate IT systems and data"},{"id":336,"title":"Risk or Leaks of confidential information"},{"id":344,"title":"Malware infection via Internet, email, storage devices"},{"id":350,"title":"No monitoring of corporate IT processes"},{"id":384,"title":"Risk of attacks by hackers"},{"id":386,"title":"Risk of lost access to data and IT systems"},{"id":385,"title":"Risk of data loss or damage"}]}},"categories":[{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://veracity.io/veracity-industrial-networks-delivers-new-sdn-based-network-infrastructure-u-s-department-energy/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0}],"vendorImplementations":[{"id":752,"title":"Veracity for U.S. Department of Energy","description":"ALISO VIEJO, Calif. – July 19, 2017 — Veracity Industrial Networks, a leading developer of Industrial SDN-based technology for operational networks, today announced they have completed the first phase of delivery to the United States Department of Energy on their “Chess Master” project to ensure ICS network cybersecurity.<br /><span style=\"font-style: italic;\"><br />“We are very proud to make our first delivery of technology to the DOE on this all-important project”</span> said Veracity CEO, Paul Myer.<span style=\"font-style: italic;\">“Veracity is making significant progress in developing an OT Network platform that will strengthen cybersecurity of industrial networks with centralized visibility and control.”</span><br /><br />Recently, a dangerous piece of malware, alternately named “Industroyer” or “Crash Override,” purpose-built to disrupt physical systems, was discovered in the wild. This malware was used on an electric transmission station north of the city of Kiev, blacking out a portion of the Ukrainian capital. Veracity is working closely with the DOE to safeguard U. S. systems against such attacks.<br /><br />The Chess Master project was designed to research, develop, test, and commercialize a security validation and policy enforcement application that connects into a flow controller that manages all field networks centrally. Veracity is working with partners Schweitzer Engineering Laboratories and Sempra Energy to bring these capabilities to today’s industrial networks.<br /><br />Chess Master was preceded by “Watchdog,” a project focused on using industrial SDN networks for cybersecurity, in which the DOE concluded <span style=\"font-style: italic;\">“This project has forever changed the way critical infrastructure networks are designed, secured, deployed and maintained. The cybersecurity and performance advantages achieved are significant, simply put traditional networking has been obsoleted.”</span><br /><br />At the recent Grid Modernization Initiative Peer Review, leadership from DOE’s Western Area Power Administration spoke about the importance of ensuring the continued safe and reliable operation of the electric power grid. WAPA Senior VP and Sierra Nevada Regional Manager Subhash Paluru said, <span style=\"font-style: italic;\">“The emergence of new technologies create cyber and other physical-security related issues. We all need to continue to be forward looking, evolving our services to meet the changes the future will bring to our industry. By sustaining the partnership between industry and government represented here today we can continue to collaboratively power the energy frontier.”</span><br /><br /><span style=\"font-style: italic;\">“Veracity now has the industry’s first SDN-based industrial network management and security platform.”</span> added Myer.<span style=\"font-style: italic;\">“This is the foundation needed to implement true security and gain visibility into the illusive OT/ICS Network and is likely the future of networking for power related installations.”</span><br /><br />Veracity has developed a DOE/Chess Master resources page at www.veracity.io/doe where there is additional information on the history of the project and DOE’s original design, as well as other related content.","alias":"veracity-for-us-department-of-energy","roi":0,"seo":{"title":"Veracity for U.S. Department of Energy","keywords":"","description":"ALISO VIEJO, Calif. – July 19, 2017 — Veracity Industrial Networks, a leading developer of Industrial SDN-based technology for operational networks, today announced they have completed the first phase of delivery to the United States Department of Energy on th","og:title":"Veracity for U.S. Department of Energy","og:description":"ALISO VIEJO, Calif. – July 19, 2017 — Veracity Industrial Networks, a leading developer of Industrial SDN-based technology for operational networks, today announced they have completed the first phase of delivery to the United States Department of Energy on th"},"deal_info":"","user":{"id":5143,"title":"U.S. Department of Energy","logoURL":"https://old.roi4cio.com/uploads/roi/company/DOE_logo.png","alias":"ministerstvo-ehnergetiki-ssha","address":"","roles":[],"description":"The United States Department of Energy (DOE) is a cabinet-level department of the United States Government concerned with the United States' policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation's nuclear weapons program, nuclear reactor production for the United States Navy, energy conservation, energy-related research, radioactive waste disposal, and domestic energy production. It also directs research in genomics; the Human Genome Project originated in a DOE initiative. DOE sponsors more research in the physical sciences than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories. The agency is administered by the United States Secretary of Energy, and its headquarters are located in Southwest Washington, D.C., on Independence Avenue in the James V. Forrestal Building, named for James Forrestal, as well as in Germantown, Maryland.