{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"product":{"reference-bonus":{"en":"Offer a reference bonus","ru":"Предложить бонус за референс","_type":"localeString"},"configurator":{"en":"Сonfigurator","ru":"Конфигуратор","_type":"localeString"},"i-sell-it":{"en":"I sell it","ru":"I sell it","_type":"localeString"},"i-use-it":{"_type":"localeString","en":"I use it","ru":"I use it"},"roi-calculator":{"_type":"localeString","en":"ROI-calculator","ru":"ROI-калькулятор"},"selling":{"en":"Selling","ru":"Продают","_type":"localeString"},"using":{"_type":"localeString","en":"Using","ru":"Используют"},"show-more-button":{"en":"Show more","ru":"Показать еще","_type":"localeString"},"hide-button":{"en":"Hide","ru":"Скрыть","_type":"localeString"},"supplier-popover":{"_type":"localeString","en":"supplier","ru":"поставщик"},"implementation-popover":{"en":"deployment","ru":"внедрение","_type":"localeString"},"manufacturer-popover":{"_type":"localeString","en":"manufacturer","ru":"производитель"},"short-description":{"ru":"Краткое описание","_type":"localeString","en":"Pitch"},"i-use-it-popover":{"ru":"Внесите свое внедрение и получите бонус от ROI4CIO или поставщика.","_type":"localeString","en":"Make your introduction and get a bonus from ROI4CIO or the supplier."},"details":{"ru":"Детальнее","_type":"localeString","en":"Details"},"description":{"_type":"localeString","en":"Description","ru":"Описание"},"product-features":{"ru":"Особенности продукта","_type":"localeString","en":"Product features"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"solutions":{"en":" Problems that solves","ru":"Проблемы которые решает","_type":"localeString"},"values":{"en":"Values","ru":"Ценности","_type":"localeString"},"сomparison-matrix":{"ru":"Матрица сравнения","_type":"localeString","en":"Comparison matrix"},"testing":{"ru":"Тестирование","_type":"localeString","en":"Testing"},"compare":{"_type":"localeString","en":"Compare with competitors","ru":"Сравнить с конкурентами"},"characteristics":{"en":" Characteristics","ru":"Характеристики","_type":"localeString"},"transaction-features":{"ru":"Особенности сделки","_type":"localeString","en":"Transaction Features"},"average-discount":{"_type":"localeString","en":"Partner average discount","ru":"Средняя скидка партнера"},"deal-protection":{"ru":"Защита сделки","_type":"localeString","en":"Deal protection"},"average-deal":{"ru":"Средний размер сделки","_type":"localeString","en":"Average deal size"},"average-time":{"ru":"Средний срок закрытия сделки","_type":"localeString","en":"Average deal closing time"},"login":{"en":"Login","ru":"Войти","_type":"localeString"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"to-know-more":{"ru":"Чтобы узнать больше","_type":"localeString","en":"To know more"},"scheme":{"ru":"Схема работы","_type":"localeString","en":" Scheme of work"},"competitive-products":{"ru":"Конкурентные продукты","_type":"localeString","en":" Competitive products"},"implementations-with-product":{"ru":"Внедрения с этим продуктом","_type":"localeString","en":"Deployments with this product"},"user-features":{"en":"User features","ru":"Особенности пользователей","_type":"localeString"},"job-roles":{"ru":"Роли заинтересованных сотрудников","_type":"localeString","en":" Roles of Interested Employees"},"organizational-features":{"ru":"Организационные особенности","_type":"localeString","en":"Organizational Features"},"calculate-price":{"ru":"Рассчитать цену продукта","_type":"localeString","en":" Calculate product price"},"selling-stories":{"en":" Selling stories","ru":"Продающие истории","_type":"localeString"},"materials":{"_type":"localeString","en":"Materials","ru":"Материалы"},"about-product":{"ru":"О продукте","_type":"localeString","en":"About Product"},"or":{"_type":"localeString","en":"or","ru":"или"},"program-sends-data":{"_type":"localeString","en":"Program Sends Data"},"calculate-roi":{"en":"Calculate Product ROI","ru":"Рассчитать ROI продукта","_type":"localeString"},"complementary-categories":{"ru":"Схожие категории","_type":"localeString","en":"Complementary Categories"},"program-receives-data":{"_type":"localeString","en":"Program Receives Data"},"rebate":{"ru":"Бонус","_type":"localeString","en":"Bonus"},"rebate-for-poc":{"_type":"localeString","en":"Bonus 4 POC","ru":"Бонус 4 POC"},"configurator-content":{"_type":"localeString","en":"Calculate price for this product here","ru":"Рассчитайте стоимость продукта"},"configurator-link":{"ru":"тут","_type":"localeString","en":"here"},"vendor-popover":{"_type":"localeString","en":"vendor","ru":"производитель"},"user-popover":{"ru":"пользователь","_type":"localeString","en":"user"},"select-for-presentation":{"ru":"выбрать продукт для презентации","_type":"localeString","en":"select product for presentation"},"auth-message":{"en":"You have to register or login.","ru":"Вам нужно зарегистрироваться или войти.","_type":"localeString"},"add-to-comparison":{"en":"Add to comparison","ru":"Добавить в сравнение","_type":"localeString"},"added-to-comparison":{"ru":"Добавлено в сравнения","_type":"localeString","en":"Added to comparison"},"roi-calculator-content":{"ru":"Рассчитайте ROI для данного продукта","_type":"localeString","en":"Calculate ROI for this product here"},"not-yet-converted":{"ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later."},"videos":{"ru":"Видео","_type":"localeString","en":"Videos"},"vendor-verified":{"en":"Vendor verified","ru":"Подтверждено производителем","_type":"localeString"},"event-schedule":{"ru":"Расписание событий","_type":"localeString","en":"Events schedule"},"scheduling-tip":{"en":"Please, сhoose a convenient date and time and register for the event.","ru":"Выберите удобную дату и время и зарегистрируйтесь на ивент.","_type":"localeString"},"register-to-schedule":{"en":"To register for the event please log in or register on the site.","ru":"Для того чтобы зарегистрироваться на ивент пожалуйста авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString"},"comparison-matrix":{"ru":"Матрица сравнений","_type":"localeString","en":"Comparison matrix"},"compare-with-competitive":{"_type":"localeString","en":" Compare with competitive","ru":"Сравнить с конкурентными"},"avg-deal-closing-unit":{"_type":"localeString","en":"months","ru":"месяцев"},"under-construction":{"ru":"Данная услуга всё ещё находится в разработке.","_type":"localeString","en":"Current feature is still developing to become even more useful for you."},"product-presentation":{"ru":"Презентация продукта","_type":"localeString","en":"Product presentation"},"go-to-comparison-table":{"ru":"Перейти к таблице сравнения","_type":"localeString","en":" Go to comparison table"},"see-product-details":{"ru":"Детали","_type":"localeString","en":"See Details"}},"header":{"help":{"en":"Help","de":"Hilfe","ru":"Помощь","_type":"localeString"},"how":{"de":"Wie funktioniert es","ru":"Как это работает","_type":"localeString","en":"How does it works"},"login":{"de":"Einloggen","ru":"Вход","_type":"localeString","en":"Log in"},"logout":{"_type":"localeString","en":"Sign out","ru":"Выйти"},"faq":{"en":"FAQ","de":"FAQ","ru":"FAQ","_type":"localeString"},"references":{"de":"References","ru":"Мои запросы","_type":"localeString","en":"Requests"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find-it-product":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"en":"Comparison Matrix","ru":"Матрица сравнения","_type":"localeString"},"roi-calculators":{"_type":"localeString","en":"ROI calculators","ru":"ROI калькуляторы"},"b4r":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference"},"business-booster":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"catalogs":{"en":"Catalogs","ru":"Каталоги","_type":"localeString"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"categories":{"en":"Categories","ru":"Категории","_type":"localeString"},"for-suppliers":{"ru":"Поставщикам","_type":"localeString","en":"For suppliers"},"blog":{"_type":"localeString","en":"Blog","ru":"Блог"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"_type":"localeString","en":"My account","ru":"Мой кабинет"},"register":{"en":"Register","ru":"Зарегистрироваться","_type":"localeString"},"comparison-deletion":{"ru":"Удаление","_type":"localeString","en":"Deletion"},"comparison-confirm":{"en":"Are you sure you want to delete","ru":"Подтвердите удаление","_type":"localeString"},"search-placeholder":{"en":"Enter your search term","ru":"Введите поисковый запрос","_type":"localeString"},"my-profile":{"ru":"Мои данные","_type":"localeString","en":"My profile"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"_type":"localeString","en":"Find IT product"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"_type":"localeString","en":"Create an avatar for the event"},"catalogs_new":{"_type":"localeString","en":"Products"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"en":"Our IT Catalogs","_type":"localeString"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"en":"Explore IT products by category","_type":"localeString"},"it_our_products":{"en":"Our Products","_type":"localeString"},"it_it_catalogs":{"en":"IT catalogs","_type":"localeString"}},"footer":{"copyright":{"de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString","en":"All rights reserved"},"company":{"ru":"О компании","_type":"localeString","en":"My Company","de":"Über die Firma"},"about":{"_type":"localeString","en":"About us","de":"Über uns","ru":"О нас"},"infocenter":{"ru":"Инфоцентр","_type":"localeString","en":"Infocenter","de":"Infocenter"},"tariffs":{"en":"Subscriptions","de":"Tarife","ru":"Тарифы","_type":"localeString"},"contact":{"en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами","_type":"localeString"},"marketplace":{"_type":"localeString","en":"Marketplace","de":"Marketplace","ru":"Marketplace"},"products":{"en":"Products","de":"Produkte","ru":"Продукты","_type":"localeString"},"compare":{"de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare"},"calculate":{"de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString","en":"Calculate