{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"product":{"reference-bonus":{"ru":"Предложить бонус за референс","_type":"localeString","en":"Offer a reference bonus"},"configurator":{"en":"Сonfigurator","ru":"Конфигуратор","_type":"localeString"},"i-sell-it":{"ru":"I sell it","_type":"localeString","en":"I sell it"},"i-use-it":{"en":"I use it","ru":"I use it","_type":"localeString"},"roi-calculator":{"ru":"ROI-калькулятор","_type":"localeString","en":"ROI-calculator"},"selling":{"en":"Selling","ru":"Продают","_type":"localeString"},"using":{"en":"Using","ru":"Используют","_type":"localeString"},"show-more-button":{"ru":"Показать еще","_type":"localeString","en":"Show more"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"supplier-popover":{"en":"supplier","ru":"поставщик","_type":"localeString"},"implementation-popover":{"en":"deployment","ru":"внедрение","_type":"localeString"},"manufacturer-popover":{"en":"manufacturer","ru":"производитель","_type":"localeString"},"short-description":{"ru":"Краткое описание","_type":"localeString","en":"Pitch"},"i-use-it-popover":{"ru":"Внесите свое внедрение и получите бонус от ROI4CIO или поставщика.","_type":"localeString","en":"Make your introduction and get a bonus from ROI4CIO or the supplier."},"details":{"en":"Details","ru":"Детальнее","_type":"localeString"},"description":{"_type":"localeString","en":"Description","ru":"Описание"},"product-features":{"en":"Product features","ru":"Особенности продукта","_type":"localeString"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"solutions":{"ru":"Проблемы которые решает","_type":"localeString","en":" Problems that solves"},"values":{"_type":"localeString","en":"Values","ru":"Ценности"},"сomparison-matrix":{"ru":"Матрица сравнения","_type":"localeString","en":"Comparison matrix"},"testing":{"en":"Testing","ru":"Тестирование","_type":"localeString"},"compare":{"en":"Compare with competitors","ru":"Сравнить с конкурентами","_type":"localeString"},"characteristics":{"en":" Characteristics","ru":"Характеристики","_type":"localeString"},"transaction-features":{"ru":"Особенности сделки","_type":"localeString","en":"Transaction Features"},"average-discount":{"_type":"localeString","en":"Partner average discount","ru":"Средняя скидка партнера"},"deal-protection":{"ru":"Защита сделки","_type":"localeString","en":"Deal protection"},"average-deal":{"ru":"Средний размер сделки","_type":"localeString","en":"Average deal size"},"average-time":{"ru":"Средний срок закрытия сделки","_type":"localeString","en":"Average deal closing time"},"login":{"ru":"Войти","_type":"localeString","en":"Login"},"register":{"_type":"localeString","en":"Register","ru":"Зарегистрироваться"},"to-know-more":{"_type":"localeString","en":"To know more","ru":"Чтобы узнать больше"},"scheme":{"ru":"Схема работы","_type":"localeString","en":" Scheme of work"},"competitive-products":{"en":" Competitive products","ru":"Конкурентные продукты","_type":"localeString"},"implementations-with-product":{"en":"Deployments with this product","ru":"Внедрения с этим продуктом","_type":"localeString"},"user-features":{"en":"User features","ru":"Особенности пользователей","_type":"localeString"},"job-roles":{"ru":"Роли заинтересованных сотрудников","_type":"localeString","en":" Roles of Interested Employees"},"organizational-features":{"en":"Organizational Features","ru":"Организационные особенности","_type":"localeString"},"calculate-price":{"ru":"Рассчитать цену продукта","_type":"localeString","en":" Calculate product price"},"selling-stories":{"ru":"Продающие истории","_type":"localeString","en":" Selling stories"},"materials":{"en":"Materials","ru":"Материалы","_type":"localeString"},"about-product":{"en":"About Product","ru":"О продукте","_type":"localeString"},"or":{"ru":"или","_type":"localeString","en":"or"},"program-sends-data":{"_type":"localeString","en":"Program Sends Data"},"calculate-roi":{"ru":"Рассчитать ROI продукта","_type":"localeString","en":"Calculate Product ROI"},"complementary-categories":{"ru":"Схожие категории","_type":"localeString","en":"Complementary Categories"},"program-receives-data":{"_type":"localeString","en":"Program Receives Data"},"rebate":{"ru":"Бонус","_type":"localeString","en":"Bonus"},"rebate-for-poc":{"ru":"Бонус 4 POC","_type":"localeString","en":"Bonus 4 POC"},"configurator-content":{"ru":"Рассчитайте стоимость продукта","_type":"localeString","en":"Calculate price for this product here"},"configurator-link":{"en":"here","ru":"тут","_type":"localeString"},"vendor-popover":{"ru":"производитель","_type":"localeString","en":"vendor"},"user-popover":{"ru":"пользователь","_type":"localeString","en":"user"},"select-for-presentation":{"ru":"выбрать продукт для презентации","_type":"localeString","en":"select product for presentation"},"auth-message":{"_type":"localeString","en":"You have to register or login.","ru":"Вам нужно зарегистрироваться или войти."},"add-to-comparison":{"_type":"localeString","en":"Add to comparison","ru":"Добавить в сравнение"},"added-to-comparison":{"_type":"localeString","en":"Added to comparison","ru":"Добавлено в сравнения"},"roi-calculator-content":{"en":"Calculate ROI for this product here","ru":"Рассчитайте ROI для данного продукта","_type":"localeString"},"not-yet-converted":{"_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later.","ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время."},"videos":{"_type":"localeString","en":"Videos","ru":"Видео"},"vendor-verified":{"ru":"Подтверждено производителем","_type":"localeString","en":"Vendor verified"},"event-schedule":{"_type":"localeString","en":"Events schedule","ru":"Расписание событий"},"scheduling-tip":{"_type":"localeString","en":"Please, сhoose a convenient date and time and register for the event.","ru":"Выберите удобную дату и время и зарегистрируйтесь на ивент."},"register-to-schedule":{"ru":"Для того чтобы зарегистрироваться на ивент пожалуйста авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString","en":"To register for the event please log in or register on the site."},"comparison-matrix":{"ru":"Матрица сравнений","_type":"localeString","en":"Comparison matrix"},"compare-with-competitive":{"en":" Compare with competitive","ru":"Сравнить с конкурентными","_type":"localeString"},"avg-deal-closing-unit":{"ru":"месяцев","_type":"localeString","en":"months"},"under-construction":{"ru":"Данная услуга всё ещё находится в разработке.","_type":"localeString","en":"Current feature is still developing to become even more useful for you."},"product-presentation":{"ru":"Презентация продукта","_type":"localeString","en":"Product presentation"},"go-to-comparison-table":{"_type":"localeString","en":" Go to comparison table","ru":"Перейти к таблице сравнения"},"see-product-details":{"ru":"Детали","_type":"localeString","en":"See Details"}},"header":{"help":{"en":"Help","de":"Hilfe","ru":"Помощь","_type":"localeString"},"how":{"en":"How does it works","de":"Wie funktioniert es","ru":"Как это работает","_type":"localeString"},"login":{"_type":"localeString","en":"Log in","de":"Einloggen","ru":"Вход"},"logout":{"_type":"localeString","en":"Sign out","ru":"Выйти"},"faq":{"ru":"FAQ","_type":"localeString","en":"FAQ","de":"FAQ"},"references":{"de":"References","ru":"Мои запросы","_type":"localeString","en":"Requests"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find-it-product":{"_type":"localeString","en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта"},"autoconfigurator":{"_type":"localeString","en":" Price calculator","ru":"Калькулятор цены"},"comparison-matrix":{"ru":"Матрица сравнения","_type":"localeString","en":"Comparison Matrix"},"roi-calculators":{"_type":"localeString","en":"ROI calculators","ru":"ROI калькуляторы"},"b4r":{"en":"Bonus for reference","ru":"Бонус за референс","_type":"localeString"},"business-booster":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"catalogs":{"ru":"Каталоги","_type":"localeString","en":"Catalogs"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"categories":{"en":"Categories","ru":"Категории","_type":"localeString"},"for-suppliers":{"ru":"Поставщикам","_type":"localeString","en":"For suppliers"},"blog":{"en":"Blog","ru":"Блог","_type":"localeString"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"ru":"Мой кабинет","_type":"localeString","en":"My account"},"register":{"_type":"localeString","en":"Register","ru":"Зарегистрироваться"},"comparison-deletion":{"ru":"Удаление","_type":"localeString","en":"Deletion"},"comparison-confirm":{"ru":"Подтвердите удаление","_type":"localeString","en":"Are you sure you want to delete"},"search-placeholder":{"_type":"localeString","en":"Enter your search term","ru":"Введите поисковый запрос"},"my-profile":{"ru":"Мои данные","_type":"localeString","en":"My profile"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"_type":"localeString","en":"Find IT product"},"sub_b4reference":{"en":"Get reference from user","_type":"localeString"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"en":"Create an avatar for the event","_type":"localeString"},"catalogs_new":{"en":"Products","_type":"localeString"},"b4reference":{"en":"Bonus4Reference","_type":"localeString"},"it_our_it_catalogs":{"en":"Our IT Catalogs","_type":"localeString"},"it_products":{"en":"Find and compare IT products","_type":"localeString"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"_type":"localeString","en":"Our Products"},"it_it_catalogs":{"en":"IT catalogs","_type":"localeString"}},"footer":{"copyright":{"de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString","en":"All rights reserved"},"company":{"ru":"О компании","_type":"localeString","en":"My Company","de":"Über die Firma"},"about":{"de":"Über uns","ru":"О нас","_type":"localeString","en":"About us"},"infocenter":{"de":"Infocenter","ru":"Инфоцентр","_type":"localeString","en":"Infocenter"},"tariffs":{"ru":"Тарифы","_type":"localeString","en":"Subscriptions","de":"Tarife"},"contact":{"en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами","_type":"localeString"},"marketplace":{"ru":"Marketplace","_type":"localeString","en":"Marketplace","de":"Marketplace"},"products":{"ru":"Продукты","_type":"localeString","en":"Products","de":"Produkte"},"compare":{"en":"Pick and compare","de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString"},"calculate":{"_type":"localeString","en":"Calculate the cost","de":"Kosten berechnen","ru":"Расчитать стоимость"},"get_bonus":{"en":"Bonus for reference","de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс","_type":"localeString"},"salestools":{"ru":"Salestools","_type":"localeString","en":"Salestools","de":"Salestools"},"automatization":{"_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов"},"roi_calcs":{"de":"ROI-Rechner","ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"matrix":{"de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString","en":"Comparison matrix"},"b4r":{"ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference"},"our_social":{"en":"Our social networks","de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети","_type":"localeString"},"subscribe":{"ru":"Подпишитесь на рассылку","_type":"localeString","en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an"},"subscribe_info":{"ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews"},"policy":{"en":"Privacy Policy","ru":"Политика конфиденциальности","_type":"localeString"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"quote":{"en":"Price calculator","ru":"Калькулятор цены","_type":"localeString"},"boosting":{"_type":"localeString","en":"Business boosting","ru":"Развитие бизнеса"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"en":"blog","ru":"блог","_type":"localeString"},"pay4content":{"_type":"localeString","en":"we pay for content","ru":"платим за контент"},"categories":{"ru":"категории","_type":"localeString","en":"categories"},"showForm":{"_type":"localeString","en":"Show form","ru":"Показать форму"},"subscribe__title":{"ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!"},"subscribe__email-label":{"en":"Email","ru":"Email","_type":"localeString"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"_type":"localeString","en":"This field is required","ru":"Это поле обязательное"},"subscribe__notify-label":{"ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString","en":"Yes, please, notify me about news, events and propositions"},"subscribe__agree-label":{"ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data"},"subscribe__submit-label":{"_type":"localeString","en":"Subscribe","ru":"Подписаться"},"subscribe__email-message":{"ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString","en":"Please, enter the valid email"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"_type":"localeString","en":"Last, first name","ru":"Имя Фамилия"},"subscribe__success":{"en":"You are successfully subscribed! Check you mailbox.","ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString"},"subscribe__error":{"_type":"localeString","en":"Subscription is unsuccessful. Please, try again later.","ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее."},"roi4presenter":{"de":"roi4presenter","ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter"},"it_catalogs":{"en":"IT catalogs","_type":"localeString"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"_type":"localeString","en":"Home","ru":"Главная"},"companies":{"_type":"localeString","en":"Companies","ru":"Компании"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"login":{"en":"Login","ru":"Вход","_type":"localeString"},"registration":{"ru":"Регистрация","_type":"localeString","en":"Registration"},"b2b-platform":{"ru":"Портал для покупателей, поставщиков и производителей ИТ","_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers"}},"comment-form":{"title":{"en":"Leave comment","ru":"Оставить комментарий","_type":"localeString"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"ru":"Фамилия","_type":"localeString","en":"Last name"},"company":{"_type":"localeString","en":"Company name","ru":"Компания"},"position":{"_type":"localeString","en":"Position","ru":"Должность"},"actual-cost":{"_type":"localeString","en":"Actual cost","ru":"Фактическая стоимость"},"received-roi":{"_type":"localeString","en":"Received ROI","ru":"Полученный ROI"},"saving-type":{"ru":"Тип экономии","_type":"localeString","en":"Saving type"},"comment":{"_type":"localeString","en":"Comment","ru":"Комментарий"},"your-rate":{"_type":"localeString","en":"Your rate","ru":"Ваша оценка"},"i-agree":{"ru":"Я согласен","_type":"localeString","en":"I agree"},"terms-of-use":{"en":"With user agreement and privacy policy","ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"en":"{NAME} is required filed","ru":"{NAME} - это обязательное поле","_type":"localeString"}},"maintenance":{"title":{"_type":"localeString","en":"Site under maintenance","ru":"На сайте проводятся технические работы"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}}},"translationsStatus":{"product":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"product":{"translatable_meta":[{"name":"og:title","translations":{"_type":"localeString","en":"Example product","ru":"Конкретный продукт"}},{"name":"og:description","translations":{"ru":"Описание для конкретного продукта","_type":"localeString","en":"Description for one product"}},{"name":"title","translations":{"ru":"Продукт","_type":"localeString","en":"Product"}},{"name":"description","translations":{"ru":"Описание продукта","_type":"localeString","en":"Product description"}},{"translations":{"ru":"Ключевые слова продукта","_type":"localeString","en":"Product keywords"},"name":"keywords"}],"title":{"en":"ROI4CIO: Product","ru":"ROI4CIO: Продукт","_type":"localeString"},"meta":[{"name":"og:type","content":"website"},{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"}]}},"pageMetaDataStatus":{"product":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{"autodesk-fusion-360":{"id":1012,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Fusion_360.png","logo":true,"scheme":false,"title":"Autodesk Fusion 360","vendorVerified":0,"rating":"3.00","implementationsCount":6,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-fusion-360","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Quickly iterate on design ideas with sculpting tools to explore form and modeling tools to create finishing features.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Engineer & simulate </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Test fit and motion, perform simulations, create assemblies, make photorealistic renderings and animations.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> CAM </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Create toolpaths to machine your components or use the 3D printing workflow to create a prototype.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> Collaborate & manage </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Bring design teams together in a hybrid environment that harnesses the power of the cloud when necessary and uses local resources when it makes sense.</span></p>","shortDescription":"Fusion 360TM is the first 3D CAD, CAM, and CAE tool of its kind. It connects your entire product development process in a single cloud-based platform that works on both Mac and PC.","type":"Software","isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Fusion 360","keywords":"create, design, when, tools, prototype, Collaborate, manage, teams","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:title":"Autodesk Fusion 360","og:description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Fusion_360.png"},"eventUrl":"","translationId":1012,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[{"id":6822,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/iclone_LOGO.png","logo":true,"scheme":false,"title":"iClone","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"iclone","companyTitle":"Reallusion Inc.","companyTypes":["vendor"],"companyId":9440,"companyAlias":"reallusion-inc","description":"<h3>Internal training, virtual demos, promotional storytelling presentations and more other purposes? You can have everything you want to develop in engaging presentation. Just expand your imaginations with characters, motions, props, textures and unique contents, iClone is certain to bring you beneficial results.</h3>\r\niClone is the fastest real-time 3D animation software in the industry, helping you easily produce professional animations for films, previz, animation, video games, content development, education and art. Integrated with the latest real-time technologies, iClone 7 simplifies the world of 3D Animation in a user-friendly production environment that blends character animation, scene design and cinematic storytelling; quickly turning your vision into a reality. \r\niClone is a comprehensive application for handling interactive 3D content providing support for processing different aspects of the characters. A professional-grade and modern-looking user interface is there to work in a comfortable and reliable environment. It is compatible with the new Character Base CC3+ and provides complete support for SSS shaders, next-generation digital human base along with both non-human and non-standard characters. This powerful application provides a comprehensive solution with better-detailing features and an advanced set of tools for handling different types of graphical content.\r\nA complete set of tools are there to process the graphical content and allows the users to handle the content without any complexities. A variety of enhancements and bug fixes are there to process the graphical content. Better rendering capabilities and an advanced set of tools are there to process the visual aspects of the graphics. Gestures support, quadrant blending and a variety of advanced features make it possible for the users to process the graphical content. \r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Features of iClone </span></p>\r\n<ul><li>A powerful application for creating 3D animations</li><li>Various improvements and enhancements</li><li>A comprehensive solution for handling 3D graphics</li><li>Various bug fixes and enhancements</li><li>Simple and a modern-looking application</li><li>Processes the graphical models and characters</li><li>Morphed props with activated Foot Contact</li><li>Improved workflow with better visual and audio detailing</li><li>Provides support for SSS shaders for props, accessories, hair, etc.