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.energy.gov/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"U.S. Department of Energy","keywords":"","description":"The United States Department of Energy (DOE) is a cabinet-level department of the United States Government concerned with the United States' policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation's nuclear we","og:title":"U.S. Department of Energy","og:description":"The United States Department of Energy (DOE) is a cabinet-level department of the United States Government concerned with the United States' policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation's nuclear we","og:image":"https://old.roi4cio.com/uploads/roi/company/DOE_logo.png"},"eventUrl":""},"supplier":{"id":5137,"title":"Veracity","logoURL":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png","alias":"veracity","address":"Aliso Viejo, CA","roles":[],"description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial network that provides an on-premises, centralized configuration, control, and monitoring solution that tracks all connected devices and their communications. The Veracity platform is a secure-by-default network that moves beyond the detection and alerting of cyber events into a resilient network that reduces the attack surface by design. <br />The Veracity Industrial SDNTM network massively reduces the complexity of the network by repurposing the switch infrastructure to ensure communication between devices is determined by the system’s design. Veracity provides an innovative and comprehensive platform for critical networks that enables your business mission. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://veracity.io/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Veracity","keywords":"","description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:title":"Veracity","og:description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:image":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png"},"eventUrl":""},"vendors":[{"id":5137,"title":"Veracity","logoURL":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png","alias":"veracity","address":"Aliso Viejo, CA","roles":[],"description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial network that provides an on-premises, centralized configuration, control, and monitoring solution that tracks all connected devices and their communications. The Veracity platform is a secure-by-default network that moves beyond the detection and alerting of cyber events into a resilient network that reduces the attack surface by design. <br />The Veracity Industrial SDNTM network massively reduces the complexity of the network by repurposing the switch infrastructure to ensure communication between devices is determined by the system’s design. Veracity provides an innovative and comprehensive platform for critical networks that enables your business mission. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://veracity.io/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Veracity","keywords":"","description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:title":"Veracity","og:description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:image":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png"},"eventUrl":""}],"products":[{"id":3269,"logo":false,"scheme":false,"title":"Veracity Cerebellum","vendorVerified":0,"rating":"1.40","implementationsCount":1,"suppliersCount":0,"alias":"veracity-cerebellum","companyTypes":[],"description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smooth and balanced muscular activity. It is also important for learning motor behaviors. The Veracity “Cerebellum” platform is designed to serve a similar function for industrial networks.<br />Veracity’s Cerebellum provides a system level approach that responds to sensory data and orchestrates the pre-designed production process response.<br />Cerebellum is designed for operational and engineering efficiency; a logical workflow-based approach to network configuration, orchestration, security and resilience.</span>\r\n\r\n<span style=\"font-weight: bold;\">What Does Veracity Cerebellum Offer:</span>\r\n<span style=\"text-decoration: underline;\"><br />Security Level Model</span>\r\n<ul> <li>Cerebellum provides the first fully functional visual based security level model builder.</li> </ul>\r\n<ul> <li>The security level allows for a user to quickly build the Purdue Manufacturing Model, ISA-95, ISA-99, or even create a model from scratch.</li> </ul>\r\n<ul> <li>The user can quickly define the functional levels in their model and drag & drop device types from the industry library to their respective functional levels.</li> </ul>\r\n<ul> <li>Finally, the user can easily define rules for each level (e.g. communication between levels)</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">Authorize Networked Devices</span>\r\n<ul> <li>Cerebellum makes device management simple.</li> </ul>\r\n<ul> <li>With Veracity’s INDUSTRIAL SDN™, 100% of all devices connected to the network are identified.</li> </ul>\r\n<ul> <li>During the learning/identification mode, the system is also characterizing the network devices to classify the functional role and device type (e.g., PLC, RTU, SCADA Server, etc.).</li> </ul>\r\n<ul> <li>Device management provides information to the user to define whether a device should be authorized or not.</li> </ul>\r\n<ul> <li>The user can also decide to quarantine a device (e.g., an unauthorized integrator laptop).</li> </ul>\r\n<span style=\"text-decoration: underline;\"><br />Security Zone Management</span>\r\n<ul> <li>Cerebellum provides an innovative approach to network segmentation via the creation of security zones.</li> </ul>\r\n<ul> <li>This workflow-based approach allows the user to easily create security zones or logical groups and assign devices to those groups.</li> </ul>\r\n<ul> <li>This can be accomplished in multiple ways from Cerebellum’s single pane of glass – by asset/network drag and drop or command line interface.</li> </ul>\r\n\r\n<span style=\"text-decoration: underline;\">Authorized Communication</span>\r\n<ul> <li>Cerebellum provides an innovative approach to traffic engineering which the abstracts complexity at scale while allowing fine-grained control.</li> </ul>\r\n<ul> <li>The user can manage traffic at a high level – e.g. what zone to zone communications are permitted – or via very granular rules such as “a specific PLC is allowed to communicate with a specific HMI over DNP-3.”