the cost"},"get_bonus":{"de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference"},"salestools":{"ru":"Salestools","_type":"localeString","en":"Salestools","de":"Salestools"},"automatization":{"de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов","_type":"localeString","en":"Settlement Automation"},"roi_calcs":{"_type":"localeString","en":"ROI calculators","de":"ROI-Rechner","ru":"ROI калькуляторы"},"matrix":{"en":"Comparison matrix","de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString"},"b4r":{"_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference","ru":"Rebate 4 Reference"},"our_social":{"de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети","_type":"localeString","en":"Our social networks"},"subscribe":{"de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString","en":"Subscribe to newsletter"},"subscribe_info":{"ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews"},"policy":{"_type":"localeString","en":"Privacy Policy","ru":"Политика конфиденциальности"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find":{"_type":"localeString","en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта"},"quote":{"ru":"Калькулятор цены","_type":"localeString","en":"Price calculator"},"boosting":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"ru":"блог","_type":"localeString","en":"blog"},"pay4content":{"en":"we pay for content","ru":"платим за контент","_type":"localeString"},"categories":{"ru":"категории","_type":"localeString","en":"categories"},"showForm":{"_type":"localeString","en":"Show form","ru":"Показать форму"},"subscribe__title":{"en":"We send a digest of actual news from the IT world once in a month!","ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString"},"subscribe__email-label":{"en":"Email","ru":"Email","_type":"localeString"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"en":"This field is required","ru":"Это поле обязательное","_type":"localeString"},"subscribe__notify-label":{"en":"Yes, please, notify me about news, events and propositions","ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString"},"subscribe__agree-label":{"ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data"},"subscribe__submit-label":{"_type":"localeString","en":"Subscribe","ru":"Подписаться"},"subscribe__email-message":{"ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString","en":"Please, enter the valid email"},"subscribe__email-placeholder":{"en":"username@gmail.com","ru":"username@gmail.com","_type":"localeString"},"subscribe__name-placeholder":{"ru":"Имя Фамилия","_type":"localeString","en":"Last, first name"},"subscribe__success":{"ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString","en":"You are successfully subscribed! Check you mailbox."},"subscribe__error":{"en":"Subscription is unsuccessful. Please, try again later.","ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString"},"roi4presenter":{"ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter","de":"roi4presenter"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"ru":"Главная","_type":"localeString","en":"Home"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"login":{"_type":"localeString","en":"Login","ru":"Вход"},"registration":{"_type":"localeString","en":"Registration","ru":"Регистрация"},"b2b-platform":{"ru":"Портал для покупателей, поставщиков и производителей ИТ","_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers"}},"comment-form":{"title":{"ru":"Оставить комментарий","_type":"localeString","en":"Leave comment"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"ru":"Фамилия","_type":"localeString","en":"Last name"},"company":{"_type":"localeString","en":"Company name","ru":"Компания"},"position":{"ru":"Должность","_type":"localeString","en":"Position"},"actual-cost":{"en":"Actual cost","ru":"Фактическая стоимость","_type":"localeString"},"received-roi":{"_type":"localeString","en":"Received ROI","ru":"Полученный ROI"},"saving-type":{"ru":"Тип экономии","_type":"localeString","en":"Saving type"},"comment":{"_type":"localeString","en":"Comment","ru":"Комментарий"},"your-rate":{"ru":"Ваша оценка","_type":"localeString","en":"Your rate"},"i-agree":{"_type":"localeString","en":"I agree","ru":"Я согласен"},"terms-of-use":{"ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString","en":"With user agreement and privacy policy"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"en":"{NAME} is required filed","ru":"{NAME} - это обязательное поле","_type":"localeString"}},"maintenance":{"title":{"ru":"На сайте проводятся технические работы","_type":"localeString","en":"Site under maintenance"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}}},"translationsStatus":{"product":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"product":{"translatable_meta":[{"name":"og:title","translations":{"ru":"Конкретный продукт","_type":"localeString","en":"Example product"}},{"name":"og:description","translations":{"ru":"Описание для конкретного продукта","_type":"localeString","en":"Description for one product"}},{"name":"title","translations":{"_type":"localeString","en":"Product","ru":"Продукт"}},{"name":"description","translations":{"ru":"Описание продукта","_type":"localeString","en":"Product description"}},{"translations":{"ru":"Ключевые слова продукта","_type":"localeString","en":"Product keywords"},"name":"keywords"}],"title":{"ru":"ROI4CIO: Продукт","_type":"localeString","en":"ROI4CIO: Product"},"meta":[{"name":"og:type","content":"website"},{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"}]}},"pageMetaDataStatus":{"product":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{"hp-procurve-switch-5400zl-series":{"id":4826,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/HP_ProCurve.PNG","logo":true,"scheme":false,"title":"HP ProCurve Switch 5400zl Series","vendorVerified":0,"rating":"0.00","implementationsCount":3,"suppliersCount":0,"supplierPartnersCount":452,"alias":"hp-procurve-switch-5400zl-series","companyTitle":"Hewlett Packard Enterprise","companyTypes":["supplier","vendor"],"companyId":172,"companyAlias":"hewlett-packard-enterprise","description":"The HP ProCurve Switch 5400zl Series consists of the most advanced intelligent switches in the HP ProCurve product line. The 5400zl series includes 6-slot and 12-slot chassis and associated zl modules and bundles. The foundation for all of these switches is a purpose-built, programmable ProVision ASIC that allows the most demanding networking features, such as Quality of Service (QoS) and security, to be implemented in a scalable yet granular fashion. With 10/100, Gigabit and 10-Gigabit interfaces, integrated PoE+ on 10/100 and 10/100/1000Base-T ports, and a choice of form factors, the 5400zl switches offer excellent investment protection, flexibility, and scalability, as well as ease of deployment, operation, and maintenance.\r\n<span style=\"font-weight: bold;\">Key features</span>\r\n<ul><li>Core, distribution, and advanced access layer</li></ul>\r\n<ul><li>Layer 2 to 4 and intelligent edge feature set</li></ul>\r\n<ul><li>Enterprise-class performance and security</li></ul>\r\n<ul><li>HP ProCurve ONE integrated</li></ul>\r\n<ul><li>Scalable 10/100/1000 and 10-GbE connectivity</li></ul>","shortDescription":"The HP ProCurve Switch 5400zl Series consists of the most advanced intelligent switches in the HP ProCurve product line.","type":"Hardware","isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":13,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP ProCurve Switch 5400zl Series","keywords":"","description":"The HP ProCurve Switch 5400zl Series consists of the most advanced intelligent switches in the HP ProCurve product line. The 5400zl series includes 6-slot and 12-slot chassis and associated zl modules and bundles. The foundation for all of these switches is a ","og:title":"HP ProCurve Switch 5400zl Series","og:description":"The HP ProCurve Switch 5400zl Series consists of the most advanced intelligent switches in the HP ProCurve product line. The 5400zl series includes 6-slot and 12-slot chassis and associated zl modules and bundles. The foundation for all of these switches is a ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/HP_ProCurve.PNG"},"eventUrl":"","translationId":4827,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"}],"characteristics":[],"concurentProducts":[{"id":3350,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/VIT-400-0000.jpg","logo":true,"scheme":false,"title":"WizLAN VIT-400 Cyber Network Security","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"wizlan-vit-400-cyber-network-security","companyTitle":"WizLAN","companyTypes":["supplier","vendor"],"companyId":5241,"companyAlias":"wizlan","description":"The VIT-400 is a Fast Ethernet single-direction network to network fibeoptic coupled isolation device - Network to Network Diode, desigen and approved for Critical Infrastructure Protection (CIP) connectivity.<br /><br />Composed of a pair of single-direction network diodes (VIT-42TX/RX like), internally connected by a single fiber optic cable and having two separated power supplies, the VIT-400 provides complet protection, isolation and security for unidirectional transparent data transfer between two networks.<br /><br />Separating between the pure HW network to network diode and the unidirectional VectorIT SW application, installed on the networks endpoint servers, assures unbreakable single-direction solution for protecting the networks against intrusion and leakage.