</li><li>Optimized micro-roughness rendering with better grey levels</li><li>Adjust Finger joints, and other details of the characters</li><li>Provides better compatibility with a new CC3+ character base</li><li>Provides next-generation digital human base support</li><li>Improved workflow and better quality output</li><li>Better rendering features with improved results</li><li>Improved and realistic 3D animation features</li><li>Supports high contrast ratios and more</li><li>Fixed quadrant pose performances</li><li>Provides real-time 3D animation</li><li>Improved quadrant blending features</li><li>Delivers realistic movement of the character</li><li>Better camera positioning features</li></ul>\r\n\r\n","shortDescription":"Real-time 3D Animation Software. This presentation software goes a modern way for everyone to convey messages and share ideas. \r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"iClone","keywords":"","description":"<h3>Internal training, virtual demos, promotional storytelling presentations and more other purposes? You can have everything you want to develop in engaging presentation. Just expand your imaginations with characters, motions, props, textures and unique conte","og:title":"iClone","og:description":"<h3>Internal training, virtual demos, promotional storytelling presentations and more other purposes? You can have everything you want to develop in engaging presentation. Just expand your imaginations with characters, motions, props, textures and unique conte","og:image":"https://old.roi4cio.com/fileadmin/user_upload/iclone_LOGO.png"},"eventUrl":"","translationId":6822,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":589,"title":"Design Animation","alias":"design-animation","description":" Visual marketing is firmly in the lead when it comes to promoting a business. And the most effective tool for him can surely be called an animated movie. It's no secret that the visualization of information facilitates its perception.\r\nAnimated video is one of the most original ways of presenting advertisements for your company. Animated advertising will attract the views of new customers and you will certainly want to buy products or services. Today, an animated video is a fairly well-known and sought-after form of advertising.\r\nAnimation video today is a must-have for any company that has a website. It is desirable that this video was creative, even if it tells about a large company or reveals serious questions. A distinctive feature of the drawn clips is the ability to present information from the face of any character, even the directly promoted product “animated” with the help of animation.\r\nBefore you order an animated video, it is important to decide which type of video is needed. A video can:\r\n<ul><li>Promote the brand. Such videos reveal the main characteristics of the product and tell about its strengths. In order for such a video to be effective, it is important to get an emotional response from the audience. To do this, you need to create a thoughtful character with an obvious pattern of behavior so that the viewer associates himself with him.</li><li>Talk about the company. The target audience of such clips is existing and potential employees and partners. Such videos are ordered to emphasize the positive features of the company. Due to this, there is a desire to cooperate with such an organization and/or work in it.</li><li>Be informative. These are intelligent videos that do not contain a call to action. The task of the informational video is to increase the involvement of the target audience and increase the level of brand loyalty. It is the most capacious and easy to hear important information.</li></ul>\r\nHaving made the decision to order an animation video, you need to understand what tasks it should perform. It is necessary to clarify the interests and preferences of the target audience and focus on them, choose an understandable and pleasant (if appropriate, with a humorous tint) style of narration and talk about the real merits of the product or service.","materialsDescription":" <span style=\"font-weight: bold;\">What is 2D animation?</span>\r\n2D animation - fully two-dimensional rollers. Characters, titles, buildings and any other objects in such videos are flat, as in the pictures. Today it is this kind of graphics that is most in demand. Often, these videos look simple and neat, but at the same time informative.\r\n2D animation can be executed in a classic drawing format or created using computer graphics, for example, Shape animation.\r\n<span style=\"font-weight: bold;\">What is 3D animation?</span>\r\n3D animation is its main difference from 2D in that the characters and any other objects in such a video are three-dimensional. Such videos allow you to fully demonstrate to customers a product from virtually all sides before it is created. It can be video smartphones, cars, houses. In the production of 3D animation is more complicated and more expensive than 2D, but at the same time much more spectacular, it means that it is better remembered.\r\n<span style=\"font-weight: bold;\">What is a cartoon video?</span>\r\nHand-drawn video is a modern marketing tool that will be useful for any kind of business. It is easier and clearer for a client to watch a short video than to wade through the wilds of numerous pages on the site.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Design_Animation.png"},{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":577,"title":"Advertisement Design","alias":"advertisement-design","description":" The term "advertising design" refers to the synthesis of marketing, psychology, creativity and design - integral parts in the development of visual advertising tools.\r\nIf just a design is the creation of a beautiful picture, then an advertising design is the creation of a beautiful picture that brings its owner money. For an advertisement to work, "move the trade" - it must be based on the Idea that would affect the customers of the Customer. Moreover, it would have worked as planned and planned.\r\nThe sphere of design-design is currently carried out within the framework of already established traditions, but innovations in this area are primarily related to the search for specific, interesting, original graphic ways of expressing advertising ideas that contribute to a more effective impact on the consumer, one of which is the use of metaphor in creating an advertising image. It is not by chance that design in the broad sense means “the original train of thought, a new layout idea, a beautiful design”. The realization of a creative goal as the development of an advertising concept for a product or service in our time is an indispensable condition for performing advertising functions.","materialsDescription":" Advertising design is a project activity aimed at developing visualization tools for an advertising image of a product as part of a creative strategy for an advertising campaign.\r\nThe visualization of the advertising image is achieved mostly with the help of design graphics.\r\nAdvertising image is a complex, multifaceted phenomenon, the study of which can be carried out from different positions: economics and marketing, psychotechnologies and perception problems, methods of its creation, etc.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Advertisement_Design.png"},{"id":567,"title":"Graphics Design","alias":"graphics-design","description":" Graphic design is the process of visual communication and problem-solving through the use of typography, photography, and illustration. The field is considered a subset of visual communication and communication design, but sometimes the term "graphic design" is used synonymously. Graphic designers create and combine symbols, images and text to form visual representations of ideas and messages. They use typography, visual arts, and page layout techniques to create visual compositions. Common uses of graphic design include corporate design (logos and branding), editorial design (magazines, newspapers and books), wayfinding or environmental design, advertising, web design, communication design, product packaging, and signage.\r\nGraphic design is applied to everything visual, from road signs to technical schematics, from interoffice memorandums to reference manuals.\r\nDesign can aid in selling a product or idea. It is applied to products and elements of company identity such as logos, colors, packaging and text as part of branding (see also advertising). Branding has become increasingly more important in the range of services offered by graphic designers. Graphic designers often form part of a branding team.\r\nGraphic design is applied in the entertainment industry in decoration, scenery and visual story telling. Other examples of design for entertainment purposes include novels, vinyl album covers, comic books, DVD covers, opening credits and closing credits in filmmaking, and programs and props on stage. This could also include artwork used for T-shirts and other items screenprinted for sale.\r\nFrom scientific journals to news reporting, the presentation of opinion and facts is often improved with graphics and thoughtful compositions of visual information - known as information design. Newspapers, magazines, blogs, television and film documentaries may use graphic design. With the advent of the web, information designers with experience in interactive tools are increasingly used to illustrate the background to news stories. Information design can include data visualization, which involves using programs to interpret and form data into a visually compelling presentation, and can be tied in with information graphics.","materialsDescription":"<span style=\"font-weight: bold;\">What is graphic design and what does it include?</span>\r\nGraphic design is a design process that combines text and graphics in a way that is intended to communicate a specific message.\r\n<span style=\"font-weight: bold;\">Where is graphic design used?</span>\r\nYou will find graphic design in company logos, printed materials like brochures, posters, signs, greeting cards, postcards, business cards, billboards and ads. Advances in technology have brought us the digital environment complete with websites, online ads, virtual brochures and presentations, and so very much more.\r\n<span style=\"font-weight: bold;\">What do graphic designers use to create these designs?</span>\r\nGraphic designers can use hand-illustrated designs as well as computer-aided designs thanks to a wide range of software with nearly endless digital design tools. The availability of software like Adobe Illustrator and Photoshop have become staples of the graphic designer.\r\n<span style=\"font-weight: bold;\">What can a graphic designer do that I can’t do?</span>\r\nA graphic designer does more than just put their creative skills to work. Though most graphic designers are intuitively creative already, they have generally spent time studying numerous design principles. It’s vital to understand how to use design elements to transmit the required messages and values as well as evoke a certain feeling in the viewer. As a visual communicator, they leverage these design elements and use concepts such as color, typography, space, balance, form and lines to create their visual message.\r\nSome graphic designers are also able to understand the more technical aspects of the design required to create digital assets for a company. For example, a web designer is often able to create wireframes, workflows, and sitemaps and understand how to develop easy navigation for the user experience.\r\n<span style=\"font-weight: bold;\">What else does a graphic designer accomplish as part of the work they produce for a client?</span>\r\nBesides turning their client’s vision, brand image and value proposition into a graphic display, a designer will undertake many specialty tasks as part of a graphic design project. The specialty tasks include collaborating on the concept (usually with a team), attending meetings about the project, paying attention to what customers are clicking on, doing presentations that explain the various potential designs, revising designs, and preparing asset files for others on the team and for client use.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Graphics_Design.png"},{"id":890,"title":"Presentation Software","alias":"presentation-software","description":"<span style=\"font-weight: bold;\">Presentation software</span> is a category of application software that is specifically designed to allow users to create a presentation of ideas by stringing together text, images and audio/video. The presentation tells a story or supports speech or the presentation of information.\r\nPresentation software can be divided into business presentation software and general multimedia authoring software, but most presentation software applications already provide tools that allow users to create both professional-looking business presentations and general multimedia presentations.\r\nPresentation software is also known as <span style=\"font-weight: bold;\">a presentation program.</span>\r\nPresentation software is generally used for creating slideshows that display information. The software has <span style=\"font-weight: bold;\">three main components:</span>\r\n<ul><li> Text editor for inputting and formatting text</li><li> Facility for inserting graphics and other multimedia files</li><li> Slideshow system for displaying the content</li></ul>\r\nBefore the advent of presentation software, presenters commonly used an easel to hold posters that contained illustrations to support the report or a slide projector to display graphics printed on a transparent plastic film. These methods were inflexible; for example, changing small things in the printed materials used could result in mismatched graphics or illustrations, sometimes requiring redoing the entire thing. With presentation software, not only authoring but also correcting illustrations can be done easily. ","materialsDescription":"<p class=\"align-center\"><span style=\"font-weight: bold;\">Why is a Good Presentation Software Important?</span></p>\r\nOftentimes, if a prospect agrees to view a presentation, you’ve at least piqued their interest. You’ve likely spent some time on the phone or exchanged a few emails. Perhaps the prospect has visited your website a couple times. They’re likely not sold on you and actively forming their opinion of your brand. This is why it’s imperative that your first presentation is a slam dunk. When a prospect sees you, your brand, and your product on display, you want them to leave excited for the benefits you can offer them.\r\nA great presentation software gives you the tools and functionality you need to create a winning presentation. And create it quickly and easily.\r\n<span style=\"font-weight: bold;\">In addition to usability, below are more benefits a good presentation software can bring to your organization.</span>\r\n<ul><li><span style=\"font-weight: bold;\">Consolidation of information. </span></li></ul>\r\nA great slide deck combined with quality content is often one of the best single sources of sales information in your company.\r\nMost sales decks contain a complete pitch all the way from pain point identification to feature/benefit pairings. Testimonials, best practices, and case studies are often scattered throughout.\r\nThis means you have a single file you can hand off to new sales reps for training. Or, if you need to pull a testimonial from a happy customer, you can find it in the slide deck. This one-stop shop for valuable sales information is made possible by a good presentation software.\r\n<ul><li><span style=\"font-weight: bold;\">Mobility for reps on the go. </span></li></ul>\r\nIf your sales reps are doing a lot of physical site visits, having a mobile sales presentation that they can carry around in their pockets is a whole lot easier than lugging around a laptop. Almost every modern presentation software offers robust mobile functionality.\r\nHaving the consolidated information mentioned in the last point available at all times is a powerful asset for the rep doing on-site visits or demos.\r\n<ul><li><span style=\"font-weight: bold;\">Consistency across the team.</span> </li></ul>\r\nMost presentation solutions allow for the creation of custom templates. This, combined with a “master slide deck” means that you can ensure greater alignment across your sales reps. This, with a content management platform, means your content is version-controlled and up-to-date. Which is important as its being presented to prospects.\r\n<ul><li><span style=\"font-weight: bold;\">Rapid content personalization. </span></li></ul>\r\n<span style=\"font-weight: bold;\"></span>Let’s say you’re about to hop on a presentation call with a prospect. Right before the call, you receive an email from him letting you know his boss will be on the call as well. As it turns out, she’s particularly interested in one specific feature of your product.\r\nWith a great presentation tool, you can edit slides immediately (often from your mobile device, if needed). You can also delete, append, or customize information. This allows you to quickly tailor your messaging and visuals to fit the needs of a particular prospect or market segment.\r\n<ul><li><span style=\"font-weight: bold;\">Firsthand feedback from prospects.</span></li></ul>\r\n There are a lot of advantages of making sales presentations a two-way conversation as opposed to a monologue. Even if you can’t meet in person, real-time verbal feedback from prospects is incredibly valuable information.\r\nA good sales rep will listen closely for clues that certain slides are holding the attention of the audience. These are moments that likely deserve to be highlighted or more deeply articulated. \r\nA great presentation software will allow you to add slides, write copy, and format visuals immediately after the prospect hangs up. All while the information is fresh in the presenter’s mind. That way you can elevate their points of interest.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/presenter.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6617,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/simulia.jpg","logo":true,"scheme":false,"title":"SIMULIA Powered by the 3DEXPERIENCE® platform","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"simulia","companyTitle":"Dassault Systèmes","companyTypes":["supplier","vendor"],"companyId":2774,"companyAlias":"dassault-systemes","description":"<span style=\"font-weight: bold; \">Powered by the 3DEXPERIENCE® platform, SIMULIA delivers realistic simulation applications that enable users to reveal the world we live in.</span>\r\n<span style=\"font-weight: bold; \">Application Engineering</span><br /><span style=\"font-style: italic; \">Simulation value for product engineers and designers who need application-focused solutions</span>\r\nApplication Engineering provides roles for users by industry application and for designers and engineers to utilize simulation throughout their daily product design activities. Simulation technology covers structures, fluids, plastic injection molding, acoustics, and structural applications. The right capability is delivered in an application context with guided access for occasional users to allow simulation to drive design and power innovation within product teams.\r\n<p class=\"align-center\"><span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Key Benefits</span></span></p>\r\n<ul><li>Access the value of simulation On Premise or On Cloud in a user experience that provides just what you need and speaks your language</li><li>Simulate using the design geometry itself within a designer environment fully integrated with PLM and CAD</li><li>As simulation tasks and attributes are linked to the design, simulation updates are easy to execute when the underlying design changes</li><li>Enjoy immediate access to computation with embedded licenses in Roles for Designers and Engineers</li><li>Complete plastic injection molding solution integrated with CATIA</li></ul>\r\n<span style=\"color: rgb(97, 97, 97); \"><span style=\"font-weight: bold; \">Multiphysics Simulation</span><br /><span style=\"font-style: italic; \">Complete state-of-the-art physics simulation technology integrated & managed on the 3DEXPERIENCE platform</span></span>\r\nDelivers powerful simulation of structures, fluids, multibody, and electromagnetics scenarios including complex assemblies directly linked with the product data. Modeling, simulation, and visualization technology are fully integrated on the 3DEXPERIENCE Platform, including process capture, publication, and re-use. The value of the customer’s existing investment in simulation horsepower is maximized by allowing simulation data, results, and IP to connect to the platform and become true corporate assets that powers innovation for all users. \r\n<p class=\"align-center\"><span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Key Benefits</span></span></p>\r\n<ul><li>State-of-the-art Multiphysics simulation capability delivering structures, fluids, acoustics, electromagnetics, and multibody simulation within a fully integrated environment supporting end-to-end industry processes, including optimization.