</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">Visual Validation</span>\r\n<ul> <li>Where engineers are very comfortable working with spreadsheet-like interfaces for managing complex data, what is lacking is a visual representation.</li> </ul>\r\n<ul> <li>Visual validation is an important step to identify the rules that are being configured in a simplified and consumable manner.</li> </ul>\r\n<ul> <li>This enables the user to maximize their efficiency and accuracy.</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">System Policy Management</span>\r\n<ul> <li>In addition to simplified traffic engineering via zones and device types, Cerebellum provides dynamic, API-based control by allowing configuration change sets to be grouped as policies.</li> </ul>\r\n<ul> <li>These policies can be enabled or disabled at any time, vastly simplifying operational workflows.</li> </ul>\r\n<ul> <li>For instance, during normal operation it may not be required to allow engineering workstations network access to control (e.g., PLCs) devices.</li> </ul>\r\n<ul> <li>The system will support both a default policy of denying that access alongside an operational policy of allowing that access, and switching between them can be done via a remote but authorized process driven by a change management workflow or via a few clicks in the user interface.</li> </ul>","shortDescription":"Veracity Cerebellum is designed for operational and engineering efficiency; a logical workflow-based approach to network configuration, orchestration, security and resilience.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":7,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Veracity Cerebellum","keywords":"","description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smoot","og:title":"Veracity Cerebellum","og:description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smoot"},"eventUrl":"","translationId":3278,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":220,"title":"United States","name":"USA"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":10,"title":"Ensure Compliance"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":177,"title":"Decentralized IT systems"},{"id":282,"title":"Unauthorized access to corporate IT systems and data"},{"id":336,"title":"Risk or Leaks of confidential information"},{"id":344,"title":"Malware infection via Internet, email, storage devices"},{"id":350,"title":"No monitoring of corporate IT processes"},{"id":384,"title":"Risk of attacks by hackers"},{"id":386,"title":"Risk of lost access to data and IT systems"},{"id":385,"title":"Risk of data loss or damage"}]}},"categories":[{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://veracity.io/veracity-industrial-networks-delivers-new-sdn-based-network-infrastructure-u-s-department-energy/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0}],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{"59":{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png","alias":"scada-supervisory-control-and-data-acquisition"},"499":{"id":499,"title":"SDN Software-Defined Network","description":" <span style=\"font-weight: bold; \">Software-defined networking (SDN)</span> technology is an approach to network management that enables dynamic, programmatically efficient network configuration in order to improve network performance and monitoring, making it more like cloud computing than traditional network management.\r\nSDN encompasses several types of technologies, including functional separation, network virtualization and automation through programmability. SDN solution is meant to address the fact that the static architecture of traditional networks is decentralized and complex while current networks require more flexibility and easy troubleshooting. \r\nSDN technology attempts to centralize network intelligence in one network component by disassociating the forwarding process of network packets (<span style=\"font-weight: bold; \">data plane</span>) from the routing process (<span style=\"font-weight: bold; \">control plane</span>). The control plane consists of one or more controllers which are considered as the brain of SDN network where the whole intelligence is incorporated. Originally, software defined technology focused solely on separation of the network control plane from the data plane. While the control plane makes decisions about how packets should flow through the network, the data plane actually moves packets from place to place. \r\nIn a classic SDN scenario, a packet arrives at a network switch, and rules built into the switch's proprietary firmware tell the switch where to forward the packet. These packet-handling rules are sent to the switch from the centralized controller. The switch - also known as a <span style=\"font-weight: bold; \">data plane device</span> - queries the controller for guidance as needed, and it provides the controller with information about traffic it handles. The switch sends every packet going to the same destination along the same path and treats all the packets the exact same way.\r\nSoftware defined networking solutions use an operation mode that is sometimes called adaptive or dynamic, in which a switch issues a route request to a controller for a packet that does not have a specific route. This process is separate from adaptive routing, which issues route requests through routers and algorithms based on the network topology, not through a controller.\r\nThe <span style=\"font-weight: bold;\">virtualization</span> aspect of SDN comes into play through a virtual overlay, which is a logically separate network on top of the physical network. Users can implement end-to-end overlays to abstract the underlying network and segment network traffic. This microsegmentation is especially useful for service providers and operators with multi-tenant cloud environments and cloud services, as they can provision a separate virtual network with specific policies for each tenant.","materialsDescription":"<h1 class=\"align-center\">Benefits of Software Defined Networking</h1>\r\nWith SDN software, an <span style=\"font-weight: bold; \">administrator can change any network switch's rules when necessary</span> - prioritizing, deprioritizing or even blocking specific types of packets with a granular level of control and security. This is especially helpful in a cloud computing multi-tenant architecture, because it enables the administrator to manage traffic loads in a flexible and more efficient manner. Essentially, this enables the administrator to use less expensive commodity switches and have more control over network traffic flow than ever before.