<br /><br />VectorIT software application facilitates unidirectional transfer of certain TCP-based protocols as well as raw files over standard Ethernet interfaces with utilization of up-to full wire speed. <br />Currently supported protocols are FTP, SMTP TCP and raw files. The software is dedicated to and employs only unidirectional data flow over single or bidirectional link, but has otherwise no relation to data security services.<br /><br />The VIT-400 includes a uniqe link verification function in which the link of the incoming endpoint (receiving server) will drop if there is any problem with the end to end link continuity up-to the outgoing endpopint (transmitting server). This is a powerfull HW management feature aspecially for single direction applications.","shortDescription":"WizLAN VIT-400 Cyber Network Security is a Fast Ethernet single-direction network to network fibeoptic coupled isolation device - Network to Network Diode.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":20,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"WizLAN VIT-400 Cyber Network Security","keywords":"","description":"The VIT-400 is a Fast Ethernet single-direction network to network fibeoptic coupled isolation device - Network to Network Diode, desigen and approved for Critical Infrastructure Protection (CIP) connectivity.<br /><br />Composed of a pair of single-direction ","og:title":"WizLAN VIT-400 Cyber Network Security","og:description":"The VIT-400 is a Fast Ethernet single-direction network to network fibeoptic coupled isolation device - Network to Network Diode, desigen and approved for Critical Infrastructure Protection (CIP) connectivity.<br /><br />Composed of a pair of single-direction ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/VIT-400-0000.jpg"},"eventUrl":"","translationId":3351,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":560,"title":"IPC - Information Protection and Control - Appliance","alias":"ipc-information-protection-and-control-appliance","description":" Information Protection and Control (IPC) is a technology for protecting confidential information from internal threats. IPC class hardware solutions are designed to protect information from internal threats, prevent various types of information leaks, corporate espionage, and business intelligence. The term IPC combines two main technologies: encryption of storage media at all points of the network and control of technical channels of information leakage using Data Loss Prevention (DLP) technologies. Network, application and data access control is a possible third technology in IPC class systems. IPC includes solutions of the Data Loss Prevention (DLP) class, a system for encrypting corporate information and controlling access to it. The term IPC was one of the first to use IDC analyst Brian Burke in his report, Information Protection and Control Survey: Data Loss Prevention and Encryption Trends.\r\nIPC technology is a logical continuation of DLP technology and allows you to protect data not only from leaks through technical channels, that is, insiders, but also from unauthorized user access to the network, information, applications, and in cases where the direct storage medium falls into the hands of third parties. This allows you to prevent leaks in those cases when an insider or a person who does not have legal access to data gain access to the direct carrier of information.\r\nThe main objective of IPC systems is to prevent the transfer of confidential information outside the corporate information system. Such a transfer (leak) may be intentional or unintentional. Practice shows that most of the leaks (more than 75%) do not occur due to malicious intent, but because of errors, carelessness, carelessness, and negligence of employees - it is much easier to detect such cases. The rest is connected with the malicious intent of operators and users of enterprise information systems, in particular, industrial espionage and competitive intelligence. Obviously, malicious insiders, as a rule, try to trick IPC analyzers and other control systems.","materialsDescription":" <span style=\"font-weight: bold;\">What is Information Protection and Control (IPC)?</span>\r\nIPC (English Information Protection and Control) is a generic name for technology to protect confidential information from internal threats.\r\nIPC apparel solutions are designed to prevent various types of information leaks, corporate espionage, and business intelligence. IPC combines two main technologies: media encryption and control of technical channels of information leakage (Data Loss Prevention - DLP). Also, the functionality of IPC systems may include systems of protection against unauthorized access (unauthorized access).\r\n<span style=\"font-weight: bold;\">What are the objectives of IPC class systems?</span>\r\n<ul><li>preventing the transfer of confidential information beyond the corporate information system;</li><li>prevention of outside transmission of not only confidential but also other undesirable information (offensive expressions, spam, eroticism, excessive amounts of data, etc.);</li><li>preventing the transmission of unwanted information not only from inside to outside but also from outside to inside the organization’s information system;</li><li>preventing employees from using the Internet and network resources for personal purposes;</li><li>spam protection;</li><li>virus protection;</li><li>optimization of channel loading, reduction of inappropriate traffic;</li><li>accounting of working hours and presence at the workplace;</li><li>tracking the reliability of employees, their political views, beliefs, collecting dirt;</li><li>archiving information in case of accidental deletion or damage to the original;</li><li>protection against accidental or intentional violation of internal standards;</li><li>ensuring compliance with standards in the field of information security and current legislation.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is DLP technology used in IPC?</span>\r\nIPC DLP technology supports monitoring of the following technical channels for confidential information leakage:\r\n<ul><li>corporate email;</li><li>webmail;</li><li>social networks and blogs;</li><li>file-sharing networks;</li><li>forums and other Internet resources, including those made using AJAX technology;</li><li>instant messaging tools (ICQ, Mail.Ru Agent, Skype, AOL AIM, Google Talk, Yahoo Messenger, MSN Messenger, etc.);</li><li>P2P clients;</li><li>peripheral devices (USB, LPT, COM, WiFi, Bluetooth, etc.);</li><li>local and network printers.</li></ul>\r\nDLP technologies in IPC support control, including the following communication protocols:\r\n<ul><li>FTP;</li><li>FTP over HTTP;</li><li>FTPS;</li><li>HTTP;</li><li>HTTPS (SSL);</li><li>NNTP;</li><li>POP3;</li><li>SMTP.</li></ul>\r\n<span style=\"font-weight: bold;\">What information protection facilities does IPC technology include?</span>\r\nIPC technology includes the ability to encrypt information at all key points in the network. The objects of information security are:\r\n<ul><li>Server hard drives;</li><li>SAN;</li><li>NAS;</li><li>Magnetic tapes;</li><li>CD/DVD/Blue-ray discs;</li><li>Personal computers (including laptops);</li><li>External devices.</li></ul>\r\nIPC technologies use various plug-in cryptographic modules, including the most efficient algorithms DES, Triple DES, RC5, RC6, AES, XTS-AES. The most used algorithms in IPC solutions are RC5 and AES, the effectiveness of which can be tested on the project [distributed.net]. They are most effective for solving the problems of encrypting data of large amounts of data on server storages and backups.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_IPC_Information_Protection_and_Control_Appliance.png"},{"id":548,"title":"Web security - Appliance","alias":"web-security-appliance","description":"A security appliance is any form of server appliance that is designed to protect computer networks from unwanted traffic. Types of network security appliance:\r\n<span style=\"font-weight: bold;\">Active devices</span> block unwanted traffic. Examples of such devices are firewalls, anti-virus scanning devices, and content filtering devices. For instance, if you want to make sure that you do not get pointless spam and other unnecessary issues, installing an active device might be a great idea. Active devices include anti-virus scanning devices, which will automatically scan throughout the network to ensure that no virus exists within the protected network. Then, there are web filtering appliances as well as firewalls, the purpose of both of which is to ensure that only useful content and traffic flows through the network and all pointless or harmful data is filtered.\r\n<span style=\"font-weight: bold;\">Passive devices detect and report on unwanted traffic.</span> A common example is intrusion detection appliances, which are installed in order to determine whether the network has been compromised in any way. These devices usually work in the background at all times.\r\n<span style=\"font-weight: bold;\">Preventative devices</span> scan networks and identify potential security problems (such as penetration testing and vulnerability assessment appliances). These devices are usually designed to 'prevent' damage to the network by identifying problems in advance. Common examples include devices that employ penetration testing as well as those devices which carry out vulnerability assessment on networks.\r\n<span style=\"font-weight: bold;\">Unified Threat Management (UTM)</span> combines features together into one system, such as some firewalls, content filtering, web caching etc. UTM devices are designed to provide users with a one-stop solution to all of their network needs and internet security appliances. As the name clearly suggests, these devices provide the features of all of the other network devices and condense them into one. These devices are designed to provide a number of different network security options in one package, hence providing networks with a simple solution. Rather than installing four different devices, users can easily install one and be done with it. The market of UTM devices has exceeded the billion dollar mark already, which just goes to show how popular these devices have become amongst network users.