</li><li>Assemble complex models collaboratively with colleagues around the world.</li><li>Best-in-class high-performance visualization powers interpretation and communication of results without download of large results files.</li><li>Rule-based batch modeling, meshing, and interconnections accelerates the efficiency of modeling and reduces re-work.</li></ul>\r\n<span style=\"font-weight: bold; \">Simulation Data Science</span><br /><span style=\"font-style: italic; \">Analytics, access to simulation value, and re-use of best-practices to support better decisions</span>\r\nAll platform users can benefit from the value of simulation by utilizing the capabilities in the Simulation Data Science discipline taking Simulation Process & Data Management (SPDM) to the next level. Powerful results analytics allows users to use simulation results to inform decision making. Democratization of simulation results and re-use of simulation methods is enabled through dashboard access to a company’s library of published methods and best-practices. With Simulation Analytics, simulation knowledge and its value becomes available for all platform users.\r\n<p class=\"align-center\"><span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Key Benefits</span></span></p>\r\n<ul><li>Capture and share methods with others and publish your best-practices to democratize and communicate your work.</li><li>Access your corporate library of simulation best-practices and standards.</li><li>Explore and understand the entire design space using modern simulation results analytics to process large data sets.</li><li>Base decision-making on realistic simulation.</li></ul>\r\n\r\n\r\n\r\n","shortDescription":"SIMULIA applications accelerate the process of evaluating the performance, reliability and safety of materials and products before committing to physical prototypes.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"SIMULIA Powered by the 3DEXPERIENCE® platform","keywords":"","description":"<span style=\"font-weight: bold; \">Powered by the 3DEXPERIENCE® platform, SIMULIA delivers realistic simulation applications that enable users to reveal the world we live in.</span>\r\n<span style=\"font-weight: bold; \">Application Engineering</span><br /><span st","og:title":"SIMULIA Powered by the 3DEXPERIENCE® platform","og:description":"<span style=\"font-weight: bold; \">Powered by the 3DEXPERIENCE® platform, SIMULIA delivers realistic simulation applications that enable users to reveal the world we live in.</span>\r\n<span style=\"font-weight: bold; \">Application Engineering</span><br /><span st","og:image":"https://old.roi4cio.com/fileadmin/user_upload/simulia.jpg"},"eventUrl":"","translationId":6617,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":57,"title":"Engineering Applications","alias":"engineering-applications","description":"Specific segmentations of <span style=\"font-weight: bold;\">Engineering Applications</span> include software packages, such as 2D CAD, 3D CAD, engineering analysis, project software and services, collaborative engineering software, and asset information management. These tools are used not only for asset creation but also to manage data and information throughout the lifecycle of physical assets in both infrastructure and industry. Application of optimization techniques in engineering provides as-built information to owners for operations and maintenance requirements, as well as a document for any modifications to the facility.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Computer-aided design (CAD)</span> is the use of computers (or workstations) to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Computer engineering and intelligent systems output is often in the form of electronic files for print, machining, or other manufacturing operations. \r\nIts use in designing electronic systems is known as electronic design automation (EDA). Application of CAD in mechanical engineering is known as mechanical design automation (MDA) or computer-aided drafting (CAD), which includes the process of creating a technical drawing with the use of computer software.\r\nCAD software for mechanical design uses either vector-based graphics to depict the objects of traditional drafting, or may also produce raster graphics showing the overall appearance of designed objects. However, it involves more than just shapes. As in the manual drafting of technical and engineering drawings, the output of CAD must convey information, such as materials, processes, dimensions, and tolerances, according to application-specific conventions.\r\nCAD is an important industrial art extensively used in many engineering applications, including automotive, shipbuilding, and aerospace industries, industrial and architectural design, electrical engineering app, prosthetics, environmental engineering applications, and many more. \r\nEngineering apps and software are: 2D layout and CAD software, 3D design and visualization systems, Pre-engineering and FEED applications, Engineering information management systems, Asset lifecycle information management systems, Asset performance management systems, P&ID and piping layout design, 3D laser scanning and point cloud modeling, 3D augmented reality simulation systems, 3D virtual reality simulation based on other technologies (photometry, etc.), 3D virtual simulation for operator training, Electrical Engineering applications and HVAC design, Engineering analysis tools, Civil engineering design packages, Fabrication and construction management systems, Software implementation services, Software maintenance & support services, Software as a service including deployment (Cloud, subscription, etc.), Collaborative software for engineering workflows, Associated databases and interfaces.","materialsDescription":"<h1 class=\"align-center\">2D and 3D CAD software</h1>\r\n<p class=\"align-left\">General-purpose CAD software includes a wide range of 2D and 3D software. Before delving into the more specific types of CAD software, it’s important to understand the difference between 2D and 3D CAD and the various industries that leverage them.</p>\r\n<p class=\"align-left\">2D CAD software offers a platform to design in two dimensions. Since 2D CAD does not allow for the creation of perspectives or scale, it is often used for drawing, sketching and drafting conceptual designs. 2D CAD is often used for floor plan development, building permit drawing and building inspection planning. Since it is mainly used as a tool for conceptual design, it is also a great starting point for most 3D designs. This gives users a basic overview of dimension and scale before they move on to 3D design. 2D CAD typically runs at a significantly lower price since it does not provide the same scale of tools and breadth of features.</p>\r\n<p class=\"align-left\">3D CAD provides a platform for designing 3D objects. The main feature of this type of CAD software is 3D solid modeling. This lets designers create objects with length, width and height, allowing more accurate scaling and visualization. With this feature, users can push and pull surfaces and manipulate designs to adjust measurements. Once the 3D design is to your liking, you can transfer it to a 3D rendering software and place the designs in fully realized 3D landscapes.</p>\r\n<h1 class=\"align-center\">BIM software</h1>\r\n<p class=\"align-left\">One of the more specific types of 3D CAD software is building information modeling software, also known as BIM software. BIM software is intended to aid in the design and construction of buildings specifically. BIM software provides users with the ability to break down building parts and see how they fit into a single finalized structure. Users can isolate walls, columns, windows, doors, etc., and alter the design. Engineers, architect, and manufacturers are just some of the professionals that use BIM software on a regular basis.</p>\r\n<h1 class=\"align-center\">Civil engineering design software</h1>\r\n<p class=\"align-left\">Civil engineering design software allows users to design 3D models of municipal buildings and structures. This includes tools for railway modeling, highway design and city infrastructure planning. Similar to BIM, civil engineering design software helps in every stage of the design process by breaking it down to drafting, designing and visualizing the final product. Best app for civil engineering also helps designers determine building costs. Civil engineering design software is perfect for engineers working in public and civil departments including transportation, structural and geotech.</p>\r\n<h1 class=\"align-center\">3D printing software</h1>\r\n<p class=\"align-left\">3D printing software facilitates the printing of real-life 3D objects. When users design an object, it can bу translated into a 3D printing software. The software then relays instructions on how to print that design to an actual 3D printer. The 3D printing software sends instructions to just print out certain parts of an object, or it can print out the entirety of an object. Some CAD software doubles as 3D printing software so you can seamlessly produce actual 3D objects all from one platform. 3D printing software can be used by manufacturers and architects to build machine or building parts. This greatly reduces production costs, as manufacturers no longer need offsite locations for manufacturing. It also gives companies a rapid test drive to see how a product would look if it were mass produced.</p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Engineering_Applications.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6902,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/ZWCAD_logo.png","logo":true,"scheme":false,"title":"ZWCAD","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"zwcad","companyTitle":"ZWSOFT","companyTypes":["supplier","vendor"],"companyId":10494,"companyAlias":"zwsoft","description":"<span style=\"font-weight: bold; \">ZWCAD</span> is a CAD software developed by ZWSOFT. ZWCAD provides tools for 2D and 3D design, drafting, modeling, and other functions commonly used in various industries, including architecture, engineering, and manufacturing.\r\nZWCAD stands out as a swift and robust 2D CAD solution, providing exceptional compatibility with AutoCAD®. It enables architects, engineers, and designers working in the AEC and manufacturing sectors to easily translate their imaginative concepts into reality.\r\n<span style=\"font-weight: bold;\">Compatible and Comfortable: Get Started within One Hour</span>\r\n<ul><li><span style=\"font-weight: bold; font-style: italic;\">Compatible.</span> Highly compatible with DWG, DXF, DWT, and other common file formats.</li><li><span style=\"font-weight: bold; font-style: italic;\">Familiar Environment.</span> Familiar interface, commands and aliases. Choose from Classic or Ribbon, Dark or Light.</li><li><span style=\"font-weight: bold; font-style: italic;\">Customizable.</span> Develop or migrate third-party applications easily with APIs including LISP, VBA, ZRX, and .NET.</li><li><span style=\"font-weight: bold; font-style: italic;\">One-step Migration.</span> Easily migrate your printers, templates, fonts, command alias and hatch patterns.</li></ul>\r\nZWCAD offers you a seamless experience from start to finish by taking full advantage of multi-core CPUs. From opening files to selecting, moving, panning, and zooming, our common operations are executed with unparalleled speed.\r\nWe offer over 200 third-party applications for a wide range of industries. No matter what industry you're in, you can always find the right solution to help you work easier, faster, and more accurately.\r\nYou can start your <span style=\"font-weight: bold; font-style: italic;\">30-day free trial of ZWCAD</span> with full functionality at www.zwsoft.com/download","shortDescription":"ZWCAD is a fast and powerful 2D CAD solution that offers unparalleled compatibility with AutoCAD.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"ZWCAD","keywords":"","description":"<span style=\"font-weight: bold; \">ZWCAD</span> is a CAD software developed by ZWSOFT. ZWCAD provides tools for 2D and 3D design, drafting, modeling, and other functions commonly used in various industries, including architecture, engineering, and manufacturing","og:title":"ZWCAD","og:description":"<span style=\"font-weight: bold; \">ZWCAD</span> is a CAD software developed by ZWSOFT. ZWCAD provides tools for 2D and 3D design, drafting, modeling, and other functions commonly used in various industries, including architecture, engineering, and manufacturing","og:image":"https://old.roi4cio.com/fileadmin/user_upload/ZWCAD_logo.png"},"eventUrl":"","translationId":6902,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"},{"id":57,"title":"Engineering Applications","alias":"engineering-applications","description":"Specific segmentations of <span style=\"font-weight: bold;\">Engineering Applications</span> include software packages, such as 2D CAD, 3D CAD, engineering analysis, project software and services, collaborative engineering software, and asset information management. These tools are used not only for asset creation but also to manage data and information throughout the lifecycle of physical assets in both infrastructure and industry. Application of optimization techniques in engineering provides as-built information to owners for operations and maintenance requirements, as well as a document for any modifications to the facility.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Computer-aided design (CAD)</span> is the use of computers (or workstations) to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Computer engineering and intelligent systems output is often in the form of electronic files for print, machining, or other manufacturing operations. \r\nIts use in designing electronic systems is known as electronic design automation (EDA). Application of CAD in mechanical engineering is known as mechanical design automation (MDA) or computer-aided drafting (CAD), which includes the process of creating a technical drawing with the use of computer software.\r\nCAD software for mechanical design uses either vector-based graphics to depict the objects of traditional drafting, or may also produce raster graphics showing the overall appearance of designed objects. However, it involves more than just shapes. As in the manual drafting of technical and engineering drawings, the output of CAD must convey information, such as materials, processes, dimensions, and tolerances, according to application-specific conventions.\r\nCAD is an important industrial art extensively used in many engineering applications, including automotive, shipbuilding, and aerospace industries, industrial and architectural design, electrical engineering app, prosthetics, environmental engineering applications, and many more. \r\nEngineering apps and software are: 2D layout and CAD software, 3D design and visualization systems, Pre-engineering and FEED applications, Engineering information management systems, Asset lifecycle information management systems, Asset performance management systems, P&ID and piping layout design, 3D laser scanning and point cloud modeling, 3D augmented reality simulation systems, 3D virtual reality simulation based on other technologies (photometry, etc.), 3D virtual simulation for operator training, Electrical Engineering applications and HVAC design, Engineering analysis tools, Civil engineering design packages, Fabrication and construction management systems, Software implementation services, Software maintenance & support services, Software as a service including deployment (Cloud, subscription, etc.), Collaborative software for engineering workflows, Associated databases and interfaces.","materialsDescription":"<h1 class=\"align-center\">2D and 3D CAD software</h1>\r\n<p class=\"align-left\">General-purpose CAD software includes a wide range of 2D and 3D software. Before delving into the more specific types of CAD software, it’s important to understand the difference between 2D and 3D CAD and the various industries that leverage them.</p>\r\n<p class=\"align-left\">2D CAD software offers a platform to design in two dimensions. Since 2D CAD does not allow for the creation of perspectives or scale, it is often used for drawing, sketching and drafting conceptual designs. 2D CAD is often used for floor plan development, building permit drawing and building inspection planning. Since it is mainly used as a tool for conceptual design, it is also a great starting point for most 3D designs. This gives users a basic overview of dimension and scale before they move on to 3D design. 2D CAD typically runs at a significantly lower price since it does not provide the same scale of tools and breadth of features.</p>\r\n<p class=\"align-left\">3D CAD provides a platform for designing 3D objects. The main feature of this type of CAD software is 3D solid modeling. This lets designers create objects with length, width and height, allowing more accurate scaling and visualization. With this feature, users can push and pull surfaces and manipulate designs to adjust measurements. Once the 3D design is to your liking, you can transfer it to a 3D rendering software and place the designs in fully realized 3D landscapes.</p>\r\n<h1 class=\"align-center\">BIM software</h1>\r\n<p class=\"align-left\">One of the more specific types of 3D CAD software is building information modeling software, also known as BIM software. BIM software is intended to aid in the design and construction of buildings specifically. BIM software provides users with the ability to break down building parts and see how they fit into a single finalized structure. Users can isolate walls, columns, windows, doors, etc., and alter the design. Engineers, architect, and manufacturers are just some of the professionals that use BIM software on a regular basis.</p>\r\n<h1 class=\"align-center\">Civil engineering design software</h1>\r\n<p class=\"align-left\">Civil engineering design software allows users to design 3D models of municipal buildings and structures. This includes tools for railway modeling, highway design and city infrastructure planning. Similar to BIM, civil engineering design software helps in every stage of the design process by breaking it down to drafting, designing and visualizing the final product. Best app for civil engineering also helps designers determine building costs. Civil engineering design software is perfect for engineers working in public and civil departments including transportation, structural and geotech.</p>\r\n<h1 class=\"align-center\">3D printing software</h1>\r\n<p class=\"align-left\">3D printing software facilitates the printing of real-life 3D objects. When users design an object, it can bу translated into a 3D printing software. The software then relays instructions on how to print that design to an actual 3D printer. The 3D printing software sends instructions to just print out certain parts of an object, or it can print out the entirety of an object. Some CAD software doubles as 3D printing software so you can seamlessly produce actual 3D objects all from one platform. 3D printing software can be used by manufacturers and architects to build machine or building parts. This greatly reduces production costs, as manufacturers no longer need offsite locations for manufacturing. It also gives companies a rapid test drive to see how a product would look if it were mass produced.</p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Engineering_Applications.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":305,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Intergraph.png","logo":true,"scheme":false,"title":"CADWorx","vendorVerified":0,"rating":"1.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"cadworx","companyTitle":"Intergraph","companyTypes":["vendor"],"companyId":2812,"companyAlias":"intergraph","description":"<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">The comprehensive series of CADWorx® design tools includes structural steel, equipment, process and instrument diagrams, and design review, plus automatic isometrics and bills of material.</span></p>\r\n<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">CADWorx is quick and easy to set up and use, so design can begin immediately. The bi-directional links between CADWorx and analysis programs for pipes and vessels enable designers and engineers to easily share information while keeping the drawings, models, and related information continuously synchronized as changes are made. The fast processing and highly refined user-interface features in CADWorx empower users to work efficiently together, even on large models.