\r\nOther benefits of SDN are <span style=\"font-weight: bold; \">network management</span> and <span style=\"font-weight: bold; \">end-to-end visibility.</span>A network administrator need only deal with one centralized controller to distribute policies to the connected switches, instead of configuring multiple individual devices. This capability is also a security advantage because the controller can monitor traffic and deploy security policies. If the controller deems traffic suspicious, for example, it can reroute or drop the packets.\r\nSoftware defined networking software also <span style=\"font-weight: bold; \">virtualizes hardware</span> and <span style=\"font-weight: bold; \">services </span>that were previously carried out by dedicated hardware, resulting in the touted benefits of a reduced hardware footprint and lower operational costs.\r\nAdditionally, SDN contributed to the emergence of <span style=\"font-weight: bold; \">software-defined wide area network (SD-WAN)</span> technology. SD-WAN employs the virtual overlay aspect of SDN technology, abstracting an organization's connectivity links throughout its WAN and creating a virtual network that can use whichever connection the controller deems fit to send traffic.\r\n<h1 class=\"align-center\">Are there any SDN security benefits?</h1>\r\nAs security issues become more complex at the edge of the network, it’s no wonder that network and security professionals are looking for new ways to approach network protection. Nowadays, it seems like SDN is going to be the answer. \r\n<ul><li><span style=\"font-weight: bold; \">Centralized Network Control </span></li></ul>\r\nIn a traditional network, devices (router/switches) make their own decisions locally about where and how best to send traffic. In terms of network security, SDN can be used to route data packets through a single firewall and make IDS and IPS data capture more efficient.\r\n<ul><li><span style=\"font-weight: bold; \">Simplify Configuration</span></li></ul>\r\nThe SDN makes it easier to automate configuration and improves the traceability of those configurations. The introduction of SDN network management allows dynamic programming and restructuring of network settings, which reduces the risk of DDoS attacks. It is also worth adding that SDN has automatic quarantine capabilities. \r\n<ul><li><span style=\"font-weight: bold; \">Creation of High-level Network Policies</span></li></ul>\r\n<span style=\"color: rgb(97, 97, 97); \">Rather than physically configuring security solutions, SDN facilitates the central management of security policies to make network operator roles more efficient and flexible. Moreover, SDN helps to move away from current management approaches such as SNMP/CLI and build more effective policy management. </span>\r\n<ul><li><span style=\"font-weight: bold; \"><span style=\"color: rgb(97, 97, 97); \">Easy to use Application Programming Interfaces (APIs)</span></span></li></ul>\r\n<span style=\"color: rgb(97, 97, 97); \">Cloud APIs are interfaces presented by software and play a vital role in SDN controllers and applications. Easy to use APIs help to manage network resources, improve the efficiency of IT resources, and aid integration with IT tools. Additionally, a number of good cloud security practices have been introduced recently. </span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SDN_Software_Defined_Network.png","alias":"sdn-software-defined-network"},"601":{"id":601,"title":"Custom Software Development","description":" Custom software (also known as bespoke software or tailor-made software) is software that organization for some specific organization or another user. As such, it can be contrasted with the use of software packages developed for the mass market, such as commercial off-the-shelf (COTS) software, or existing free software.\r\nSince custom software is developed for a single customer it can accommodate that customer's particular preferences and expectations. Custom software may be developed in an iterative process, allowing all nuances and possible hidden risks to be taken into account, including issues which were not mentioned in the original requirement specifications (which are, as a rule, never perfect). In particular, the first phase in the software development process may involve many departments, materchode including marketing, engineering, research and development and general management.\r\nLarge companies commonly use custom software for critical functions, including content management, inventory management, customer management, human resource management, or otherwise to fill the gaps present in the existing software packages. Often such software is legacy software, developed before COTS or free software packages offering the required functionality became available.\r\nCustom software development is often considered expensive compared to off-the-shelf solutions or products. This can be true if one is speaking of typical challenges and typical solutions. However, it is not always true. In many cases, COTS software requires customization to correctly support the buyer's operations. The cost and delay of COTS customization can even add up to the expense of developing custom software. Cost is not the only consideration, however, as the decision to opt for custom software often includes the requirement for the purchaser to own the source code, to secure the possibility of future development or modifications to the installed system.