\r\nOne of the most popular and accessible types of web security appliance tools is the hardware <span style=\"font-weight: bold;\">keylogger.</span> This device is placed covertly between the case and keyboard with an output for the computer case and input for the keyboard. As hardware standards have changed over time, a USB hardware keylogger provides access on many devices.\r\nThe <span style=\"font-weight: bold;\">web proxy appliance</span> is basically hardware you use to manage user web access. More to the point, it's the type of device that handles the blocking or controlling of suspicious programs. It's typically placed in between network users and the worldwide web; ergo, it's most popular application is serving as a central control hub over employee Internet use by corporations and enterprises. It's the in-between gateway that serves as a termination point of sorts for online communications within a network and is capable of applying a multitude of rule-based limitations on Internet traffic, web content, and requests before they even end up with end users.\r\nAnother commonly used hardware tool is the <span style=\"font-weight: bold;\">wireless antenna.</span> These can be used to surveil a wide variety of wireless communications, including local cellular and internet service networks. More mechanical and general devices may include lockpicks or portable probes and hijack chips for compromising electronic devices through the physical circuit.\r\n<span style=\"font-weight: bold;\">Secure web gateway appliances</span> are solutions to prevent advanced threats, block unauthorized access to systems or websites, stop malware, and monitor real-time activity across websites accessed by users within the institution. Software and cloud-based platforms now perform this function as well.","materialsDescription":"<h1 class=\"align-center\"> What are the top Network Security Appliance brands?</h1>\r\n<span style=\"font-weight: bold;\">Blue Coat Systems,</span> Sunnyvale, Calif.-based Blue Coat has been part of security powerhouse Symantec since 2016.\r\n<span style=\"font-weight: bold;\">F5 Networks,</span> the Seattle-based network application delivery vendor, sold about $17.6 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">SonicWall.</span>Firewall power player SonicWall sold about $23.5 million in network security appliances through the channel in the second quarter, according to NPD.\r\n<span style=\"font-weight: bold;\">Fortinet,</span> Sunnyvale, Calif., security software vendor Fortinet sold about $24.4 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">Cisco Systems,</span> Cisco Systems was the quarter's growth champion, posting $77.2 million in network security appliance sales through the channel in the period, beating the previous year’s quarterly total of $62.3 million by about 24 percent, according to NPD.\r\n<span style=\"font-weight: bold;\">Palo Alto Networks.</span> With $94.2 million in network security appliance sales in the quarter, Palo Alto Networks was the best-selling network security appliance brand of the second quarter, according to NPD.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_security_Appliance.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":461,"title":"Data Diode","alias":"data-diode","description":"A unidirectional network (also referred to as a unidirectional gateway or data diode) is a network appliance or device that allows data to travel in only one direction. Data diodes can be found most commonly in high-security environments, such as defense, where they serve as connections between two or more networks of differing security classifications. Given the rise of Industrial IoT and Digitization, this technology can now be found at the industrial control level for such facilities as nuclear power plants, power generation and safety-critical systems like railway networks.<br />After years of development, the use of data diodes has increased, creating two variations:\r\n<ul><li>Data Diode: more often used to refer to the simple hardware version that physically enforces data to flow in only one direction.</li><li>Unidirectional Gateway: Used to describe a more sophisticated device that typically has a computer on both its critical and open side. Unidirectional gateways are a combination of hardware and software. The hardware (data diode) permits data to flow from one network to another but is physically unable to send any information at all back into the source network. The software replicates databases and emulates protocol servers and devices, enabling compatibility with existing network protocols, allowing organizations to gain their benefits without changes to their existing systems.</li></ul>\r\nOnce only commonly found in high-security military environments, unidirectional gateways are now becoming widely spread in sectors like Oil & Gas, water/wastewater, airplanes (between flight control units and in-flight entertainment systems), manufacturing and cloud connectivity for Industrial IoT primarily as a result of new regulations, increased demand and big industrial powerhouses. These industries/sectors and betting on this technology, which has had the effect of lowering the technology's core cost.","materialsDescription":"<span style=\"font-weight: bold;\">What Is Data Diode Technology & How Does It Work?</span>\r\nToday's business environment is increasingly digital and more vulnerable than ever to a cyber attack. Because of this, various network security technologies have been developed to protect organizational data and infrastructures. One of the most effective of these modern technologies is the data diode. Although it is one of the most effective network security tools available, you may not have heard of this technology and know little of what it does. Below, you'll find a description of what data diode technology is and how it works.\r\n<span style=\"font-weight: bold;\">What Is Data Diode Technology?</span>\r\nA data diode is a communication device that enables the safe, one-way transfer of data between segmented networks. Intelligent data diode design maintains physical and electrical separation of source and destination networks, establishing a non-routable, completely closed one-way data transfer protocol between networks. Intelligent data diodes effectively eliminate external points of entry to the sending system, preventing intruders and contagious elements from infiltrating the network. Securing all of a network’s data outflow with data diodes makes it impossible for an insecure or hostile network to pass along malware, access your system, or accidentally make harmful changes.\r\nData diodes allow companies to send process data in real time to information management systems for use in financial, customer service, and management decisions — without compromising the security of your network. This protects valuable information and network infrastructure from theft, destruction, tampering, and human error, mitigating the potential loss of thousands of dollars and countless hours of work.\r\n<span style=\"font-weight: bold;\">How Does Data Diode Technology Work?</span>\r\nA "diode" is an electronic component that only allows current to flow in one direction. Similarly, data diode technology lets information flow safely in only one direction, from secure areas to less secure systems, without permitting reverse access. A data diode also creates a physical barrier or “air gap” between the two points. This one-way connection prevents data leakage, eliminates the threat of malware, and fully protects the process control network. Moreover, a single data diode can handle data transfers from multiple servers or devices simultaneously, without bottlenecking.\r\n<span style=\"font-weight: bold;\">Where is it used?</span>\r\nIt’s typically used to guarantee information security or protection of critical digital systems, such as industrial control systems, from cyber attacks. While the use of these devices is common in high-security environments such as defense, where they serve as connections between two or more networks of differing security classifications, the technology is also being used to enforce one-way communications outbound from critical digital systems to untrusted networks connected to the Internet.\r\nThe physical nature of unidirectional networks only allows data to pass from one side of a network connection to another, and not the other way around. This can be from the "low side" or untrusted network to the "high side" or trusted network or vice versa. In the first case, data in the high side network is kept confidential and users retain access to data from the low side. Such functionality can be attractive if sensitive data is stored on a network which requires connectivity with the Internet: the high side can receive Internet data from the low side, but no data on the high side is accessible to Internet-based intrusion. In the second case, a safety-critical physical system can be made accessible for online monitoring, yet be insulated from all Internet-based attacks that might seek to cause physical damage. In both cases, the connection remains unidirectional even if both the low and the high network are compromised, as the security guarantees are physical in nature.