</span></p>\r\n<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">Consult with an expert about Intergraph® CADWorx® Find answers to frequently asked questions about the CADWorx Plant Design Suite Check out CADWorx Webinars</span></p>\r\n<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">Request an evaluation. It is fully functioning and runs for 30 days.</span></p>\r\n<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">Has helped thousands of corporations create revenue-earning deliverables more quickly</span></p>\r\n<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">Intelligent design</span></p>\r\n<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">Empowers P&IDs by making diagrams and unlocking info locked within them to stakeholders</span></p>\r\n<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">Supports many industries</span></p>\r\n<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">Works with chemical, offshore, pharmaceutical, piping, power, shipbuilding, steelwork, water treatment</span></p>","shortDescription":"Intergraph® CADWorx® Plant Design Suite is an integrated, complete AutoCAD®-based software series for plant design that provides intelligent drawing and database connectivity, advanced levels of automation, and easy-to-use drafting tools.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":20,"sellingCount":11,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"CADWorx","keywords":"CADWorx, design, information, models, diagrams, about, CADWorx®, with","description":"<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">The comprehensive series of CADWorx® design tools includes structural steel, equipment, process and instrument diagrams, and design revi","og:title":"CADWorx","og:description":"<p style=\"line-height: 1.5em; \"><span style=\"font-family: Verdana, Arial, Geneva, Helvetica, sans-serif; font-size: 11px; \">The comprehensive series of CADWorx® design tools includes structural steel, equipment, process and instrument diagrams, and design revi","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Intergraph.png"},"eventUrl":"","translationId":306,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":307,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SOLIDWORKS.png","logo":true,"scheme":false,"title":"Dassault Systèmes SolidWorks","vendorVerified":0,"rating":"1.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"dassault-systemes-solidworks","companyTitle":"Dassault Systèmes","companyTypes":["supplier","vendor"],"companyId":2774,"companyAlias":"dassault-systemes","description":"Depth of solutions. SOLIDWORKS is now an entire ecosystem of solutions that supports the entire enterprise, from building best-in-class connected products to supporting downstream disciplines to keep designs flowing through development and into production faster than ever. Largest talent pool in the industry. SOLIDWORKS also offers companies the largest pool of the most talented, well-trained engineers in the world. According to Monster.com, one-third of job openings seeking CAD skills in the U.S. are for SOLIDWORKS users. With more core power and performance, and new capabilities for emerging technologies, it’s never been easier to design and create with SOLIDWORKS®, the design and development solution chosen by more than 3.1 million users worldwide. Here is a sampling of the new key features to help improve your workflow. INNOVATE – New capabilities to help you incorporate emerging technologiesDESIGN – More core power and performance to get your job done fasterVALIDATE – Greater design ideas that lead to breakthrough innovationsCOLLABORATE – Unlock any 3D model to work with SOLIDWORKSBUILD & MANAGE – Data integration from concept to manufacturing to drive business needs","shortDescription":"SOLIDWORKS solutions cover all aspects of your product development process with a seamless, integrated workflow—design, verification, sustainable design, communication and data management. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":20,"sellingCount":1,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dassault Systèmes SolidWorks","keywords":"SOLIDWORKS, design, pool, than, more, performance, with, help","description":"Depth of solutions. SOLIDWORKS is now an entire ecosystem of solutions that supports the entire enterprise, from building best-in-class connected products to supporting downstream disciplines to keep designs flowing through development and into production fast","og:title":"Dassault Systèmes SolidWorks","og:description":"Depth of solutions. SOLIDWORKS is now an entire ecosystem of solutions that supports the entire enterprise, from building best-in-class connected products to supporting downstream disciplines to keep designs flowing through development and into production fast","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SOLIDWORKS.png"},"eventUrl":"","translationId":308,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":15,"title":"CAD for mechanical engineering - Computer-Aided Design"}],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1425,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Dassault_Systemes_Catia.png","logo":true,"scheme":false,"title":"Dassault Systèmes Catia","vendorVerified":0,"rating":"1.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"dassault-systemes-catia","companyTitle":"Dassault Systèmes","companyTypes":["supplier","vendor"],"companyId":2774,"companyAlias":"dassault-systemes","description":"CATIA delivers the unique ability not only to model any product, but to do so in the context of its real-life behavior: design in the age of experience. Systems architects, engineers, designers and all contributors can define, imagine and shape the connected world. \r\n<span style=\"font-weight: bold;\">CATIA, powered by Dassault Systèmes’ 3DEXPERIENCE platform, delivers: </span>\r\n<ul>\r\n<li>A Social design environment built on a single source of truth and accessed through powerful 3D dashboards that drive business intelligence, real-time concurrent design and collaboration across all stakeholders including mobile workers.</li>\r\n<li> An Instinctive 3DEXPERIENCE, for both experienced and occasional users with world-class 3D modeling and simulation capabilities that optimize the effectiveness of every user.</li>\r\n<li>An Inclusive product development platform that is easily integrated with existing processes & tools. This enables multiple disciplines to leverage powerful and integrated specialist applications across all phases of the product development process.</li>\r\n</ul>\r\n CATIA’s Design, Engineering and Systems Engineering applications are the heart of Industry Solution Experiences from Dassault Systèmes to address specific industry needs. This revolutionizes the way organizations conceive, develop and realize new products, delivering competitive edge through innovative customer experiences.\r\nCATIA DESIGN/STYLING From product to transportation industries, the style & design of the product plays a major role in its success on the market. Develop shape & material creativity, reach a high level of surface sophistication & quality, and get the right decision tools with physical & virtual prototypes. These are the key elements of CATIA Design/Styling to boost design innovation. From 3D sketching, subdivision surface, Class-A modeling to 3D printing, reverse engineering, visualization and experience, CATIA Design/Styling provides all the solutions for design creativity, surface excellence and product experience.\r\n<span style=\"font-weight: bold;\">KEY BENEFITS</span>\r\n<ul>\r\n<li>Industrial Design: whether starting 3D ideation from scratch or from 2D sketches, industrial designers can manipulate shapes with unrivaled freedom and take advantage of a true creativity accelerator to explore more ideas in the early conceptual phase.</li>\r\n<li>Advanced Surface Modeling: fully addresses the Automotive Class-A shape design process with a solution for surface refinement that integrates industry-leading Icem surfacing technologies. Delivers a powerful and intuitive suite of tools for modeling, analyzing and visualizing aesthetic and ergonomic shapes for the highest Class-A surface quality.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">CATIA ENGINEERING EXCELLENCE</span> As products and experiences continue to increase in complexity, performance and quality targets are becoming more demanding. CATIA answers that challenge, enabling the rapid development of high-quality mechanical products. Mechanical engineers equipped with CATIA 3D Modeling tools can gain insight into key factors of quality and performance early in the product development phase. Digital prototyping, combined with digital analysis and simulation, allows product development teams to virtually create and analyze a mechanical product in its operating environment. CATIA Engineering provides the platform which enables engineers to create any type of 3D assembly, for a wide range of engineering processes.\r\n<span style=\"font-weight: bold;\">KEY BENEFITS</span>\r\n<ul>\r\n<li>Create any type of 3D part, from rough 3D sketches to fully detailed industrial assemblies.</li>\r\n<li>Unbreakable relational design - a new way to manage links between objects and related behaviors in configured assemblies.</li>\r\n<li>Enables a smooth evolution from 2D- to 3D-based design methodologies.</li>\r\n<li>Productive and consistent drawing update removes the need for additional user operations.</li>\r\n<li>Process oriented tools capture the manufacturing process intent in the early stages of design.</li>\r\n<li>A wide range of applications for tooling design, for generic tooling in addition to mold and die.</li>\r\n<li>Advanced technologies for mechanical surfacing, based on a powerful specification-driven modeling approach</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">SYSTEMS ENGINEERING</span> Developing smart products has never been more challenging. Developers need an integrated systems engineering approach that enables them to manage the complete development process. Requirements engineering, systems architecture definition, detailed modeling and simulation of complex systems and the development of embedded software all need to be mastered in the context of the complete product. The Systems Engineering solution from Dassault Systèmes delivers a unique, open and extensible development platform – a platform that fully integrates the cross-discipline modeling, simulation, verification and business process support needed for developing complex ‘cyber-physical’ products. It enables organizations to quickly and easily evaluate requests for changes or develop new products or system variants, while utilizing a unified performance based systems engineering approach that reduces the overall cost of system and product development.\r\n<span style=\"font-weight: bold;\">KEY BENEFITS</span>\r\n<ul>\r\n<li>Leverage a best-in-class model-based system development platform to accelerate the development and validation of complex systems and products.</li>\r\n<li>Ensure compliance with market requirements and regulations while improving time-to-market and reducing costs through world-class requirements engineering.</li>\r\n<li>Collaborate across all disciplines to define a complete systems architecture through multiple operational, functional and component views.</li>\r\n<li>Verify the behavior of complex products and systems, that span multiple engineering disciplines, through Modelica based modeling and simulation.</li>\r\n<li>Integrate the embedded systems and 3D product design processes to leverage intelligent embedded systems in the 3DEXPERIENCE simulation of complex mechatronic products and systems.</li>\r\n</ul>\r\n","shortDescription":"CATIA is the World's Leading Solution for Product Design and Experience. It is used by leading organizations in multiple industries to develop the products we see and use in our everyday lives.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":2,"sellingCount":1,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dassault Systèmes Catia","keywords":"","description":"CATIA delivers the unique ability not only to model any product, but to do so in the context of its real-life behavior: design in the age of experience. Systems architects, engineers, designers and all contributors can define, imagine and shape the connected w","og:title":"Dassault Systèmes Catia","og:description":"CATIA delivers the unique ability not only to model any product, but to do so in the context of its real-life behavior: design in the age of experience. Systems architects, engineers, designers and all contributors can define, imagine and shape the connected w","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Dassault_Systemes_Catia.png"},"eventUrl":"","translationId":1426,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":15,"title":"CAD for mechanical engineering - Computer-Aided Design"}],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1427,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/PTC_Creo.png","logo":true,"scheme":false,"title":"PTC Creo","vendorVerified":0,"rating":"1.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"ptc-creo","companyTitle":"PTC","companyTypes":["vendor"],"companyId":2777,"companyAlias":"ptc","description":"<span style=\"font-weight: bold;\">The Leading Product Design 3D CAD Software</span>\r\nNow more than ever, product design & manufacturing teams are expected to create products more efficiently & cost effectively, without sacrificing innovation or quality. Fortunately, Creo delivers the most scalable range of 3D CAD product development packages & tools in today’s market. Its variety of specific features, capabilities, & tools help engineers imagine, design, & create your products better.\r\nTake your products from concept to digital prototype efficiently, precisely and intuitively with Creo—on the cutting edge of CAD for more than 30 years.\r\n<span style=\"font-weight: bold;\">Features</span>\r\n\r\n<ul>\r\n<li>Modeling and Design</li>\r\n<li>Simulation and Analysis</li>\r\n<li>Smart Connected Design</li>\r\n<li>Collaboration</li>\r\n<li>Additive Manufacturing</li>\r\n<li>Model-Based Definition</li>\r\n</ul>\r\n\r\n<span style=\"font-weight: bold;\">Creo Capabilities</span>\r\nPTC’s developers created Creo Parametric as a sound foundation software that allows its users the ability to expand deeper functionality with each component. As your products become more complex in its engineering, Creo offers expanded capabilities to meet your requirements. Every product isn’t made equal, and your 3D CAD solution shouldn’t be either. Explore Creo’s capabilities that mold to your unique craft.\r\n \r\n<span style=\"font-weight: bold;\">3D Design</span>\r\n\r\n<ul>\r\n<li>Parametric & Freestyle Surfacing</li>\r\n<li>Direct Modeling</li>\r\n<li>2D Drawing</li>\r\n<li>Model-Based Definition</li>\r\n<li>Design Exploration</li>\r\n<li>Sheet Metal Design</li>\r\n<li>Mechanism Design</li>\r\n<li>Plastic Part Design</li>\r\n<li>Structural Framework & Weld Design</li>\r\n<li>Fastener Design</li>\r\n<li>Human Factors Design</li>\r\n<li>Routed Systems Design</li>\r\n<li>Smart Connected Design</li>\r\n<li>Concept Design</li>\r\n<li>Industrial Design</li>\r\n<li>Reverse Engineering</li>\r\n<li>Augmented Reality</li>\r\n<li>Multi-CAD</li>\r\n<li>Rendering & 3D Animation</li>\r\n<li>Assembly Management & Performance</li>\r\n</ul>\r\n\r\n<span style=\"font-weight: bold;\">Analysis</span>\r\n\r\n<ul>\r\n<li>Structural Analysis</li>\r\n<li>Thermal Analysis</li>\r\n<li>Motion Analysis</li>\r\n<li>Mold Fill Analysis</li>\r\n<li>Fatigue Analysis</li>\r\n<li>Creepage & Clearance Analysis</li>\r\n</ul>\r\n\r\n<span style=\"font-weight: bold;\">CAM</span>\r\n\r\n<ul>\r\n<li>Additive Manufacturing</li>\r\n<li>Tool & Die Design</li>\r\n<li>Production Machining</li>\r\n</ul>\r\n\r\n<span style=\"font-weight: bold;\">Other</span>\r\n\r\n<ul>\r\n<li>Performance Advisor</li>\r\n<li>Product Data Management</li>\r\n<li>Technical Illustrations</li>\r\n</ul>\r\n","shortDescription":"Imagine, Design, Create, Innovate your products better with PTC Creo. The 3D CAD / CAM / CAE software and solutions for product design and development.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":8,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"PTC Creo","keywords":"","description":"<span style=\"font-weight: bold;\">The Leading Product Design 3D CAD Software</span>\r\nNow more than ever, product design & manufacturing teams are expected to create products more efficiently & cost effectively, without sacrificing innovation or quality.","og:title":"PTC Creo","og:description":"<span style=\"font-weight: bold;\">The Leading Product Design 3D CAD Software</span>\r\nNow more than ever, product design & manufacturing teams are expected to create products more efficiently & cost effectively, without sacrificing innovation or quality.","og:image":"https://old.roi4cio.com/fileadmin/user_upload/PTC_Creo.png"},"eventUrl":"","translationId":1428,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":15,"title":"CAD for mechanical engineering - Computer-Aided Design"}],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":2204,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/kompas_3d.png","logo":true,"scheme":false,"title":"ASCON KOMPAS-3D","vendorVerified":0,"rating":"1.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"ascon-kompas-3d","companyTitle":"ASCON","companyTypes":["supplier"],"companyId":2698,"companyAlias":"askon","description":"<p>KOMPAS-3D is a flexible 3D modeling system that allows you to create models by several methods, including the following ones:</p>\r\n<ul>\r\n<li>Bottom-up modeling using finished components.</li>\r\n<li>Top-down modeling by designing components to match specific designs.</li>\r\n<li>Modeling based on layout drawings, such as kinematic diagrams.</li>\r\n<li>Or any combination of these modeling methods.</li>\r\n</ul>\r\n<p>The KOMPAS-3D system has powerful functions for managing project of thousands of sub-assemblies, parts, and standard library products. It supports all the capabilities of 3D solids and surface modeling that have become the standard among medium-level CAD/CAM programs, including these ones:</p>\r\n<ul>\r\n<li>Intuitive creation of new geometry, and importing and manipulation of surfaces.</li>\r\n<li>Associative settings for element parameters.</li>\r\n<li>Boolean operators for generating atypically shaped elements; functions include union, intersection, and subtraction.</li>\r\n<li>Advanced surface and shape modeling for designing complex, ergonomic, and easy to use industrial products; functions include point grids, by network of curves, ruled surfaces, extrusions, lofted surfaces, swept surfaces, and revolutions.</li>\r\n<li>Construction of auxiliary lines and planes, and spatial curves, including broken lines, splines, and spirals.</li>\r\n<li>Addition of structural elements, such as chamfers, fillets, holes, stiffness elements, and thin-walled shells.</li>\r\n<li>Creation of any shape of arrays and assembly components.</li>\r\n<li>Component modeling with assemblies, with relative positioning of parts in assemblies.</li>\r\n<li>Constraints for mating assembly components, including automatic constraints for faster assembly creation.</li>\r\n<li>Special tools to simplify work with large assemblies.</li>\r\n<li>Flexible parts and assembly editing, including characteristic points.</li>\r\n<li>Redetermination of the parameters of any element at any design stage causes a reconstruction of the whole model.</li>\r\n<li>Effective mould design with pattern drafts, joint lines, cavities defined by part shape, and shrinkage allowance.</li>\r\n<li>Capable sheet metal modeling through sheet body creation, bends, holes, louver, fillets, punching (stamping) and cutting, cap closing, sheet metal unwrapping, and associative drawings of unwrapped sheet metal.</li>\r\n<li>Inserting standards products into the model from a library, generating user model libraries.</li>\r\n<li>Efficient collision detection of parts.</li>\r\n</ul>","shortDescription":"KOMPAS-3D is a flexible 3D modeling system that allows you to create models by several methods.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":16,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"ASCON KOMPAS-3D","keywords":"","description":"<p>KOMPAS-3D is a flexible 3D modeling system that allows you to create models by several methods, including the following ones:</p>\r\n<ul>\r\n<li>Bottom-up modeling using finished components.</li>\r\n<li>Top-down modeling by designing components to match specific ","og:title":"ASCON KOMPAS-3D","og:description":"<p>KOMPAS-3D is a flexible 3D modeling system that allows you to create models by several methods, including the following ones:</p>\r\n<ul>\r\n<li>Bottom-up modeling using finished components.