\r\nAdditionally, COTS comes with upfront license costs which vary enormously but sometimes run into the millions (in terms of dollars). Furthermore, the big software houses that release COTS products revamp their product very frequently. Thus a particular customization may need to be upgraded for compatibility every two to four years. Given the cost of customization, such upgrades also turn out to be expensive, as a dedicated product release cycle will have to be earmarked for them.\r\nThe decision to build custom software or go for a COTS implementation would usually rest on one or more of the following factors:\r\n<ul><li>Finances - both cost and benefit: The upfront license cost for COTS products mean that a thorough cost-benefit analysis of the business case needs to be done. However it is widely known that large custom software projects cannot fix all three of scope, time/cost and quality constant, so either the cost or the benefits of a custom software project will be subject to some degree of uncertainty - even disregarding the uncertainty around the business benefits of a feature that is successfully implemented.</li><li>Supplier - In the case of COTS, is the supplier likely to remain in business long, and will there be adequate support and customization available? Alternatively, will there be a realistic possibility of getting support and customization from third parties? In the case of custom software, software development may be outsourced or done in-house. If it is outsourced, the question is: is the supplier reputable, and do they have a good track record?</li><li>Time to market: COTS products usually have a quicker time to market</li><li>Size of implementation: COTS comes with standardization of business processes and reporting. For a global or national organization, these can bring in gains in cost savings, efficiency and productivity, if the branch offices are all willing and able to use the same COTS without heavy customizations (which is not always a given).</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is custom software such a large investment?</span>\r\nBuilding a custom web application is a time-consuming endeavor. It takes time to learn the processes of your business, to gather requirements, to flesh out your needs, and to build the software. Put simply, time is money.\r\nWhile it’s a large investment, by investing in custom software, you’ll own the code instead of having a long-term licensing agreement with another software company.\r\n<span style=\"font-weight: bold;\">How could my business benefit from custom software?</span>\r\nA custom business software solution increases process efficiency through process automation. When business processes are properly automated, they minimize the waste in time and resources that the original processes contained.\r\nThink of it this way: with software that already exists, you have to modify your process to meet software capabilities. With custom software, you can build a system around the existing processes you have in place. You took a lot of time to develop those processes, so why should you revamp your business?\r\n<span style=\"font-weight: bold;\">What is IP and how important is it that I own it?</span>\r\nIP stands for Intellectual Property. When you deal with anything creative, you have to think about copyright and the intellectual property on that work and that includes the creation of software code.\r\nThis gets back to the question of buying vs. building. If there is an existing solution that can suit your needs just fine, then it makes sense to buy, but the software developer owns the code and you are basically licensing the software from there. However, if you need a specialized solution that is customized to your needs and decide to go the custom development route, then the question of who owns the code is an important one.\r\n<span style=\"font-weight: bold;\">I’m thinking about hiring someone offshore; what should I watch out for?</span>\r\nIn short, everything. Language barriers and lack of proximity lead to breakdowns in communication and quality. Do yourself a favor and stay local.\r\nOn a related note, if you’re thinking about hiring for the position internally, think about this: it takes around three people to complete a successful custom software project. If you hire someone internally, their salary might cost what it would take to build with us, and you get a whole team when you work with us. Plus, if your software developer decides to leave, they take their knowledge with them. If one of our team members leave, our whole team shares the knowledge so you’re not left in the dark.\r\n<span style=\"font-weight: bold;\">If things don’t go well, am I sunk?</span>\r\nWe make communication and transparency are top priorities so this doesn’t happen. Right out of the gate we work hard to make sure that not only the project is a good fit, but the relationship with the client is as well. Through each step of the process and the build, we keep you in the loop weekly so you know what to expect and what is happening, but a good development company should have places in their process/relationship where you can cleanly exit. Make sure you know what the process is for leaving and what those different ‘leaving’ options are.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Custom_Software_Development.png","alias":"custom-software-development"},"834":{"id":834,"title":"IoT - Internet of Things Security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png","alias":"iot-internet-of-things-security"},"852":{"id":852,"title":"Network security","description":" Network security consists of the policies and practices adopted to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs; conducting transactions and communications among businesses, government agencies and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: it secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.\r\nNetwork security starts with authentication, commonly with a username and a password. Since this requires just one detail authenticating the user name — i.e., the password—this is sometimes termed one-factor authentication. With two-factor authentication, something the user 'has' is also used (e.g., a security token or 'dongle', an ATM card, or a mobile phone); and with three-factor authentication, something the user 'is' is also used (e.g., a fingerprint or retinal scan).