\r\nThere are two general models for using unidirectional network connections. In the classical model, the purpose of the data diode is to prevent the export of classified data from a secure machine while allowing the import of data from an insecure machine. In the alternative model, the diode is used to allow export of data from a protected machine while preventing attacks on that machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Diode.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4910,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Opengear_logo.png","logo":true,"scheme":false,"title":"OpenGear IoT Gateways","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"opengear-iot-gateways","companyTitle":"Opengear","companyTypes":["vendor"],"companyId":5292,"companyAlias":"opengear","description":"The arrival of the Internet of Things (IoT) requires a new level of resilience in the data center and edge networking equipment. As the number of connected objects continues to grow and the IoT becomes ubiquitous, organizations in almost every industry will have to bolster their networks with fog computing and cellular out-of-band management solutions.\r\nManage your mission-critical endpoints — wherever they are — and keep them connected at all times via 3G and 4G LTE.\r\nBy moving certain compute resources away from the center and closer to the edge of a network, organizations will be able to more effectively handle all of their data — no matter where it’s coming from or going to. Routers, switches and other hardened gateway devices that will be the core part of a fog computing deployment can help to effectively facilitate data handling and backhaul.\r\nOpengear’s smart network management solutions give IT admins the ability to use robust and always-available 3G and 4G LTE connections instead of legacy wireline modems. Your team will be able to remotely manage and oversee the switches, routers and other endpoints that form the core of any fog computing arrangement. This way, even a small group of IT admins can ensure that any number of mission-critical endpoints, no matter where they’re located, are working well at all times.\r\nBy pairing an investment in the IoT with <span style=\"font-weight: bold;\">Opengear’s SmartOOB™</span> management, organizations can rest assured that the network at the heart of their newly connected operations will function properly and that problems can be quickly identified and easily resolved.\r\n<span style=\"font-weight: bold;\">Benefits:</span>\r\n<ul><li>Always-on connectivity through mainline connections and embedded 4G LTE</li><li>Ability to reimage and reboot devices remotely, even when primary connections are down</li><li>High- and low-density models to support any sized deployment</li><li>Scalability to support accelerating IoT network of devices</li><li>Device agnostic to support any endpoint or beacon manufacturer</li></ul>\r\n<span style=\"font-weight: bold;\">Products:</span>\r\n<ul><li>ACM7000-L – Resilience Gateway</li><li>ACM7000 Remote Site Gateway</li><li>IM7200 Infrastructure Manager</li></ul>","shortDescription":"Keeping Your “Connected Things” Connected.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"OpenGear IoT Gateways","keywords":"","description":"The arrival of the Internet of Things (IoT) requires a new level of resilience in the data center and edge networking equipment. As the number of connected objects continues to grow and the IoT becomes ubiquitous, organizations in almost every industry will ha","og:title":"OpenGear IoT Gateways","og:description":"The arrival of the Internet of Things (IoT) requires a new level of resilience in the data center and edge networking equipment. As the number of connected objects continues to grow and the IoT becomes ubiquitous, organizations in almost every industry will ha","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Opengear_logo.png"},"eventUrl":"","translationId":4911,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":178,"title":"IoT - Internet of Things","alias":"iot-internet-of-things","description":"The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.\r\nThe definition of the Internet of things has evolved due to the convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation). and others all contribute to enabling the Internet of things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the "smart home", covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.\r\nThe IoT concept has faced prominent criticism, especially in regards to privacy and security concerns related to these devices and their intention of pervasive presence.","materialsDescription":"<span style=\"font-weight: bold;\">What is the Internet of Things (IoT)?</span>\r\nThe Internet of things refers to the network of things (physical objects) that can be connected to the Internet to collect and share data without human-to-human or human-to-computer interaction.\r\n<span style=\"font-weight: bold;\">Why is it called the Internet of Things?</span>\r\nThe term Internet of things was coined by Kevin Ashton in 1999. Stemming from Kevin Ashton’s experience with RFID, the term Internet of things originally described the concept of tagging every object in a person’s life with machine-readable codes. This would allow computers to easily manage and inventory all of these things.\r\nThe term IoT today has evolved to a much broader prospect. It now encompasses ubiquitous connectivity, devices, sensors, analytics, machine learning, and many other technologies.\r\n<span style=\"font-weight: bold;\">What is an IoT solution?</span>\r\nAn IoT solution is a combination of devices or other data sources, outfitted with sensors and Internet connected hardware to securely report information back to an IoT platform. This information is often a physical metric which can help users answer a question or solve a specific problem.\r\n<span style=\"font-weight: bold;\">What is an IoT Proof of Concept (PoC)?</span>\r\nThe purpose of a PoC is to experiment with a solution in your environment, collect data, and evaluate performance from a set timeline on a set budget. A PoC is a low-risk way to introduce IoT to an organization.\r\n<span style=\"font-weight: bold;\">What is an IoT cloud platform?</span>\r\nAn IoT platform provides users with one or more of these key elements — visualization tools, data security features, a workflow engine and a custom user interface to utilize the information collected from devices and other data sources in the field. These platforms are based in the cloud and can be accessed from anywhere.\r\n<span style=\"font-weight: bold;\">What is industrial equipment monitoring?</span>\r\nIndustrial equipment monitoring uses a network of connected sensors - either native to a piece of equipment or retrofitted - to inform owners/operators of a machine’s output, component conditions, need for service or impending failure. Industrial equipment monitoring is an IoT solution which can utilize an IoT platform to unify disparate data and enable decision-makers to respond to real-time data.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IoT_-_Internet_of_Things.png"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4710,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Endian-logo.jpg","logo":true,"scheme":false,"title":"Endian Industrial IoT Security","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"endian-industrial-iot-security","companyTitle":"Endian","companyTypes":["supplier","vendor"],"companyId":5220,"companyAlias":"endian","description":"<span style=\"font-weight: bold;\">Industrial VPN Connectivity</span>\r\nThe Endian 4i Edge products provide the best and most comprehensive lineup of simple and secure remote access options of any product on the market. These allow you to connect the 4i Edge to virtually any corporate or industrial VPN network to remotely monitor and manage your critical equipment (PLC, HMI, etc.) in real-time. Provide complete Industrial IoT Security to your network.\r\n<span style=\"font-weight: bold;\">Centralized Network Management</span>\r\nCentrally manage all your Endian appliances. Reduce administrator management time and effort and save valuable staff resources with centralized management made easy with Endian Management Center (EMC).\r\n<span style=\"font-weight: bold;\">Remote IoT and M2M Communication</span>\r\nEndian 4i Edge series comes with all new Industrial IoT and M2M features to enable you to better communicate with your remote equipment in real-time. The main feature uses a technology called Serial over IP which allows you to simply and securely access a remote serial port connection to your PLC in the field from anywhere in the world.\r\n<span style=\"font-weight: bold;\">Unlimited Connectivity</span>\r\nThe Endian 4i Edge series supports virtually any kind of Internet connection making it extremely adaptable to suit almost any project requirement. All of these connectivity options ensure your remote endpoints and networks have the highest levels of availability which keeps your business running smoothly.\r\n<span style=\"font-weight: bold;\">Deploy Anywhere (Even Behind Firewalls)</span>\r\nEndian can be deployed virtually anywhere usually with little to no disruption to the existing infrastructure. Our VPN technology allows our 4i appliances to get connected even behind existing corporate firewalls.\r\n<span style=\"font-weight: bold;\">NERC CIP Compliance (Whitepaper)</span>\r\nDownload our new whitepaper today to learn how the Endian solutions can help you to meet the relevant components of NERC CIP standards. This detailed guide will show you all the ways that Endian partners and products can help your business with compliance.\r\n\r\n<span style=\"font-weight: bold;\">Endian 4i - Industrial VPN Router Features</span>\r\n<ul><li>Stateful Firewall</li><li>Multi-WAN (with Failover)</li><li>Intrusion Prevention (IPS)</li><li>Centralized Management</li><li>High Availability (Hardware Failover)</li><li>Reporting</li><li>VPN (OpenVPN & IPSec)</li></ul>","shortDescription":"The Endian 4i Edge series brings an unparalleled level of hardware performance and features to the industrial VPN router market.