</li>\r\n<li>Top-down modeling by designing components to match specific ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/kompas_3d.png"},"eventUrl":"","translationId":2205,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":15,"title":"CAD for mechanical engineering - Computer-Aided Design"}],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1486,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Platforma_3DEXPERIENCE.jpg","logo":true,"scheme":false,"title":"My Design (3DEXPERIENCE)","vendorVerified":0,"rating":"1.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"my-design-3dexperience","companyTitle":"Dassault Systèmes","companyTypes":["supplier","vendor"],"companyId":2774,"companyAlias":"dassault-systemes","description":"- Explore new ideas and shape innovative products faster through efficient collaboration\r\n- Reduce costly and time-consuming physical prototypes \r\n- Provide high-end 3D rendering with advanced materials and textures, interactive illumination and real-time ray tracing\r\n- Securely manage and share visual assets \r\n- Improve internal & external communication with accurate product documentation\r\nStyle, performance, best experience…these are just some of the characteristics consumers look for in the products they buy. In a world where trends evolve at record speed, brands that understand the consumers’ needs, win consumers’ loyalty. Products that appeal to both their emotional and practical sides have the best chance of success. This is why product development is a collaborative effort between creative designers and the technical teams who bring the designs to life. They need powerful free-form and 3D design solutions to express their creativity with precision. They need fast and easy rendering tools to create photorealistic images for project review sessions with managers and clients. They require simulation features to test their ideas and validate designs. And they need a robust foundation to store all product assets – designs, images, testing results, technical characteristics, social media information – that project stakeholders can access at any time, from anywhere.\r\nMy Design industry solution experience provides all this and more. It covers the full process from creative design to industrialization and commercialization. Creative designers, technical designers, engineers and simulation experts collaborate on the same platform, the 3DEXPERIENCE platform, to design innovative products consumers love. Design and engineering seamlessly interact with one another to explore and validate ideas for quality, safety, performance, look and feel. Project members have role-based access and automatic workflow management to keep projects on track. Intuitive and easily customizable dashboards provide managers real-time visual control of project status.\r\nMy Design delivers intuitive 3D sketching and design tools that unleash a designer’s creativity. Clay-like modelling features provide a volumetric experience with the ability to push, pinch and pull a model to get a precise 3D form with high-quality surfaces. Designers can use realistic rendering features to illustrate the product in its best light to customers and marketing staff complete with textures, materials and shadow control. Engineers can add technical functionality to improve product performance and manufacturability and can interact with designers to fine-tune designs to functional requirements. Users have built-in testing and simulation features to validate virtual prototypes before or after detail design. Final consumers can get a feel for the future product thanks to photorealistic 3D digital images. This allows them to express their opinions on possible changes in the earliest stages of development, saving time and money.\r\nWith My Design, all data is compatible eliminating the need for translations and conversions that can introduce errors and delays throughout the development process. My Design securely manages and allows project stakeholders to access all visual assets related to a product 24/7 and from anywhere in the world. This promotes better collaboration and a free flow of ideas. The most recent models can be reused for paper-based or animated marketing and technical documentation, making manuals and instructions more precise and up to date.","shortDescription":"My Design (3DEXPERIENCE) - Create, Engineer, Simulate, Manage, and Share your products in 3D","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"My Design (3DEXPERIENCE)","keywords":"","description":"- Explore new ideas and shape innovative products faster through efficient collaboration\r\n- Reduce costly and time-consuming physical prototypes \r\n- Provide high-end 3D rendering with advanced materials and textures, interactive illumination and real-time","og:title":"My Design (3DEXPERIENCE)","og:description":"- Explore new ideas and shape innovative products faster through efficient collaboration\r\n- Reduce costly and time-consuming physical prototypes \r\n- Provide high-end 3D rendering with advanced materials and textures, interactive illumination and real-time","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Platforma_3DEXPERIENCE.jpg"},"eventUrl":"","translationId":1487,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":589,"title":"Design Animation","alias":"design-animation","description":" Visual marketing is firmly in the lead when it comes to promoting a business. And the most effective tool for him can surely be called an animated movie. It's no secret that the visualization of information facilitates its perception.\r\nAnimated video is one of the most original ways of presenting advertisements for your company. Animated advertising will attract the views of new customers and you will certainly want to buy products or services. Today, an animated video is a fairly well-known and sought-after form of advertising.\r\nAnimation video today is a must-have for any company that has a website. It is desirable that this video was creative, even if it tells about a large company or reveals serious questions. A distinctive feature of the drawn clips is the ability to present information from the face of any character, even the directly promoted product “animated” with the help of animation.\r\nBefore you order an animated video, it is important to decide which type of video is needed. A video can:\r\n<ul><li>Promote the brand. Such videos reveal the main characteristics of the product and tell about its strengths. In order for such a video to be effective, it is important to get an emotional response from the audience. To do this, you need to create a thoughtful character with an obvious pattern of behavior so that the viewer associates himself with him.</li><li>Talk about the company. The target audience of such clips is existing and potential employees and partners. Such videos are ordered to emphasize the positive features of the company. Due to this, there is a desire to cooperate with such an organization and/or work in it.</li><li>Be informative. These are intelligent videos that do not contain a call to action. The task of the informational video is to increase the involvement of the target audience and increase the level of brand loyalty. It is the most capacious and easy to hear important information.</li></ul>\r\nHaving made the decision to order an animation video, you need to understand what tasks it should perform. It is necessary to clarify the interests and preferences of the target audience and focus on them, choose an understandable and pleasant (if appropriate, with a humorous tint) style of narration and talk about the real merits of the product or service.","materialsDescription":" <span style=\"font-weight: bold;\">What is 2D animation?</span>\r\n2D animation - fully two-dimensional rollers. Characters, titles, buildings and any other objects in such videos are flat, as in the pictures. Today it is this kind of graphics that is most in demand. Often, these videos look simple and neat, but at the same time informative.\r\n2D animation can be executed in a classic drawing format or created using computer graphics, for example, Shape animation.\r\n<span style=\"font-weight: bold;\">What is 3D animation?</span>\r\n3D animation is its main difference from 2D in that the characters and any other objects in such a video are three-dimensional. Such videos allow you to fully demonstrate to customers a product from virtually all sides before it is created. It can be video smartphones, cars, houses. In the production of 3D animation is more complicated and more expensive than 2D, but at the same time much more spectacular, it means that it is better remembered.\r\n<span style=\"font-weight: bold;\">What is a cartoon video?</span>\r\nHand-drawn video is a modern marketing tool that will be useful for any kind of business. It is easier and clearer for a client to watch a short video than to wade through the wilds of numerous pages on the site.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Design_Animation.png"},{"id":587,"title":"Packaging Design","alias":"packaging-design","description":" <span style=\"font-weight: bold;\">Package design</span> is a key element in consumer branding. It allows goods to stand out on the shelf, attract attention and motivate the buyer to purchase in conditions of high level of competition in the market. In turn, label design is one of the stages in creating packaging. It is often associated with the development of the original form of packaging - shaping. In a number of categories, such as spirits, brand success depends on the integrity of the design concept embodied in the label and the shape of the bottle.\r\nIn the field of consumer goods, packaging is an integral part of the brand - it is the main identifier that makes a product desirable and recognizable. We can distinguish several stages of interaction or “communication” of the packaging with the consumer, as well as several basic functions that it performs in this case:\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">"Attraction"</span></span>\r\nEach modern buyer, having come to the store, is under the attack of a huge amount of information - around him are shelves with a wide variety of packages, different manufacturers, shapes, sizes and colors. Considering that the shopping list is usually rather big, we spend from a few seconds to a couple of minutes choosing each item. That is why the moment of contact of the buyer with the new brand is very brief. And only in the case when the packaging design is noticeable among many competitors, we can talk about the fulfillment of the first function - to stand out, attract attention, arouse interest.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">"Acquaintance"</span></span>\r\nAfter attention is drawn and the product is in the hands of the buyer, the stage of acquaintance with the product begins. Given the presence of dozens of competitors on the shelves - it will also not be long. Therefore, the next task is to convey to the consumer the most important information about the brand and product as briefly, clearly and structured as possible. This information can be emotional and functional. Thus, the packaging design and its individual components (logo, illustrations, product image, color, font and compositional solutions) are evaluated by the consumer more likely from an emotional point of view, with their help you can convey the brand’s target associations. For example, the packaging design of a dairy product or mineral water most often exploits a sense of naturalness and environmental friendliness, and the cognac label design reflects status and traditions.\r\nThe “functional” part of the package is data that the customer analyzes rationally. This information is about the manufacturer, place and date of production, shelf life, availability of preservatives, number of calories, etc. Despite the technical nature of this information, its presentation can also significantly affect the impression of acquaintance with the brand. Therefore, the development of packaging design always implies a layout in which information that is significant for the consumer and forms a positive image of the brand comes to the fore.\r\nAccordingly, the second function of packaging at the stage of dating is to be informative and form a positive brand image.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">"Dialog"</span></span>\r\nIf the acquaintance turned out to be successful and the consumer made a purchase, the third stage of interaction begins, which can conditionally be referred to as a “dialogue”. Often, after the purchase, we begin to consider the product in more detail: notice new design details, carefully read the texts, delve into their meaning. When the packaging design is built taking into account this stage - on it you can often find interesting details that are invisible at first sight; any texts and facts that reveal the brand’s legend. It is these details that allow the brand to build a dialogue with the consumer.\r\nThe function that is pronounced at this stage is to communicate with the consumer, revealing interesting details.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">"Recognition"</span></span>\r\nFinally, if the packaging design was done correctly, and the brand managed to build a dialogue with the consumer, having won his sympathies, the stage of re-purchase becomes relevant.\r\nIf at the first stage of communication with the consumer, uniqueness is important for attracting attention, then for making a repeat purchase, the uniqueness and recognition of the packaging become even more important. Here, by uniqueness, we mean: a) the presence of unusual copyright findings in design; b) avoiding established categorical stereotypes and the possibility of differentiation from competitors.\r\nThus, the final function of packaging design is to demonstrate individuality and be recognizable.","materialsDescription":" <span style=\"font-weight: bold;\">What is packaging design?</span>\r\nPackaging design is one of the most powerful marketing tools for promotion, a certain channel of communication between the manufacturer and its target audience. The more attractive the goods are, the greater demand they will enjoy. A tricky move can significantly increase the percentage of sales, because it is a well-known fact that a beautiful, bright, catchy container helps to buy it deliberately and spontaneously. Each smallest element should be worked out and thought out because it is important to create it so that it works for the brand, its success.\r\n<span style=\"font-weight: bold;\">What features does the packaging design provide?</span>\r\nA competent packaging design allows you to:\r\n<ul><li>highlight the product among competitors;</li><li>draw the attention of the target audience to him;</li><li>cheer up the buyer;</li><li>make the customer trust the brand.</li></ul>\r\nThe visual effect is very important. Numerous marketing studies confirm that the consumer, among many other similar products, will choose what looks best to him.\r\n<span style=\"font-weight: bold;\">How is packaging design developed?</span>\r\nThe development of individual packaging design is a complex process because its result can be the acquisition by a product of one of the main competitive advantages - an aesthetically harmonious appearance. Be sure to take into account the features and characteristics of the product. The color scheme, font, images, materials used - everything matters, nothing should be missed. It is also worth taking care of preserving originality and originality, protection from fakes, which are possible in the future.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Work Stages:</span></span>\r\n<ul><li>market analysis;</li><li>development of an original concept;</li><li>creation of several options;</li><li>the choice of one option, making changes to it;</li><li>layout preparation;</li><li>determination of optimal printing technology.</li></ul>\r\nThis is a complex, multi-level, multi-tasking, a lengthy procedure that requires specialists to have certain knowledge, skills, and experience.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Packaging_Design.png"},{"id":585,"title":"Corporate Identity Design","alias":"corporate-identity-design","description":" The Branding of a company is very important and it gives the first impression of your company to its customers. The design of the brand gives judgment about your business and thus it should be very memorable and attractive. A professional branding or logo leaves a good image of your concern and also results in a great impression about the business. With today’s modern trend, you can design various creative and elegant designs for your brand name which leaves the potential customer to identify your company immediately.\r\nThe Brand is much more than the name of the company or its logo. It is the combination of all the experiences and impressions of a concern which includes the public relations, vendors, employees, customers or the communities. There are efficient people who represent the image of a company behind every good brand. When the expectations of the customers are met by the company, the loyalty of the brand is automatically developed. Thus, it is very important to focus on the design of the Brand name which should be descriptive about its services or products, memorable, short and attractive.\r\nBefore designing the brand, decide if it is going to be used on business cards, website, CD’s, clothing’s or printing materials, stickers, pens, on the products sold, or on any social network. Thus, plan accordingly and choose the appropriate designs or colors for your brand. Create a powerful logo with graphic design for your brand name which should speak about your business. It should be bold and distinctive and should be able to advertise about your company. A Tag line is also important for a Brand which could express the benefits of your concern and could leave an impression in the minds of the customers.\r\nThe important elements in a Brand design are the logo, names, tag lines, trademarks and packaging. The brand of the company mostly attempts the customers to purchase the products or services. Therefore, the name of the brand also plays a major role in the success of a business. There should be a life in your Brand designing with a good combination of the color, visual appearance or style, name, topography, intensity and size. Appropriate usage of these elements will provide uniqueness to your brand. You can also use a hired professional to create your brand design to make it more memorable.","materialsDescription":" <span style=\"font-weight: bold;\">How to develop a strong brand identity?</span>\r\nKnow who you are!\r\nBefore you know what tangible elements you want to make up your brand identity, you need to know who you are as a brand.\r\nWho you are as a brand is made up of a few key elements:\r\n<ul><li>Your mission (what’s your “why?”)</li><li>Your values (what beliefs drive your company?)</li><li>Your brand personality (if your brand was a person, what kind of personality would they have?)</li><li>Your unique positioning (how do you differentiate yourself from the competition?)</li><li>Your brand voice (if your brand was a person, how would it communicate?)</li></ul>\r\nThese elements are what define your brand, and before you start building your brand identity, it’s important you have a clear understanding of each.\r\nIf you’re having trouble figuring out who exactly you are, don’t sweat it. Sometimes, all you need is a simple brainstorm to help you get clarity on who you are as a brand.\r\nAsk yourself:\r\n<ul><li>Why did we start this business?</li><li>What are the beliefs and values that are important to us as a company?</li><li>What do we do better than anyone else?</li><li>What makes us special?</li><li>If we could describe our brand in three words, what would they be?</li><li>What are the three words we would want our customers to use to describe us?</li></ul>\r\nYou can also check out this awesome branding workbook from consulting firm PricewaterhouseCoopers. While this workbook is geared towards personal branding, the strategies will work for any type of business model.\r\nOnce you’ve locked in who you are as a brand, it’s time to build the identity that will bring your brand to life and show who you are to the people who matter most: your customers.