\r\nOnce authenticated, a firewall enforces access policies such as what services are allowed to be accessed by the network users. Though effective to prevent unauthorized access, this component may fail to check potentially harmful content such as computer worms or Trojans being transmitted over the network. Anti-virus software or an intrusion prevention system (IPS) help detect and inhibit the action of such malware. An anomaly-based intrusion detection system may also monitor the network like wireshark traffic and may be logged for audit purposes and for later high-level analysis. Newer systems combining unsupervised machine learning with full network traffic analysis can detect active network attackers from malicious insiders or targeted external attackers that have compromised a user machine or account.\r\nCommunication between two hosts using a network may be encrypted to maintain privacy.\r\nHoneypots, essentially decoy network-accessible resources, may be deployed in a network as surveillance and early-warning tools, as the honeypots are not normally accessed for legitimate purposes. Techniques used by the attackers that attempt to compromise these decoy resources are studied during and after an attack to keep an eye on new exploitation techniques. Such analysis may be used to further tighten security of the actual network being protected by the honeypot. A honeypot can also direct an attacker's attention away from legitimate servers. A honeypot encourages attackers to spend their time and energy on the decoy server while distracting their attention from the data on the real server. Similar to a honeypot, a honeynet is a network set up with intentional vulnerabilities. Its purpose is also to invite attacks so that the attacker's methods can be studied and that information can be used to increase network security. A honeynet typically contains one or more honeypots.","materialsDescription":" <span style=\"font-weight: bold;\">What is Network Security?</span>\r\nNetwork security is any action an organization takes to prevent malicious use or accidental damage to the network’s private data, its users, or their devices. The goal of network security is to keep the network running and safe for all legitimate users.\r\nBecause there are so many ways that a network can be vulnerable, network security involves a broad range of practices. These include:\r\n<ul><li><span style=\"font-weight: bold;\">Deploying active devices:</span> Using software to block malicious programs from entering, or running within, the network. Blocking users from sending or receiving suspicious-looking emails. Blocking unauthorized use of the network. Also, stopping the network's users accessing websites that are known to be dangerous.</li><li><span style=\"font-weight: bold;\">Deploying passive devices:</span> For instance, using devices and software that report unauthorized intrusions into the network, or suspicious activity by authorized users.</li><li><span style=\"font-weight: bold;\">Using preventative devices:</span> Devices that help identify potential security holes, so that network staff can fix them.</li><li><span style=\"font-weight: bold;\">Ensuring users follow safe practices:</span> Even if the software and hardware are set up to be secure, the actions of users can create security holes. Network security staff is responsible for educating members of the organization about how they can stay safe from potential threats.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is Network Security Important?</span>\r\nUnless it’s properly secured, any network is vulnerable to malicious use and accidental damage. Hackers, disgruntled employees, or poor security practices within the organization can leave private data exposed, including trade secrets and customers’ private details.\r\nLosing confidential research, for example, can potentially cost an organization millions of dollars by taking away competitive advantages it paid to gain. While hackers stealing customers’ details and selling them to be used in fraud, it creates negative publicity and public mistrust of the organization.\r\nThe majority of common attacks against networks are designed to gain access to information, by spying on the communications and data of users, rather than to damage the network itself.\r\nBut attackers can do more than steal data. They may be able to damage users’ devices or manipulate systems to gain physical access to facilities. This leaves the organization’s property and members at risk of harm.\r\nCompetent network security procedures keep data secure and block vulnerable systems from outside interference. This allows the network’s users to remain safe and focus on achieving the organization’s goals.\r\n<span style=\"font-weight: bold;\">Why Do I Need Formal Education to Run a Computer Network?</span>\r\nEven the initial setup of security systems can be difficult for those unfamiliar with the field. A comprehensive security system is made of many pieces, each of which needs specialized knowledge.\r\nBeyond setup, each aspect of security is constantly evolving. New technology creates new opportunities for accidental security leaks, while hackers take advantage of holes in security to do damage as soon as they find them. Whoever is in charge of the network’s security needs to be able to understand the technical news and changes as they happen, so they can implement safety strategies right away.\r\nProperly securing your network using the latest information on vulnerabilities helps minimize the risk that attacks will succeed. Security Week reported that 44% of breaches in 2014 came from exploits that were 2-4 years old.\r\nUnfortunately, many of the technical aspects of network security are beyond those who make hiring decisions. So, the best way an organization can be sure that their network security personnel are able to properly manage the threats is to hire staff with the appropriate qualifications.