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":10,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Endian Industrial IoT Security","keywords":"","description":"<span style=\"font-weight: bold;\">Industrial VPN Connectivity</span>\r\nThe Endian 4i Edge products provide the best and most comprehensive lineup of simple and secure remote access options of any product on the market. These allow you to connect the 4i Edge to v","og:title":"Endian Industrial IoT Security","og:description":"<span style=\"font-weight: bold;\">Industrial VPN Connectivity</span>\r\nThe Endian 4i Edge products provide the best and most comprehensive lineup of simple and secure remote access options of any product on the market. These allow you to connect the 4i Edge to v","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Endian-logo.jpg"},"eventUrl":"","translationId":4711,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":56,"title":"Router","alias":"router","description":"A router is a networking device that forwards data packets between computer networks. Routers perform the traffic directing functions on the Internet. Data sent through the internet, such as a web page or email, is in the form of data packets. A packet is typically forwarded from one router to another router through the networks that constitute an internetwork (e.g. the Internet) until it reaches its destination node.\r\nA router is connected to two or more data lines from different IP networks. When a data packet comes in on one of the lines, the router reads the network address information in the packet header to determine the ultimate destination. Then, using information in its routing table or routing policy, it directs the packet to the next network on its journey.\r\nThe most familiar type of IP routers are home and small office routers that simply forward IP packets between the home computers and the Internet. An example of a router would be the owner's cable or DSL router, which connects to the Internet through an Internet service provider (ISP). More sophisticated routers, such as enterprise routers, connect large business or ISP networks up to the powerful core routers that forward data at high speed along the optical fiber lines of the Internet backbone.\r\nThe main purpose of a router is to connect multiple networks and forward packets destined either for its own networks or other networks. A router is considered a layer-3 device because its primary forwarding decision is based on the information in the layer-3 IP packet, specifically the destination IP address. When a router receives a packet, it searches its routing table to find the best match between the destination IP address of the packet and one of the addresses in the routing table. Once a match is found, the packet is encapsulated in the layer-2 data link frame for the outgoing interface indicated in the table entry. A router typically does not look into the packet payload,[citation needed] but only at the layer-3 addresses to make a forwarding decision, plus optionally other information in the header for hints on, for example, quality of service (QoS). For pure IP forwarding, a router is designed to minimize the state information associated with individual packets. Once a packet is forwarded, the router does not retain any historical information about the packet.\r\nThe routing table itself can contain information derived from a variety of sources, such as a default or static routes that are configured manually, or dynamic routing protocols where the router learns routes from other routers. A default route is one that is used to route all traffic whose destination does not otherwise appear in the routing table; this is common – even necessary – in small networks, such as a home or small business where the default route simply sends all non-local traffic to the Internet service provider. The default route can be manually configured (as a static route), or learned by dynamic routing protocols, or be obtained by DHCP.\r\nA router can run more than one routing protocol at a time, particularly if it serves as an autonomous system border router between parts of a network that run different routing protocols; if it does so, then redistribution may be used (usually selectively) to share information between the different protocols running on the same router.\r\nBesides making a decision as to which interface a packet is forwarded to, which is handled primarily via the routing table, a router also has to manage congestion when packets arrive at a rate higher than the router can process. Three policies commonly used in the Internet are tail drop, random early detection (RED), and weighted random early detection (WRED). Tail drop is the simplest and most easily implemented; the router simply drops new incoming packets once the length of the queue exceeds the size of the buffers in the router. RED probabilistically drops datagrams early when the queue exceeds a pre-configured portion of the buffer, until a pre-determined max, when it becomes tail drop. WRED requires a weight on the average queue size to act upon when the traffic is about to exceed the pre-configured size, so that short bursts will not trigger random drops.\r\nAnother function a router performs is to decide which packet should be processed first when multiple queues exist. This is managed through QoS, which is critical when Voice over IP is deployed, so as not to introduce excessive latency.\r\nYet another function a router performs is called policy-based routing where special rules are constructed to override the rules derived from the routing table when a packet forwarding decision is made.\r\nRouter functions may be performed through the same internal paths that the packets travel inside the router. Some of the functions may be performed through an application-specific integrated circuit (ASIC) to avoid overhead of scheduling CPU time to process the packets. Others may have to be performed through the CPU as these packets need special attention that cannot be handled by an ASIC.","materialsDescription":" <span style=\"font-weight: bold;\">What Is a Router?</span>\r\nRouters are the nodes that make up a computer network like the internet. The router you use at home is the central node of your home network.\r\nIt functions as an information manager between the internet and all devices that go online (i.e. all devices connected to the router). Generally speaking, routers direct incoming traffic to its destination.\r\nThis also makes your router the first line of security in protecting your home network from malicious online attacks.\r\n<span style=\"font-weight: bold;\">What Does a Router Do?</span>\r\nYour router handles network traffic. For example, to view this article, data packages coding for this website have to transit from our server, through various nodes on the internet, and finally through your router to arrive on your phone or computer. On your device, your browser decodes those data packages to display the article you’re currently reading.\r\nSince a typical household has more than one device that connects to the internet, you need a router to manage the incoming network signals. In other words, your router makes sure that the data packages coding for a website you want to view on your computer aren’t sent to your phone. It does that by using your device’s MAC address.\r\nWhile your router has a unique (external) IP address to receive data packages from servers worldwide, every device on your home network also carries a unique MAC address. Simply put, when you try to access information online, your router maintains a table to keep track of which device requested information from where. Based on this table, your router distributes incoming data packages to the correct recipient.\r\n<span style=\"font-weight: bold;\">What Is the Difference Between Modems and Routers?</span>\r\nA modem turns the proprietary network signal of your ISP (internet service provider) into a standard network signal. In theory, you can choose between multiple ISPs and some of them may use the same delivery route. Your modem knows which signals to read and translate.\r\nThe kind of modem your ISP will provide you with depends on how you’re connecting to the internet. For example, a DSL modem requires a different technology than a cable or fiber optic broadband modem. That’s because one uses the copper wiring of your telephone line, while the others use a coaxial or a fiber optic cable, respectively.\r\nThe DSL modem has to filter and read both the low frequencies that phone and voice data produce, as well as the high frequencies of internet data. Cable modems, on the other hand, have to differentiate between television and internet signals, which are transmitted on different channels, rather than different frequencies. Finally, fiber optic uses pulses of light to transmit information. The modem has to decode these signals into standard data packages.\r\nOnce the modem has turned the ISP’s network signal into data packages, the router can distribute them to the target device.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Router1.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4766,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Cisco_ONS_15454_Series.jpg","logo":true,"scheme":false,"title":"Cisco ONS 15454 Series","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":125,"alias":"cisco-ons-15454-series","companyTitle":"Cisco","companyTypes":["supplier","vendor"],"companyId":170,"companyAlias":"cisco","description":"For over a decade, service providers and enterprises alike have relied on Cisco for metro, regional, long haul, and data center optical transport networks. These networks transport huge quantities of data at high rates over great distances, providing the foundation for all WANs.