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Corporate_Identity_Design.png"},{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":213,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/MicroStation.jpg","logo":true,"scheme":false,"title":"MicroStation","vendorVerified":0,"rating":"1.40","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":1,"alias":"microstation","companyTitle":"Bentley Systems","companyTypes":["vendor"],"companyId":2776,"companyAlias":"bentley-systems","description":"\r\n<p>MicroStation’s advanced parametric 3D modeling capabilities allow infrastructure professionals of any discipline to deliver data-driven, BIM-ready models. Your team can aggregate their work on MicroStation, including designs and models created with Bentley’s discipline specific BIM applications. As a result, you can create comprehensive, multi-discipline BIM models, documentation, and other deliverables. Since your project team will work in a universal modeling application, they can communicate easily to share intelligent deliverables and maintain the full integrity of your data.</p>\r\n<p>MicroStation and all Bentley BIM applications are built on the same comprehensive modeling platform. You therefore can easily progress your MicroStation work into discipline specific workflows with Bentley’s design and analytical modeling BIM applications. With this flexibility, each member of your project team has exactly the right application for the work they need to do.</p>\r\n","shortDescription":"MicroStation’s advanced parametric 3D modeling capabilities allow infrastructure professionals of any discipline to deliver data-driven, BIM-ready models.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":11,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"MicroStation","keywords":"your, modeling, work, MicroStation, models, discipline, team, applications","description":"\r\n<p>MicroStation’s advanced parametric 3D modeling capabilities allow infrastructure professionals of any discipline to deliver data-driven, BIM-ready models. Your team can aggregate their work on MicroStation, including designs and models created","og:title":"MicroStation","og:description":"\r\n<p>MicroStation’s advanced parametric 3D modeling capabilities allow infrastructure professionals of any discipline to deliver data-driven, BIM-ready models. Your team can aggregate their work on MicroStation, including designs and models created","og:image":"https://old.roi4cio.com/fileadmin/user_upload/MicroStation.jpg"},"eventUrl":"","translationId":214,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":15,"title":"CAD for mechanical engineering - Computer-Aided Design"}],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1423,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg","logo":true,"scheme":false,"title":"Autodesk AutoCAD Mechanical","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-autocad-mechanical","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"\r\n<ul> <li>Layer management. Isolate and restore layer groups and specify linetypes and lineweights.<span style=\"background-color: #ffffff;\">Create, delete, and rename layers and layer definitions, change their properties, or add layer descriptions</span></li> <li>Hidden lines. The AutoCAD Mechanical toolset automatically creates hidden lines when you specify which objects overlap the others. Update geometry automatically when changes occur. Minimize manual redraws.</li> <li>700,000+ standard parts and features. Produce accurate drawings with standard components.</li> <li>Machinery generators and calculators</li> <li> When you need to capture more complex engineering in a drawing, machinery generators can expedite the process. Efficiently analyze designs, including shaft, spring, belt, chain, and cam generators.</li> <li>Document 3D CAD models. Use the AutoCAD Mechanical toolset to detail native Inventor part and assembly models.</li> <li>Reusable mechanical drawing detailing tools. Use intelligent drafting tools made for mechanical design.</li> <li>Custom content library and publishing. The Content Manager lets you add a part or feature to a content library</li> <li>Command preview and contextual menus. Preview fillet, chamfer, and offset commands.</li> <li>AutoCAD mobile app. Take the power of AutoCAD wherever you go.</li> <li>Smart mechanical engineering dimensions. Create dimensions using abbreviated dialog boxes.</li> <li>Support for international drafting standards. Deliver standards-based design documentation.</li> <li>Associative balloons and bills of materials. Create automated part lists and BOMs.</li> </ul>","shortDescription":"AutoCAD Mechanical - Design faster with an industry-specific toolset for mechanical engineering including 700,000+ intelligent parts and features.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk AutoCAD Mechanical","keywords":"","description":"\r\n<ul> <li>Layer management. Isolate and restore layer groups and specify linetypes and lineweights.<span style=\"background-color: #ffffff;\">Create, delete, and rename layers and layer definitions, change their properties, or add layer descriptions</span></li>","og:title":"Autodesk AutoCAD Mechanical","og:description":"\r\n<ul> <li>Layer management. Isolate and restore layer groups and specify linetypes and lineweights.<span style=\"background-color: #ffffff;\">Create, delete, and rename layers and layer definitions, change their properties, or add layer descriptions</span></li>","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg"},"eventUrl":"","translationId":1423,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":15,"title":"CAD for mechanical engineering - Computer-Aided Design"}],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1424,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Inventor_Professional.png","logo":true,"scheme":false,"title":"Autodesk Inventor Professional","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-inventor-professional","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"Mechanical design and 3D CAD software Use Inventor® 3D CAD modeling software for product and mechanical design. Learn about the Inventor modeling, design, simulation, and rendering features. <span style=\"font-weight: bold;\">Product design and modeling</span>\r\n<ul>\r\n<li>Shape Generator. Create and evaluate high-performing design options in minutes.</li>\r\n<li>Parametric modeling. Create parameters as you sketch and dynamically size 3D objects. Focus on your design, not the interface.</li>\r\n<li>Assembly modeling. Put your model together in fewer steps.</li>\r\n<li>Drawing creation. Quickly create clear, accurate, detailed drawings. </li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Collaboration and design automation</span>\r\n<ul>\r\n<li>3D PDF export. Create 3D documentation rich in visual and product information that anyone can view.</li>\r\n<li>Work with non-native data. Maintain an associative link to non-native CAD data.</li>\r\n<li>Automated frame design. Quickly design and test structural frames.</li>\r\n<li>Electromechanical design. Link your Inventor and AutoCAD Electrical data.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Modeling</span>\r\n<ul>\r\n<li>Flexible modeling. Use the right modeling tool for every job with parametric, freeform, and direct modeling tools.</li>\r\n<li>Direct modeling. Use easy push/pull controls to move, rotate, resize, or scale features from imported geometries.</li>\r\n<li>Freeform modeling. Freely sculpt the shape of your design by moving points, edges, and faces.</li>\r\n<li>Mechanical concept and layout design. Open DWG™ files directly inside Inventor as the basis for your 3D model.</li>\r\n<li>Plastic parts design. Design and analyze plastic parts with purpose-built tools in Inventor.</li>\r\n<li>Sheet metal design. Design complex sheet metal products that conform to your company’s standards.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Automation</span>\r\n<ul>\r\n<li>Automated product configuration. Easily set up and deploy complex product configurations.</li>\r\n<li>Part and assembly design automation. Create reusable, configurable parts, product features, or assemblies by defining variable parameters.</li>\r\n<li>Component generators and calculators. Use built-in calculators to inform the design of common joints such as welds, clamps, and press fits.</li>\r\n<li>Automated tube and pipe design. Use a combination of automated tools and full-control design functions in Inventor to build tube and pipe runs.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Interoperability</span>\r\n<ul>\r\n<li>Cloud-based 3D design reviews. Share lightweight versions of your 3D designs in the cloud.</li>\r\n<li>Printed circuit board interoperability. Integrate your electronics and mechanical designs into a single, complete definition of your product.</li>\r\n<li>BIM interoperability. Access tools specifically created to help prepare your 3D models for use in BIM systems.</li>\r\n<li>Data management. Robust search function makes it easy to find files and quickly copy design files. Connects to Vault (included in Product Design & Manufacturing Collection).</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Simulation and visualization</span>\r\n<ul>\r\n<li>Exploded views and animations. Use exploded views and animations of complex assemblies in product documentation, manuals, and assembly instructions.</li>\r\n<li>Dynamic simulation. Apply forces to evaluate the motion, speed, and acceleration of your design.</li>\r\n<li>Stress analysis. Run quick checks on parts or perform in-depth analysis of the entire product at any stage.</li>\r\n</ul>\r\n","shortDescription":"Inventor Professional 3D CAD software offers an easy-to-use set of tools for 3D mechanical design, documentation, and product simulation.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Inventor Professional","keywords":"","description":"Mechanical design and 3D CAD software Use Inventor® 3D CAD modeling software for product and mechanical design. Learn about the Inventor modeling, design, simulation, and rendering features. <span style=\"font-weight: bold;\">Product design and modeling</spa","og:title":"Autodesk Inventor Professional","og:description":"Mechanical design and 3D CAD software Use Inventor® 3D CAD modeling software for product and mechanical design. Learn about the Inventor modeling, design, simulation, and rendering features. <span style=\"font-weight: bold;\">Product design and modeling</spa","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Inventor_Professional.png"},"eventUrl":"","translationId":1424,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":15,"title":"CAD for mechanical engineering - Computer-Aided Design"}],"testingArea":"","categories":[{"id":532,"title":"Software","alias":"software","description":" Computer software, or simply software, is a collection of data or computer instructions that tell the computer how to work. This is in contrast to physical hardware, from which the system is built and actually performs the work. In computer science and software engineering, computer software is all information processed by computer systems, programs, and data. Computer software includes computer programs, libraries and related non-executable data, such as online documentation or digital media. Computer hardware and software require each other and neither can be realistically used on its own.\r\nAt the lowest programming level, executable code consists of machine language instructions supported by an individual processor — typically a central processing unit (CPU) or a graphics processing unit (GPU). A machine language consists of groups of binary values signifying processor instructions that change the state of the computer from its preceding state. For example, an instruction may change the value stored in a particular storage location in the computer—an effect that is not directly observable to the user. An instruction may also invoke one of many input or output operations, for example displaying some text on a computer screen; causing state changes that should be visible to the user. The processor executes the instructions in the order they are provided, unless it is instructed to "jump" to a different instruction, or is interrupted by the operating system. As of 2015, most personal computers, smartphone devices, and servers have processors with multiple execution units or multiple processors performing computation together, and computing has become a much more concurrent activity than in the past.\r\nThe majority of software is written in high-level programming languages. They are easier and more efficient for programmers because they are closer to natural languages than machine languages. High-level languages are translated into machine language using a compiler or an interpreter or a combination of the two. Software may also be written in a low-level assembly language, which has strong correspondence to the computer's machine language instructions and is translated into machine language using an assembler.","materialsDescription":" <span style=\"font-weight: bold; \">What is software?</span>\r\nSometimes abbreviated as SW and S/W, software is a collection of instructions that enable the user to interact with a computer, its hardware, or perform tasks. Without software, most computers would be useless. For example, without your Internet browser software, you could not surf the Internet or read this page. Without an operating system, the browser could not run on your computer. The picture shows a Microsoft Excel box, an example of a spreadsheet software program.\r\n<span style=\"font-weight: bold; \">How do you get software?</span>\r\nSoftware can be purchased at a retail computer store or online and come in a box containing all the disks (floppy diskette, CD, DVD, or Blu-ray), manuals, warranty, and other documentation.\r\nSoftware can also be downloaded to a computer over the Internet. Once downloaded, setup files are run to start the installation process on your computer.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Free software</span></span>\r\nThere are also a lot of free software programs available that are separated into different categories.\r\n<ul><li>Shareware or trial software is software that gives you a few days to try the software before you have to buy the program. After the trial time expires, you'll be asked to enter a code or register the product before you can continue to use it.</li><li>Freeware is completely free software that never requires payment, as long as it is not modified.</li><li>Open-source software is similar to freeware. Not only is the program given away free, but the source code used to make the program is also, allowing anyone to modify the program or view how it was created.</li></ul>\r\n<span style=\"font-weight: bold; \">How do you use computer software?</span>\r\nOnce the software is installed on the computer hard drive, the program can be used anytime by finding the program on the computer. On a Windows computer, a program icon is added to the Start menu or Start screen, depending on your version of Windows.\r\n<span style=\"font-weight: bold;\">How to maintain software?</span>\r\nAfter the software is installed on your computer, it may need to be updated to fix any found errors. Updating a program can be done using software patches. Once updates are installed, any problems that may have been experienced in the program will no longer occur.\r\n<span style=\"font-weight: bold;\">How is software created and how does it work?</span>\r\nA computer programmer (or several computer programmers) writes the instructions using a programming language, defining how the software should operate on structured data. The program may then be interpreted or compiled into machine code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Software.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1429,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg","logo":true,"scheme":false,"title":"Product Design & Manufacturing Collection IC","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"product-design-manufacturing-collection-ic","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">From Inventor, to HSM, to Fusion 360, this myriad of MFG software allows you or your company to complete product lifecycles with ease, at an affordable and attainable price.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \"></span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">If you work within the Aerospace, Automotive, Industrial machinery, Manufacturing Product design or any other related industries you will know that developing top performing products and parts has always been a detailed, engineering-intensive and all-round tough job. With all the different materials and composites available, knowing how each one will behave/work, whilst ensuring your products perform as expected and within warranty requirements requires expert knowledge, endless working hours and a first class toolset.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\"><br /></span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">Thankfully, the Autodesk Product Design & Manufacturing Collection enables you to shorten product development lifecycle’s and cut design and production costs using powerful simulation tools and digital prototyping workflows. This ultimate end-to-end product development set of tools, enables you to design, test, manage and manufacture your products with precision.</span>","shortDescription":"The Autodesk Product Design & Manufacturing Collection contains a complete set of first-class software applications for both the Manufacturing and Engineering Industries.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":16,"sellingCount":2,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Product Design & Manufacturing Collection IC","keywords":"product, design, your, Product, Manufacturing, products, Design, will","description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">From Inventor, to HSM, to Fusion 360, this myriad of MFG software allows you or your company to complete product lifecycles with ease, at an affordable and attainable price.","og:title":"Product Design & Manufacturing Collection IC","og:description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">From Inventor, to HSM, to Fusion 360, this myriad of MFG software allows you or your company to complete product lifecycles with ease, at an affordable and attainable price.","og:image":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg"},"eventUrl":"","translationId":1523,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1431,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Navisworks.png","logo":true,"scheme":false,"title":"Autodesk Navisworks","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-navisworks","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<span style=\"font-weight: bold;\">Features</span>\r\nGain more control over construction projects\r\nNavisworks® tools enable greater coordination, construction simulation, and whole-project analysis for integrated project review. Some Navisworks products include advanced simulation and validation tools.\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Coordination</span>\r\n Deeper integration between Navisworks and BIM 360 Glue provides cloud connectivity to Navisworks users\r\n<span style=\"font-weight: bold;\">BIM 360 Glue integration</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Share data and workflows with BIM 360 projects.</li></ul>\r\n<span style=\"font-weight: bold;\">BIM coordination with AutoCAD</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Open Navisworks files within AutoCAD</li></ul>\r\n<span style=\"font-weight: bold;\"> Clash detection in Navisworks</span>\r\n\r\n<ul><li>Clash detection and interference checking</li><li>MANAGE</li><li>View clashes in context to help find and resolve conflicts.</li></ul>\r\n<span style=\"font-weight: bold;\">BIM 360 shared views</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Create views and share using either Navisworks or BIM 360 Glue.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\"> Cloud service</span>\r\n<span style=\"font-weight: bold;\">Clash and interference management</span>\r\n<ul><li>MANAGE</li><li>Communicate issues more clearly to the project team.</li></ul>\r\n<span style=\"font-weight: bold;\">Dedicated clash detection tool</span>\r\n<ul><li>MANAGE</li><li>Detect, identify, and manage clashes more effectively.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Model review</span>\r\n<span style=\"font-weight: bold;\">Model file and data aggregation</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Combine design and construction data in one model.</li></ul>\r\n<span style=\"font-weight: bold;\">Object animation and model simulation</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Animate and interact with models.</li></ul>\r\n<span style=\"font-weight: bold;\">Interoperability enhancements</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Support for many third-party applications.</li></ul>\r\n<span style=\"font-weight: bold;\">Whole-team project review</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Provide equal access to explore the whole project view</li></ul>\r\n<span style=\"font-weight: bold;\">NWD and DWF publishing</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Publish models in a distributable NWD or DWF file.