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_security.png","alias":"network-security"}},"branches":"Information Technology","companySizes":"1 to 50 Employees","companyUrl":"https://veracity.io/","countryCodes":["USA"],"certifications":[],"isSeller":true,"isSupplier":true,"isVendor":true,"presenterCodeLng":"","seo":{"title":"Veracity","keywords":"","description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:title":"Veracity","og:description":"Veracity (Veracity Industrial Networks) specializes in Industrial Network Cybersecurity and Software Defined Networking.<br />Veracity is founded and led by a veteran team with deep cybersecurity experience. \r\nVeracity delivers a resilient, secure industrial n","og:image":"https://old.roi4cio.com/uploads/roi/company/veracity_owler_20160514_023743_original.png"},"eventUrl":"","vendorPartners":[],"supplierPartners":[],"vendoredProducts":[{"id":3269,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/veracity_owler_20160514_023743_original.png","logo":true,"scheme":false,"title":"Veracity Cerebellum","vendorVerified":0,"rating":"1.40","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"veracity-cerebellum","companyTitle":"Veracity","companyTypes":["supplier","vendor"],"companyId":5137,"companyAlias":"veracity","description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smooth and balanced muscular activity. It is also important for learning motor behaviors. The Veracity “Cerebellum” platform is designed to serve a similar function for industrial networks.<br />Veracity’s Cerebellum provides a system level approach that responds to sensory data and orchestrates the pre-designed production process response.<br />Cerebellum is designed for operational and engineering efficiency; a logical workflow-based approach to network configuration, orchestration, security and resilience.</span>\r\n\r\n<span style=\"font-weight: bold;\">What Does Veracity Cerebellum Offer:</span>\r\n<span style=\"text-decoration: underline;\"><br />Security Level Model</span>\r\n<ul> <li>Cerebellum provides the first fully functional visual based security level model builder.</li> </ul>\r\n<ul> <li>The security level allows for a user to quickly build the Purdue Manufacturing Model, ISA-95, ISA-99, or even create a model from scratch.</li> </ul>\r\n<ul> <li>The user can quickly define the functional levels in their model and drag & drop device types from the industry library to their respective functional levels.</li> </ul>\r\n<ul> <li>Finally, the user can easily define rules for each level (e.g. communication between levels)</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">Authorize Networked Devices</span>\r\n<ul> <li>Cerebellum makes device management simple.</li> </ul>\r\n<ul> <li>With Veracity’s INDUSTRIAL SDN™, 100% of all devices connected to the network are identified.</li> </ul>\r\n<ul> <li>During the learning/identification mode, the system is also characterizing the network devices to classify the functional role and device type (e.g., PLC, RTU, SCADA Server, etc.).</li> </ul>\r\n<ul> <li>Device management provides information to the user to define whether a device should be authorized or not.</li> </ul>\r\n<ul> <li>The user can also decide to quarantine a device (e.g., an unauthorized integrator laptop).</li> </ul>\r\n<span style=\"text-decoration: underline;\"><br />Security Zone Management</span>\r\n<ul> <li>Cerebellum provides an innovative approach to network segmentation via the creation of security zones.</li> </ul>\r\n<ul> <li>This workflow-based approach allows the user to easily create security zones or logical groups and assign devices to those groups.</li> </ul>\r\n<ul> <li>This can be accomplished in multiple ways from Cerebellum’s single pane of glass – by asset/network drag and drop or command line interface.</li> </ul>\r\n\r\n<span style=\"text-decoration: underline;\">Authorized Communication</span>\r\n<ul> <li>Cerebellum provides an innovative approach to traffic engineering which the abstracts complexity at scale while allowing fine-grained control.</li> </ul>\r\n<ul> <li>The user can manage traffic at a high level – e.g. what zone to zone communications are permitted – or via very granular rules such as “a specific PLC is allowed to communicate with a specific HMI over DNP-3.”</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">Visual Validation</span>\r\n<ul> <li>Where engineers are very comfortable working with spreadsheet-like interfaces for managing complex data, what is lacking is a visual representation.</li> </ul>\r\n<ul> <li>Visual validation is an important step to identify the rules that are being configured in a simplified and consumable manner.</li> </ul>\r\n<ul> <li>This enables the user to maximize their efficiency and accuracy.</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">System Policy Management</span>\r\n<ul> <li>In addition to simplified traffic engineering via zones and device types, Cerebellum provides dynamic, API-based control by allowing configuration change sets to be grouped as policies.</li> </ul>\r\n<ul> <li>These policies can be enabled or disabled at any time, vastly simplifying operational workflows.</li> </ul>\r\n<ul> <li>For instance, during normal operation it may not be required to allow engineering workstations network access to control (e.g., PLCs) devices.</li> </ul>\r\n<ul> <li>The system will support both a default policy of denying that access alongside an operational policy of allowing that access, and switching between them can be done via a remote but authorized process driven by a change management workflow or via a few clicks in the user interface.</li> </ul>","shortDescription":"Veracity Cerebellum is designed for operational and engineering efficiency; a logical workflow-based approach to network configuration, orchestration, security and resilience.