\r\n<span style=\"font-weight: bold;\">Get fourth-generation innovation</span><br />\r\nCisco ROADM innovation continues into its fourth generation with the first Single Module ROADM. It combines multidegree wavelength switching functionality with optical amplification and spectrum analysis in a single slot line card.<br />\r\n<span style=\"font-weight: bold;\">Utilize new features</span><br />\r\nAlong with advanced features, the 15454 provides wavelength switched optical network functionality. This embeds optical layer intelligence directly into network elements to support wavelength-on-demand services and dynamic restoration.<br />\r\n<span style=\"font-weight: bold;\">Gain flexible aggregation</span><br />\r\nCisco optical transport aggregation solutions integrate packet, SONET, and OTN aggregation and switching into the DWDM transport platform. Customers will enjoy efficient wavelength fill and tight communication among network layers.<br />\r\n<span style=\"font-weight: bold;\">Streamline operations</span><br />\r\nSelected on a per card basis, a mix of Layer 1 services, time division multiplexing (TDM), and packet switching technologies can be deployed where needed. Meet customer and network requirements while simplifying operations. <br />\r\n<span style=\"font-weight: bold;\">Scale to 100 Gb and beyond</span><br />\r\nCisco leads the optical transport industry as it moves toward coherent technology for DWDM transport of 100 Gb services. Powered by nLight Silicon, Cisco coherent technology will scale to even greater densities and higher bit rates.","shortDescription":"Cisco ONS 15454 Series Multiservice Transport Platforms","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":7,"sellingCount":10,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Cisco ONS 15454 Series","keywords":"","description":"For over a decade, service providers and enterprises alike have relied on Cisco for metro, regional, long haul, and data center optical transport networks. These networks transport huge quantities of data at high rates over great distances, providing the found","og:title":"Cisco ONS 15454 Series","og:description":"For over a decade, service providers and enterprises alike have relied on Cisco for metro, regional, long haul, and data center optical transport networks. These networks transport huge quantities of data at high rates over great distances, providing the found","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Cisco_ONS_15454_Series.jpg"},"eventUrl":"","translationId":4767,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":852,"title":"Network security","alias":"network-security","description":" Network security consists of the policies and practices adopted to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs; conducting transactions and communications among businesses, government agencies and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: it secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.\r\nNetwork security starts with authentication, commonly with a username and a password. Since this requires just one detail authenticating the user name — i.e., the password—this is sometimes termed one-factor authentication. With two-factor authentication, something the user 'has' is also used (e.g., a security token or 'dongle', an ATM card, or a mobile phone); and with three-factor authentication, something the user 'is' is also used (e.g., a fingerprint or retinal scan).\r\nOnce authenticated, a firewall enforces access policies such as what services are allowed to be accessed by the network users. Though effective to prevent unauthorized access, this component may fail to check potentially harmful content such as computer worms or Trojans being transmitted over the network. Anti-virus software or an intrusion prevention system (IPS) help detect and inhibit the action of such malware. An anomaly-based intrusion detection system may also monitor the network like wireshark traffic and may be logged for audit purposes and for later high-level analysis. Newer systems combining unsupervised machine learning with full network traffic analysis can detect active network attackers from malicious insiders or targeted external attackers that have compromised a user machine or account.\r\nCommunication between two hosts using a network may be encrypted to maintain privacy.\r\nHoneypots, essentially decoy network-accessible resources, may be deployed in a network as surveillance and early-warning tools, as the honeypots are not normally accessed for legitimate purposes. Techniques used by the attackers that attempt to compromise these decoy resources are studied during and after an attack to keep an eye on new exploitation techniques. Such analysis may be used to further tighten security of the actual network being protected by the honeypot. A honeypot can also direct an attacker's attention away from legitimate servers. A honeypot encourages attackers to spend their time and energy on the decoy server while distracting their attention from the data on the real server. Similar to a honeypot, a honeynet is a network set up with intentional vulnerabilities. Its purpose is also to invite attacks so that the attacker's methods can be studied and that information can be used to increase network security. A honeynet typically contains one or more honeypots.","materialsDescription":" <span style=\"font-weight: bold;\">What is Network Security?</span>\r\nNetwork security is any action an organization takes to prevent malicious use or accidental damage to the network’s private data, its users, or their devices. The goal of network security is to keep the network running and safe for all legitimate users.\r\nBecause there are so many ways that a network can be vulnerable, network security involves a broad range of practices. These include:\r\n<ul><li><span style=\"font-weight: bold;\">Deploying active devices:</span> Using software to block malicious programs from entering, or running within, the network. Blocking users from sending or receiving suspicious-looking emails. Blocking unauthorized use of the network. Also, stopping the network's users accessing websites that are known to be dangerous.</li><li><span style=\"font-weight: bold;\">Deploying passive devices:</span> For instance, using devices and software that report unauthorized intrusions into the network, or suspicious activity by authorized users.</li><li><span style=\"font-weight: bold;\">Using preventative devices:</span> Devices that help identify potential security holes, so that network staff can fix them.</li><li><span style=\"font-weight: bold;\">Ensuring users follow safe practices:</span> Even if the software and hardware are set up to be secure, the actions of users can create security holes. Network security staff is responsible for educating members of the organization about how they can stay safe from potential threats.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is Network Security Important?</span>\r\nUnless it’s properly secured, any network is vulnerable to malicious use and accidental damage. Hackers, disgruntled employees, or poor security practices within the organization can leave private data exposed, including trade secrets and customers’ private details.\r\nLosing confidential research, for example, can potentially cost an organization millions of dollars by taking away competitive advantages it paid to gain. While hackers stealing customers’ details and selling them to be used in fraud, it creates negative publicity and public mistrust of the organization.\r\nThe majority of common attacks against networks are designed to gain access to information, by spying on the communications and data of users, rather than to damage the network itself.\r\nBut attackers can do more than steal data. They may be able to damage users’ devices or manipulate systems to gain physical access to facilities. This leaves the organization’s property and members at risk of harm.\r\nCompetent network security procedures keep data secure and block vulnerable systems from outside interference. This allows the network’s users to remain safe and focus on achieving the organization’s goals.\r\n<span style=\"font-weight: bold;\">Why Do I Need Formal Education to Run a Computer Network?</span>\r\nEven the initial setup of security systems can be difficult for those unfamiliar with the field. A comprehensive security system is made of many pieces, each of which needs specialized knowledge.\r\nBeyond setup, each aspect of security is constantly evolving. New technology creates new opportunities for accidental security leaks, while hackers take advantage of holes in security to do damage as soon as they find them. Whoever is in charge of the network’s security needs to be able to understand the technical news and changes as they happen, so they can implement safety strategies right away.\r\nProperly securing your network using the latest information on vulnerabilities helps minimize the risk that attacks will succeed. Security Week reported that 44% of breaches in 2014 came from exploits that were 2-4 years old.\r\nUnfortunately, many of the technical aspects of network security are beyond those who make hiring decisions. So, the best way an organization can be sure that their network security personnel are able to properly manage the threats is to hire staff with the appropriate qualifications.