</li></ul>\r\n<span style=\"font-weight: bold;\">More streamlined collaboration</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Communicate design intent more effectively and encourage teamwork.</li></ul>\r\n<span style=\"font-weight: bold;\">Measurement tools</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Face, snapping, axis locking, and quick zoom.</li></ul>\r\n<span style=\"font-weight: bold;\">Redline tool</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Gain greater clarity and control when adding redlines.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Model simulation and analysis</span>\r\n<span style=\"font-weight: bold;\">5D project scheduling includes time and cost</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Simulate 5D construction schedules and logistics.</li></ul>\r\n<span style=\"font-weight: bold;\">Photorealistic model rendering</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Develop compelling 3D animations and imagery</li></ul>\r\n<span style=\"font-weight: bold;\">Object animation and model simulation</span>\r\n\r\n<ul><li>MANAGE, SIMULATE</li><li>Animate and interact with models.</li></ul>\r\n<span style=\"font-weight: bold;\">Smoother interaction with quantification data</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Add quantification from an aggregated model.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Project viewing</span>\r\n<span style=\"font-weight: bold;\">Cloud rendering</span>\r\n<dl><ul>MANAGE, SIMULATE<br />Create renders for whole project models.</ul></dl>\r\n<span style=\"font-weight: bold;\">Real-time navigation</span>\r\n<ul><li>MANAGE, SIMULATE, FREEDOM</li><li>Explore an integrated project model as it's built.</li></ul>\r\n<span style=\"font-weight: bold;\">Autodesk rendering enhancements</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Visualization tools integrate with Autodesk products.</li></ul>\r\n<span style=\"font-weight: bold;\">Reality capture enhancements</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Work with enhanced point cloud integration.</li></ul>\r\n<span style=\"font-weight: bold;\">Supported file formats</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Supports numerous file formats and applications.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Quantification</span>\r\n<span style=\"font-weight: bold;\">Integrated 2D quantification (2D sheet takeoff)</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Supports 2D and 3D project measurement.</li></ul>\r\n<span style=\"font-weight: bold;\">3D quantification (integrated model takeoff)</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Generate quantity workbooks.</li></ul>\r\n<span style=\"font-weight: bold;\">Quantification enhancements</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Get support for 2D PDF sheets.</li></ul>\r\n<span style=\"font-weight: bold;\">Quantification 2D PDF Reader</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Supports Adobe PDF files.</li></ul>","shortDescription":"Navisworks® project review software lets architecture, engineering, and construction professionals holistically review integrated models and data with stakeholders to better control project outcomes.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Navisworks","keywords":"","description":"<span style=\"font-weight: bold;\">Features</span>\r\nGain more control over construction projects\r\nNavisworks® tools enable greater coordination, construction simulation, and whole-project analysis for integrated project review. Some Navisworks products include a","og:title":"Autodesk Navisworks","og:description":"<span style=\"font-weight: bold;\">Features</span>\r\nGain more control over construction projects\r\nNavisworks® tools enable greater coordination, construction simulation, and whole-project analysis for integrated project review. Some Navisworks products include a","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Navisworks.png"},"eventUrl":"","translationId":1431,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":458,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg","logo":true,"scheme":false,"title":"Autodesk Subassembly Composer","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-subassembly-composer","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"The Autodesk® Subassembly Composer for Autodesk® AutoCAD® Civil 3D® provides an interface for composing and modifying complex subassemblies, without a need for programming.","shortDescription":"The Autodesk® Subassembly Composer for Autodesk® AutoCAD® Civil 3D® provides an interface for composing and modifying complex subassemblies, without a need for programming.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Subassembly Composer","keywords":"Autodesk®, Composer, Subassembly, subassemblies, modifying, complex, need, programming","description":"The Autodesk® Subassembly Composer for Autodesk® AutoCAD® Civil 3D® provides an interface for composing and modifying complex subassemblies, without a need for programming.","og:title":"Autodesk Subassembly Composer","og:description":"The Autodesk® Subassembly Composer for Autodesk® AutoCAD® Civil 3D® provides an interface for composing and modifying complex subassemblies, without a need for programming.","og:image":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg"},"eventUrl":"","translationId":458,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1411,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg","logo":true,"scheme":false,"title":"Autodesk AutoCAD","vendorVerified":0,"rating":"3.40","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-autocad","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. Since 2010, AutoCAD was released as a mobile- and web app as well, marketed as AutoCAD 360. Auto CAD and AutoCAD LT are available for English, German, French, Italian, Spanish, Korean, Chinese Simplified, Chinese Traditional, Brazilian Portuguese, Russian, Czech, Polish and Hungarian, Albanian (also through additional language packs). The extent of localization varies from full translation of the product to documentation only. The AutoCAD command set is localized as a part of the software localization. Source: https://en.wikipedia.org/wiki/AutoCAD","shortDescription":"AutoCAD is a commercial computer-aided design (CAD) and drafting software application. It is used across a wide range of industries, by architects, project managers, engineers and graphic designers.","type":null,"isRoiCalculatorAvaliable":true,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk AutoCAD","keywords":"AutoCAD, localization, Autodesk, released, Chinese, marketed, Hungarian, Albanian","description":"Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. Since 2010, AutoCAD was released as a mobile- and web app as well, marketed as AutoCAD 360. Auto CAD ","og:title":"Autodesk AutoCAD","og:description":"Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. Since 2010, AutoCAD was released as a mobile- and web app as well, marketed as AutoCAD 360. Auto CAD ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg"},"eventUrl":"","translationId":1411,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":["Shortage of inhouse software developers"],"materials":[],"useCases":[],"best_practices":[],"values":["Reduce Costs","Enhance Staff Productivity","Reduce Production Timelines"],"implementations":[{"id":563,"title":"Autodesk Fusion 360 for Orange County Choppers","url":"https://old.roi4cio.com/vnedrenija/vnedrenie/autodesk-fusion-360-for-orange-county-choppers/"},{"id":566,"title":"Autodesk Fusion 360 for Oru Kayak Company","url":"https://old.roi4cio.com/vnedrenija/vnedrenie/autodesk-fusion-360-for-oru-kayak-company/"},{"id":568,"title":"Autodesk Fusion 360 for Groovemade Design Company","url":"https://old.roi4cio.com/vnedrenija/vnedrenie/autodesk-fusion-360-for-groovemade-design-company/"},{"id":570,"title":"Autodesk Fusion 360 for putter manufacturer SandFlo Golf","url":"https://old.roi4cio.com/vnedrenija/vnedrenie/autodesk-fusion-360-for-putter-manufacturer-sandflo-golf/"},{"id":572,"title":"Autodesk Fusion 360 for motorcycle parts manufacturer MJK Performance","url":"https://old.roi4cio.com/vnedrenija/vnedrenie/autodesk-fusion-360-for-motorcycle-parts-manufacturer-mjk-performance/"},{"id":574,"title":"Autodesk Fusion 360 for IT-company Scriba","url":"https://old.roi4cio.com/vnedrenija/vnedrenie/autodesk-fusion-360-for-it-company-scriba/"}],"presenterCodeLng":"","productImplementations":[{"id":563,"title":"Autodesk Fusion 360 for Orange County Choppers","description":"Orange County Choppers (OCC), the focus of Discovery Channel’s long-running American Chopper, is known for its Easy Rider-style motorcycles — complete with loud V-twin gas engines. The design emerged from the mind of OCC designer Jason Pohl as he riffed on the concept of “fusion” as part of OCC’s collaboration with the Autodesk Fusion 360 team.\r\nOCC has been making motorcycles since 1999, when company founder Paul Teutul Sr. started building custom bikes in the basement of his house. He started it for fun, but soon his unique designs attracted lots of attention. Discovery Channel took notice, and Teutul built a fabrication shop attached to his iron and steel business in upstate New York to keep up with demand.\r\nPohl first encountered OCC in 2004, not long after he had graduated from art school in his native Illinois. Paul was creating animations for a video game that featured OCC bikes. Teutul liked his work, and figured that the kind of 3D modeling used in the game could be translated into designs for real motorcycles.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“I’m way more of an artist than I am a geek,” Paul says, but even when he was in school he knew that he needed to learn software for the sake of his career. “I wanted to be a designer,” he says, “so I forcedmyself, kicking and screaming, to learn how to use the computer to my advantage.”</span></span>\r\nEarlier Paul met a member of the Autodesk staff who encouraged him to try Fusion 360 for a design.<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> “I was a SolidWorks guy,” he admits. “I was terrified to switch. It’s like jumping into the deep end of the pool.”</span></span> <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Once he started using it, though, he thought “Wow, this is incredible. It is really a magic show.”</span></span> In comparison to everything he had used before, it was “cleaner” and “snappier.” <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">As he puts it, “You don’t really wait on anything — it just happens.”</span></span>\r\nHe uses the example of designing the new bike’s headlight assembly using T-splines in Fusion 360.<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> In SolidWorks, he says, “I would probably need a solid day just to get the lofts going and the surfaces going.”</span></span> The process would have involved using three different features in SolidWorks to rotate, move, and scale the surface model, then laboriously exporting everything into Mastercam to prepare the design for manufacture.\r\nWith T-splines, by contrast, you just click and drag to alter position, shape, or size. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It’s like a digital version of clay,” Paul says.</span></span> <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">He laughs when he adds, “except when you’re pushing it around it doesn’t leave thumbprints.”</span></span>\r\nPaul has found that the integrated CAM is much easier in Fusion 360. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“I use it every day now,” he says. “It’s a game changer for me. I just have more power to take a concept, model it up, and then take it to a CNC machine.”</span></span> He and the OCC machinist have also used Fusion 360 to export DXF files for use on their water jet machine to make some of the metal parts.\r\nThe very first thing Paul tackled in Fusion 360 was the entire body assembly for the electric bike. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">He laughs at his own ambition when he adds, “I didn’t start off and make a kickstand, know what I mean?”</span></span>\r\nWanting to create a bike that would be totally different, he lit upon the idea of making the new design a true “fusion” in every sense. Unlike the long-forked choppers OCC usually makes, this bike is an urban“hopper” — lightweight and with lots of ground clearance. Using an electric motor allowed Paul to eliminate the exhaust system and V-twin engine of other OCC designs, which “opened up a whole new world of possibilities.\r\nIn line with the “fusion” idea, the bike incorporates components inspired by other types of vehicles: the aluminum front end of a sport bike, the gas shocks of a snowmobile, and the rear sprocket of a motocross racer, along with high-durability plastic elements and a few key parts in titanium.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It was something new, fresh for us to do,” Pohl says, adding that every part of the new design came out of Fusion 360.</span></span>\r\nGiven the success of the project, Teutul wants the team to use Fusion 360 to design a new line of aftermarket parts for Harleys. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Pohl describes Fusion 360 as “a new weapon in my arsenal here.”</span></span>","alias":"autodesk-fusion-360-for-orange-county-choppers","roi":0,"seo":{"title":"Autodesk Fusion 360 for Orange County Choppers","keywords":"","description":"Orange County Choppers (OCC), the focus of Discovery Channel’s long-running American Chopper, is known for its Easy Rider-style motorcycles — complete with loud V-twin gas engines. The design emerged from the mind of OCC designer Jason Pohl as he riffed on the","og:title":"Autodesk Fusion 360 for Orange County Choppers","og:description":"Orange County Choppers (OCC), the focus of Discovery Channel’s long-running American Chopper, is known for its Easy Rider-style motorcycles — complete with loud V-twin gas engines. The design emerged from the mind of OCC designer Jason Pohl as he riffed on the"},"deal_info":"","user":{"id":4464,"title":"Orange County Choppers (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/Orange_County_Choppers__logo_.png","alias":"orange-county-choppers-user","address":"","roles":[],"description":" Orange County Choppers (OCC) is a world famous custom motorcycle manufacturer founded in 1999 by Paul Teutul Sr. At our facility based in Newburgh, NY, Paul Sr. and his team of custom fabricators design, engineer and manufacture unique choppers. Orange County Choppers has been the center of the hit TV reality series “American Chopper”. American Chopper debuted in September 2002 on the Discovery Channel. We continue to entertain millions of people worldwide on a weekly basis. OCC bikes are customized and built around a theme or, increasingly, for a broad spectrum of motorcycle enthusiasts around the world.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://orangecountychoppers.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Orange County Choppers (User)","keywords":"","description":" Orange County Choppers (OCC) is a world famous custom motorcycle manufacturer founded in 1999 by Paul Teutul Sr. At our facility based in Newburgh, NY, Paul Sr. and his team of custom fabricators design, engineer and manufacture unique choppers. Orange County","og:title":"Orange County Choppers (User)","og:description":" Orange County Choppers (OCC) is a world famous custom motorcycle manufacturer founded in 1999 by Paul Teutul Sr. At our facility based in Newburgh, NY, Paul Sr. and his team of custom fabricators design, engineer and manufacture unique choppers. Orange County","og:image":"https://old.roi4cio.com/uploads/roi/company/Orange_County_Choppers__logo_.png"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{},"categories":[],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/orange-county-choppers-electric-bike-fusion-360/","title":"-"}},"comments":[],"referencesCount":0},{"id":566,"title":"Autodesk Fusion 360 for Oru Kayak Company","description":"Here’s the problem: You want to hit the water in a kayak — but where are you going to store the thing when you’re not using it? And how are you going to transport such a long boat from home to the water?\r\nOru Kayak has solved that challenge with a line of tough, cleverly designed boats that fold up into a package the size of a small suitcase — one you can stow in the trunk of your car or sling over your shoulder. It’s all part of their vision “to make paddling more convenient, fun, and freeing for everyone.” Their focus has shifted from early-stage design toward the specific challenges of engineering and manufacturing. The point is to optimize both the user experience and the efficiency of production.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It starts with design philosophy,” Willis says. “You have to be willing to make guesses, not get too attached to ideas, and change on a dime based on user feedback.”</span></span>\r\nFusion 360 has been integral to streamlining that process. “We began by using Fusion 360 to roughly model the kayak and parts, to visualize how pieces came together,” the company adds, “but we were still using CNC and other technologies to make the parts. Now, we’re revising many of thekayak parts with new injection molds” using Fusion 360.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“We are making the individual parts more efficient to manufacture, stronger, and more consistent with the overall aesthetic of the product — fluid, clean, and simple,”Willis says. “For combining these elements, it’s been crucial to have software that’s rigorous but allows for flexible and intuitive sculpting in three dimensions.”</span></span>\r\nThe level of detail required can seem exhausting, but the company believes the payoff is worth it.","alias":"autodesk-fusion-360-for-oru-kayak-company","roi":0,"seo":{"title":"Autodesk Fusion 360 for Oru Kayak Company","keywords":"","description":"Here’s the problem: You want to hit the water in a kayak — but where are you going to store the thing when you’re not using it? And how are you going to transport such a long boat from home to the water?\r\nOru Kayak has solved that challenge with a line of toug","og:title":"Autodesk Fusion 360 for Oru Kayak Company","og:description":"Here’s the problem: You want to hit the water in a kayak — but where are you going to store the thing when you’re not using it? And how are you going to transport such a long boat from home to the water?\r\nOru Kayak has solved that challenge with a line of toug"},"deal_info":"","user":{"id":4465,"title":"Oru Kayak (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/Oru_Kayak__logo_.png","alias":"oru-kayak-user","address":"","roles":[],"description":" Oru Kayak is a San Francisco based startup that manufactures high-performance, folding kayaks.\r\nAn award-winning company on a mission to make the outdoors more accessible by designing a series of origami folding kayaks that transform from a portable box, into a sleek lightweight, and high-performance watercraft. folding kayaks inspired by origami has won multiple designs and industry awards including ISPO's Product of the Year and Gold winner of Edison awards — it’s even in the San Francisco Museum of Modern Art.\r\nOru Kayak is a team of makers, designers, business strategists, and outdoors lovers.\r\nSource: https://www.linkedin.com/company/oru-kayak/?originalSubdomain=en","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.orukayak.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Oru Kayak (User)","keywords":"","description":" Oru Kayak is a San Francisco based startup that manufactures high-performance, folding kayaks.\r\nAn award-winning company on a mission to make the outdoors more accessible by designing a series of origami folding kayaks that transform from a portable box, into","og:title":"Oru Kayak (User)","og:description":" Oru Kayak is a San Francisco based startup that manufactures high-performance, folding kayaks.\r\nAn award-winning company on a mission to make the outdoors more accessible by designing a series of origami folding kayaks that transform from a portable box, into","og:image":"https://old.roi4cio.com/uploads/roi/company/Oru_Kayak__logo_.png"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{},"categories":[],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/oru-kayak-design-get-people-paddling/","title":"-"}},"comments":[],"referencesCount":0},{"id":568,"title":"Autodesk Fusion 360 for Groovemade Design Company","description":"In Portland, Oregon, the team at Grovemade has spent the past seven years perfecting designs for phone cases and desk objects like keyboard trays, pencil cups, and monitor stands. The woodwork that has become their trademark is finicky, difficult, and endlessly detailed.