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":7,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Veracity Cerebellum","keywords":"","description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smoot","og:title":"Veracity Cerebellum","og:description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smoot","og:image":"https://old.roi4cio.com/fileadmin/user_upload/veracity_owler_20160514_023743_original.png"},"eventUrl":"","translationId":3278,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":101,"title":"ICS/SCADA Cyber Security"}],"testingArea":"","categories":[{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"suppliedProducts":[{"id":3269,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/veracity_owler_20160514_023743_original.png","logo":true,"scheme":false,"title":"Veracity Cerebellum","vendorVerified":0,"rating":"1.40","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"veracity-cerebellum","companyTitle":"Veracity","companyTypes":["supplier","vendor"],"companyId":5137,"companyAlias":"veracity","description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smooth and balanced muscular activity. It is also important for learning motor behaviors. The Veracity “Cerebellum” platform is designed to serve a similar function for industrial networks.<br />Veracity’s Cerebellum provides a system level approach that responds to sensory data and orchestrates the pre-designed production process response.<br />Cerebellum is designed for operational and engineering efficiency; a logical workflow-based approach to network configuration, orchestration, security and resilience.</span>\r\n\r\n<span style=\"font-weight: bold;\">What Does Veracity Cerebellum Offer:</span>\r\n<span style=\"text-decoration: underline;\"><br />Security Level Model</span>\r\n<ul> <li>Cerebellum provides the first fully functional visual based security level model builder.</li> </ul>\r\n<ul> <li>The security level allows for a user to quickly build the Purdue Manufacturing Model, ISA-95, ISA-99, or even create a model from scratch.</li> </ul>\r\n<ul> <li>The user can quickly define the functional levels in their model and drag & drop device types from the industry library to their respective functional levels.</li> </ul>\r\n<ul> <li>Finally, the user can easily define rules for each level (e.g. communication between levels)</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">Authorize Networked Devices</span>\r\n<ul> <li>Cerebellum makes device management simple.</li> </ul>\r\n<ul> <li>With Veracity’s INDUSTRIAL SDN™, 100% of all devices connected to the network are identified.</li> </ul>\r\n<ul> <li>During the learning/identification mode, the system is also characterizing the network devices to classify the functional role and device type (e.g., PLC, RTU, SCADA Server, etc.).</li> </ul>\r\n<ul> <li>Device management provides information to the user to define whether a device should be authorized or not.</li> </ul>\r\n<ul> <li>The user can also decide to quarantine a device (e.g., an unauthorized integrator laptop).</li> </ul>\r\n<span style=\"text-decoration: underline;\"><br />Security Zone Management</span>\r\n<ul> <li>Cerebellum provides an innovative approach to network segmentation via the creation of security zones.</li> </ul>\r\n<ul> <li>This workflow-based approach allows the user to easily create security zones or logical groups and assign devices to those groups.</li> </ul>\r\n<ul> <li>This can be accomplished in multiple ways from Cerebellum’s single pane of glass – by asset/network drag and drop or command line interface.</li> </ul>\r\n\r\n<span style=\"text-decoration: underline;\">Authorized Communication</span>\r\n<ul> <li>Cerebellum provides an innovative approach to traffic engineering which the abstracts complexity at scale while allowing fine-grained control.</li> </ul>\r\n<ul> <li>The user can manage traffic at a high level – e.g. what zone to zone communications are permitted – or via very granular rules such as “a specific PLC is allowed to communicate with a specific HMI over DNP-3.”</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">Visual Validation</span>\r\n<ul> <li>Where engineers are very comfortable working with spreadsheet-like interfaces for managing complex data, what is lacking is a visual representation.</li> </ul>\r\n<ul> <li>Visual validation is an important step to identify the rules that are being configured in a simplified and consumable manner.</li> </ul>\r\n<ul> <li>This enables the user to maximize their efficiency and accuracy.</li> </ul>\r\n<span style=\"text-decoration: underline;\"> </span>\r\n<span style=\"text-decoration: underline;\">System Policy Management</span>\r\n<ul> <li>In addition to simplified traffic engineering via zones and device types, Cerebellum provides dynamic, API-based control by allowing configuration change sets to be grouped as policies.</li> </ul>\r\n<ul> <li>These policies can be enabled or disabled at any time, vastly simplifying operational workflows.</li> </ul>\r\n<ul> <li>For instance, during normal operation it may not be required to allow engineering workstations network access to control (e.g., PLCs) devices.</li> </ul>\r\n<ul> <li>The system will support both a default policy of denying that access alongside an operational policy of allowing that access, and switching between them can be done via a remote but authorized process driven by a change management workflow or via a few clicks in the user interface.</li> </ul>","shortDescription":"Veracity Cerebellum is designed for operational and engineering efficiency; a logical workflow-based approach to network configuration, orchestration, security and resilience.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":7,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Veracity Cerebellum","keywords":"","description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smoot","og:title":"Veracity Cerebellum","og:description":"<span style=\"color: #616161;\">In the human brain, the cerebellum receives information from the sensory systems, the spinal cord, and other parts of the brain and then regulates motor movements. The cerebellum coordinates voluntary movements, resulting in smoot","og:image":"https://old.roi4cio.com/fileadmin/user_upload/veracity_owler_20160514_023743_original.png"},"eventUrl":"","translationId":3278,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":101,"title":"ICS/SCADA Cyber Security"}],"testingArea":"","categories":[{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"partnershipProgramme":null}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}