\r\nDuring the design process, the Grovemade team typically goes back and forth between CAD and physical models. That process starts with sketches, cardboard models, and mockups made from blocks of foam or wood, then iterates back into the software as they add details.\r\nThe team loves how Fusion 360 combines CAD with CAM. That seamless integration makes it incredibly easy — and fast — to make changes in the design and then machine another prototype immediately using their in-house CNC equipment.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“We need to be able to make changes quickly and try it again,” the owner Tomita explains. He adds that they routinely go from CAD to CAM to machining to holding it in their hands all in the same day — “which is absolutely incredible.”</span></span>\r\nGrovemade used to work with a combination of different 3D design and CNC packages, <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Tomita says, “but the software was so time-consuming that we wouldn’t do [prototyping] a lot of times.”</span></span> Fusion 360 gave them an all-in-one application that, besides being far less expensive, allowed them to avoid that friction and go straight to machining anytime they want. And because it’s all integrated, they don’t have to worry about migrating design changes across multiple pieces of software.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“If we change one thing, we don’t have to redo it on the other,” Tomita says. “It’s pretty massive.”</span></span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">All in all, he adds, Fusion 360 “fits right in with the scale of our business”.</span></span>","alias":"autodesk-fusion-360-for-groovemade-design-company","roi":0,"seo":{"title":"Autodesk Fusion 360 for Groovemade Design Company","keywords":"","description":"In Portland, Oregon, the team at Grovemade has spent the past seven years perfecting designs for phone cases and desk objects like keyboard trays, pencil cups, and monitor stands. The woodwork that has become their trademark is finicky, difficult, and endlessl","og:title":"Autodesk Fusion 360 for Groovemade Design Company","og:description":"In Portland, Oregon, the team at Grovemade has spent the past seven years perfecting designs for phone cases and desk objects like keyboard trays, pencil cups, and monitor stands. The woodwork that has become their trademark is finicky, difficult, and endlessl"},"deal_info":"","user":{"id":4466,"title":"Groovemade (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/Grovemade__logo_.jpg","alias":"groovemade-user","address":"","roles":[],"description":" Grovemade is a design & manufacturing company based in Portland, Oregon. Since 2009, small team has been designing and building innovative products for your work, home, and life. We believe design inspires what you do. We’re independent and vertically integrated, from design to manufacturing, allowing us to make things that couldn’t exist otherwise. We value the fulfillment from good work well done, and the happiness of our people and our customers, the heart behind what we produce. A small and passionate team can make incredible products.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://grovemade.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Groovemade (User)","keywords":"","description":" Grovemade is a design & manufacturing company based in Portland, Oregon. Since 2009, small team has been designing and building innovative products for your work, home, and life. We believe design inspires what you do. We’re independent and vertically int","og:title":"Groovemade (User)","og:description":" Grovemade is a design & manufacturing company based in Portland, Oregon. Since 2009, small team has been designing and building innovative products for your work, home, and life. We believe design inspires what you do. We’re independent and vertically int","og:image":"https://old.roi4cio.com/uploads/roi/company/Grovemade__logo_.jpg"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{},"categories":[],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/grovemade-takes-woodworking-design-another-level-entirely/","title":"-"}},"comments":[],"referencesCount":0},{"id":570,"title":"Autodesk Fusion 360 for putter manufacturer SandFlo Golf","description":"In the town of Trollhättan in southwestern Sweden, engineer Johan Sandflo spends his days managing his precision machining business. At night, he perfects designs for SandFlo Golf‘s custom putters. He’s come to rely on Fusion 360 to help him follow both of those passions.\r\nSandflo started using Fusion 360 in the shop late in 2014 after he stumbled across it on YouTube. Once he downloaded a trial version, it didn’t take him long to get hooked, especially considering the responsiveness of the Autodesk team and user community online. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“I tried it for a few weeks,” he says, “and haven’t looked back.”</span></span>\r\nIn the job shop, CAM reigns supreme, especially for setting toolpaths. Sandflo particularly likes Fusion 360’s “awesome” adaptive clearing functionality for roughing out machined parts. In the past he’s used about ten different CAM applications, most recently a combination of Mastercam and OneCNC, but found that none of them worked as well: <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“Nothing compares to Fusion 360 for the kind of jobs that I do.”</span></span>\r\nWhen getting started with Fusion 360, Sandflo explains,<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> “I went down the CAM side first,then kind of discovered the CAD side.”</span></span> The CAD features make it simple for him to streamline his machining work, for example by taking a customer drawing and turning it into a proper CAD model.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Sandflo says he believes that “I have an advantage over other companies my size when I use Fusion 360.”</span></span> In part that comes from the software’s functionality and cloud-based approach. But he also says that the thinking and interactions around the software are a refreshing departure from the rigid enterprise model that typically prevails.<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> “It’s a modern take on it,” he says. “It’s not like anything else in the industry.”</span></span>\r\nAnd then there are the costs. Not only is Fusion 360 much cheaper than comparable programs, but you don’t have to pay extra for training. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It’s amazingly affordable,” Sandflo says, adding, “Why would you use something that’s ten or twenty times more expensive?</span></span> I can invest that money elsewhere to make the business grow.”\r\nEven better, the software has allowed Sandflo to extend his passion for golf. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">It makes him happy “to get a few hours in with friends, have a good laugh,” he says.</span></span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“Being a golf nerd,” he adds, “it’s always fun [tinkering] with equipment.” He began to look online for clubs that were “exotic, more personalized,” and then realized he could make his own. As he puts it, “I have the knowledge to do something like this myself. I have the machines. Why not start modeling something, see what happens?”</span></span>\r\nBefore he discovered Fusion 360, it was slow going. He didn’t have enough CAD skills to do what he wanted to, and found the combination of SolidWorks and Mastercam unwieldy. Then everything changed. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“When I found Fusion 360, that was the turning point,” he says.</span></span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“To make the changes — the small iterations, the small tweaks — it is so easy,” he adds. Fusion 360’s cloud-based approach is especially useful for him because it lets him squeeze in design work whenever he has time. “For me as a small business owner,” he says, “the ability to work at home at night when the kids are asleep is second to none. It’s so easy and convenient, and you have all the files available at a mouse click. . . . When I get to work the next day, it’s all done. So I can keep the machines turning.”</span></span>\r\nUsing Fusion 360, he’s able to share putter designs with customers via a simple URL. Even if they’ve never used the software, it’s easy for the customer to view and rotate a 3D model of the latest design in any browser. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“My customers have enjoyed that very much,” he says.</span></span>","alias":"autodesk-fusion-360-for-putter-manufacturer-sandflo-golf","roi":0,"seo":{"title":"Autodesk Fusion 360 for putter manufacturer SandFlo Golf","keywords":"","description":"In the town of Trollhättan in southwestern Sweden, engineer Johan Sandflo spends his days managing his precision machining business. At night, he perfects designs for SandFlo Golf‘s custom putters. He’s come to rely on Fusion 360 to help him follow both of tho","og:title":"Autodesk Fusion 360 for putter manufacturer SandFlo Golf","og:description":"In the town of Trollhättan in southwestern Sweden, engineer Johan Sandflo spends his days managing his precision machining business. At night, he perfects designs for SandFlo Golf‘s custom putters. He’s come to rely on Fusion 360 to help him follow both of tho"},"deal_info":"","user":{"id":4467,"title":"SandFlo Golf (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/SandFlo_Golf__logo_.png","alias":"sandflo-golf-user","address":"","roles":[],"description":" Our profession is our passion and we love what we do. In 2014 an idea was born to tailor premium putters of thehighest quality and precision to golf enthusiast; and Sandflo Golf Co. saw first light. Today we can proudly say that we are the only company in Sweden who manufacture custom-made putters that meet customer wishes and requirements.\r\nIn close dialogue with the customer, the process can be monitored from sketch to finished product. Each putter is unique and the client has the opportunity to select materials, design, weight distribution and pattern. Some customers have a clear picture of what design and engraving their putter should have. The result is a unique putter that is fully designed according to the customer’s wishes. Once the design is in place, a 3D sketch is made, which is then sent to the customer for a final assessment and the production can start.\r\nSource: http://www.sandflogolf.com/en/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.sandflogolf.com/en/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"SandFlo Golf (User)","keywords":"","description":" Our profession is our passion and we love what we do. In 2014 an idea was born to tailor premium putters of thehighest quality and precision to golf enthusiast; and Sandflo Golf Co. saw first light. Today we can proudly say that we are the only company in Swe","og:title":"SandFlo Golf (User)","og:description":" Our profession is our passion and we love what we do. In 2014 an idea was born to tailor premium putters of thehighest quality and precision to golf enthusiast; and Sandflo Golf Co. saw first light. Today we can proudly say that we are the only company in Swe","og:image":"https://old.roi4cio.com/uploads/roi/company/SandFlo_Golf__logo_.png"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{},"categories":[],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/johan-sandflo-unites-loves-golf-machining-using-fusion-360/","title":"-"}},"comments":[],"referencesCount":0},{"id":572,"title":"Autodesk Fusion 360 for motorcycle parts manufacturer MJK Performance","description":"Up in Alberta, Canada, motorcycle designer Dale Yamada and machinist Phil Butterworth are taking aftermarket parts for Harley-Davidsons to a new level. After they noticed that <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“there’s nothing cool on the market,”</span></span> Butterworth says, their MJK Performance machine shop began making “cool, weird, technical, mechanical-looking parts” for Harley enthusiasts.\r\n<span style=\"font-weight: bold;\">Using Fusion 360 for CAD and CAM</span>\r\nWhen Butterworth lies in bed and has more ideas pop into his head, he gets back up and works on designs. This is made much easier because he and Yamada use Fusion 360 on their computers both at home and in the shop, so the designs can be shared instantly.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It so easy, so user friendly,” Butterworth says, describing Fusion 360 as “hands-down” better than other CAD and CAM programs he’s used over the years. “The design side is so easy, and then to have the CAM side right there—and 5-axis.” The last part is especially important to him, given that 5-axis milling software alone can cost tens of thousands of dollars. “If we had to do this any other way,” he adds, “we just couldn’t afford it.”</span></span>\r\nThe two partners iterate quickly through designs, and Butterworth says he often likes using the branch feature to make five or six designs to try out different concepts before weeding them down. He also relies heavily on the rendering features, which makes it easy for him to<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> “see exactly what something will look like before it’s made.”</span></span>\r\nIn the bigger picture, the software “definitely speeds up the process on our end” by saving them many hours across the steps of design, rendering, and machining. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“I can have something from design stage to off the machine in one hour, if I’m working hard,” Butterworth says. “Having everything in one software is perfect.”</span></span>","alias":"autodesk-fusion-360-for-motorcycle-parts-manufacturer-mjk-performance","roi":0,"seo":{"title":"Autodesk Fusion 360 for motorcycle parts manufacturer MJK Performance","keywords":"","description":"Up in Alberta, Canada, motorcycle designer Dale Yamada and machinist Phil Butterworth are taking aftermarket parts for Harley-Davidsons to a new level. After they noticed that <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“there’s nothing ","og:title":"Autodesk Fusion 360 for motorcycle parts manufacturer MJK Performance","og:description":"Up in Alberta, Canada, motorcycle designer Dale Yamada and machinist Phil Butterworth are taking aftermarket parts for Harley-Davidsons to a new level. After they noticed that <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“there’s nothing "},"deal_info":"","user":{"id":4468,"title":"MJK Performance (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/MJK_Performance__logo_.png","alias":"mjk-performance-user","address":"","roles":[],"description":" MJK Performance is located in Calgary, Alberta. It is a family owned business which is operated by us, Dale Yamada and Michelle Martin. We started the company (Mad Jap Kustoms Inc which is doing business as MJK Performance) in 2007 and have been in our current location since 2012. We rebranded our company Mad Jap Kustoms Inc in February 2017 to MJK Performance as we felt it better represented the direction the company was going in designing and CNC machining a new product line of Performance Bagger parts.\r\nWe pride ourselves on exceptional customer service and believe our customers deserve the highest quality and craftsmanship in everything we do.\r\nWe are excited to offer our new line up of high quality, precision CNC machined motorcycle parts to our customers.\r\nSource: http://www.mjkperformance.com/service/about/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.mjkperformance.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"MJK Performance (User)","keywords":"","description":" MJK Performance is located in Calgary, Alberta. It is a family owned business which is operated by us, Dale Yamada and Michelle Martin. We started the company (Mad Jap Kustoms Inc which is doing business as MJK Performance) in 2007 and have been in our curren","og:title":"MJK Performance (User)","og:description":" MJK Performance is located in Calgary, Alberta. It is a family owned business which is operated by us, Dale Yamada and Michelle Martin. We started the company (Mad Jap Kustoms Inc which is doing business as MJK Performance) in 2007 and have been in our curren","og:image":"https://old.roi4cio.com/uploads/roi/company/MJK_Performance__logo_.png"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{},"categories":[],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/mjk-performance-motorcycle-parts/","title":"-"}},"comments":[],"referencesCount":0},{"id":574,"title":"Autodesk Fusion 360 for IT-company Scriba","description":"The iterative design approach followed by the Scriba team has dovetailed with their use of Fusion 360. It started when Craig (the owner) discovered an early version of the software a few years ago, and continued over time as the fledgling company received technical support — and encouragement — from Autodesk staff in San Francisco.\r\nNow the larger team counts on Fusion 360’s collaboration features to maintain the master model of the product and coordinate inputs received from team members and outside experts spread across Ireland and beyond. The software has also enabled the team to test out alternative components before completing final designs. This has extended to such fine details as identifying and visualizing overhangs and areas of low draft angles needing special attention, as well as simulating applied loads to identify high-stress areas where the product’s bendability called for precise changes in the geometry of the materials.\r\nIntegrated cloud rendering has given Scriba’s designers the ability to validate many aesthetic design changes rapidly, which was particularly important when they were finalizing the material finishes on the product. They also used Fusion 360 to prepare drawings for tooling that they then shared with their fabrication partners.","alias":"autodesk-fusion-360-for-it-company-scriba","roi":0,"seo":{"title":"Autodesk Fusion 360 for IT-company Scriba","keywords":"","description":"The iterative design approach followed by the Scriba team has dovetailed with their use of Fusion 360. It started when Craig (the owner) discovered an early version of the software a few years ago, and continued over time as the fledgling company received tech","og:title":"Autodesk Fusion 360 for IT-company Scriba","og:description":"The iterative design approach followed by the Scriba team has dovetailed with their use of Fusion 360. It started when Craig (the owner) discovered an early version of the software a few years ago, and continued over time as the fledgling company received tech"},"deal_info":"","user":{"id":4469,"title":"Scriba (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/scriba__logo_.jpg","alias":"scriba-user","address":"","roles":[],"description":"For 32 years, Scriba's portfolio of offerings has covered all IT needs, both hardware-based and at a very high level of service, whether through cloud solutions or total or partial outsourcing systems. With its seven regional agencies, Scriba is your local partner. The innovation of our offers, whether in industrialized mode or in total customization, ensures solutions that meet your needs, in the simplification of the use of your information system. With our trained and certified teams, you are guaranteed to be accompanied from the identification of a need or a problem to the implementation of the solution, and throughout the life cycle of these products.\r\nSource: https://www.linkedin.com/company/scriba/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.getscriba.com/index.html","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Scriba (User)","keywords":"","description":"For 32 years, Scriba's portfolio of offerings has covered all IT needs, both hardware-based and at a very high level of service, whether through cloud solutions or total or partial outsourcing systems. With its seven regional agencies, Scriba is your local par","og:title":"Scriba (User)","og:description":"For 32 years, Scriba's portfolio of offerings has covered all IT needs, both hardware-based and at a very high level of service, whether through cloud solutions or total or partial outsourcing systems. With its seven regional agencies, Scriba is your local par","og:image":"https://old.roi4cio.com/uploads/roi/company/scriba__logo_.jpg"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{},"categories":[],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/scriba-aims-reinvent-stylus-designers/","title":"-"}},"comments":[],"referencesCount":0}]}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}