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_security.png"},{"id":548,"title":"Web security - Appliance","alias":"web-security-appliance","description":"A security appliance is any form of server appliance that is designed to protect computer networks from unwanted traffic. Types of network security appliance:\r\n<span style=\"font-weight: bold;\">Active devices</span> block unwanted traffic. Examples of such devices are firewalls, anti-virus scanning devices, and content filtering devices. For instance, if you want to make sure that you do not get pointless spam and other unnecessary issues, installing an active device might be a great idea. Active devices include anti-virus scanning devices, which will automatically scan throughout the network to ensure that no virus exists within the protected network. Then, there are web filtering appliances as well as firewalls, the purpose of both of which is to ensure that only useful content and traffic flows through the network and all pointless or harmful data is filtered.\r\n<span style=\"font-weight: bold;\">Passive devices detect and report on unwanted traffic.</span> A common example is intrusion detection appliances, which are installed in order to determine whether the network has been compromised in any way. These devices usually work in the background at all times.\r\n<span style=\"font-weight: bold;\">Preventative devices</span> scan networks and identify potential security problems (such as penetration testing and vulnerability assessment appliances). These devices are usually designed to 'prevent' damage to the network by identifying problems in advance. Common examples include devices that employ penetration testing as well as those devices which carry out vulnerability assessment on networks.\r\n<span style=\"font-weight: bold;\">Unified Threat Management (UTM)</span> combines features together into one system, such as some firewalls, content filtering, web caching etc. UTM devices are designed to provide users with a one-stop solution to all of their network needs and internet security appliances. As the name clearly suggests, these devices provide the features of all of the other network devices and condense them into one. These devices are designed to provide a number of different network security options in one package, hence providing networks with a simple solution. Rather than installing four different devices, users can easily install one and be done with it. The market of UTM devices has exceeded the billion dollar mark already, which just goes to show how popular these devices have become amongst network users.\r\nOne of the most popular and accessible types of web security appliance tools is the hardware <span style=\"font-weight: bold;\">keylogger.</span> This device is placed covertly between the case and keyboard with an output for the computer case and input for the keyboard. As hardware standards have changed over time, a USB hardware keylogger provides access on many devices.\r\nThe <span style=\"font-weight: bold;\">web proxy appliance</span> is basically hardware you use to manage user web access. More to the point, it's the type of device that handles the blocking or controlling of suspicious programs. It's typically placed in between network users and the worldwide web; ergo, it's most popular application is serving as a central control hub over employee Internet use by corporations and enterprises. It's the in-between gateway that serves as a termination point of sorts for online communications within a network and is capable of applying a multitude of rule-based limitations on Internet traffic, web content, and requests before they even end up with end users.\r\nAnother commonly used hardware tool is the <span style=\"font-weight: bold;\">wireless antenna.</span> These can be used to surveil a wide variety of wireless communications, including local cellular and internet service networks. More mechanical and general devices may include lockpicks or portable probes and hijack chips for compromising electronic devices through the physical circuit.\r\n<span style=\"font-weight: bold;\">Secure web gateway appliances</span> are solutions to prevent advanced threats, block unauthorized access to systems or websites, stop malware, and monitor real-time activity across websites accessed by users within the institution. Software and cloud-based platforms now perform this function as well.","materialsDescription":"<h1 class=\"align-center\"> What are the top Network Security Appliance brands?</h1>\r\n<span style=\"font-weight: bold;\">Blue Coat Systems,</span> Sunnyvale, Calif.-based Blue Coat has been part of security powerhouse Symantec since 2016.\r\n<span style=\"font-weight: bold;\">F5 Networks,</span> the Seattle-based network application delivery vendor, sold about $17.6 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">SonicWall.</span>Firewall power player SonicWall sold about $23.5 million in network security appliances through the channel in the second quarter, according to NPD.\r\n<span style=\"font-weight: bold;\">Fortinet,</span> Sunnyvale, Calif., security software vendor Fortinet sold about $24.4 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">Cisco Systems,</span> Cisco Systems was the quarter's growth champion, posting $77.2 million in network security appliance sales through the channel in the period, beating the previous year’s quarterly total of $62.3 million by about 24 percent, according to NPD.\r\n<span style=\"font-weight: bold;\">Palo Alto Networks.</span> With $94.2 million in network security appliance sales in the quarter, Palo Alto Networks was the best-selling network security appliance brand of the second quarter, according to NPD.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_security_Appliance.png"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":172,"title":"WLAN - wireless network","alias":"wlan-wireless-network","description":"Unified Communications (UC) is a marketing buzzword describing the integration of real-time, enterprise, communication services such as instant messaging (chat), presence information, voice (including IP telephony), mobility features (including extension mobility and single number reach), audio, web & video conferencing, fixed-mobile convergence (FMC), desktop sharing, data sharing (including web connected electronic interactive whiteboards), call control and speech recognition with non-real-time communication services such as unified messaging (integrated voicemail, e-mail, SMS and fax). UC is not necessarily a single product, but a set of products that provides a consistent unified user-interface and user-experience across multiple devices and media-types.\r\n\r\nIn its broadest sense, UC can encompass all forms of communications that are exchanged via a network to include other forms of communications such as Internet Protocol Television (IPTV) and digital signage Communications as they become an integrated part of the network communications deployment and may be directed as one-to-one communications or broadcast communications from one to many.\r\n\r\nUC allows an individual to send a message on one medium, and receive the same communication on another medium. For example, one can receive a voicemail message and choose to access it through e-mail or a cell phone. If the sender is online according to the presence information and currently accepts calls, the response can be sent immediately through text chat or video call. Otherwise, it may be sent as a non-real-time message that can be accessed through a variety of media.\r\n\r\nSource: https://en.wikipedia.org/wiki/Unified_communications","materialsDescription":"","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/WLAN_-_wireless_network.png"},{"id":475,"title":"Network Management - Hardware","alias":"network-management-hardware","description":" Your business is much more than just a machine that dispenses products or services in exchange for money. It’s akin to a living and breathing thing. Just as with the human body, in business, all the parts are interconnected and work together to move things forward.\r\nIf a company’s management is the brain, then its employees are the muscles. Muscles don’t work without the oxygen carried to them by the blood. Blood doesn’t pump through the body without the heart and circulatory system.\r\nData moves through your network like blood through veins, delivering vital information to employees who need it to do their jobs. In a business sense, the digital network is the heart and circulatory system. Without a properly functioning network, the entire business collapses. That’s why keeping networks healthy is vitally important. Just as keeping the heart healthy is critical to living a healthy life, a healthy network is a key to a thriving business. It starts with network management.\r\nNetwork management is hardware with a broad range of functions including activities, methods, procedures and the use of tools to administrate, operate, and reliably maintain computer network systems.\r\nStrictly speaking, network Management does not include terminal equipment (PCs, workstations, printers, etc.). Rather, it concerns the reliability, efficiency and capacity/capabilities of data transfer channels.","materialsDescription":" <span style=\"font-weight: bold;\">What Is Network Management?</span>\r\nNetwork management refers to the processes, tools, and applications used to administer, operate and maintain network infrastructure. Performance management and fault analysis also fall into the category of network management. To put it simply, network management is the process of keeping your network healthy, which keeps your business healthy.\r\n<span style=\"font-weight: bold;\">What Are the Components of Network Management?</span>\r\nThe definition of network management is often broad, as network management involves several different components. Here are some of the terms you’ll often hear when network management or network management software is talked about:\r\n<ul><li>Network administration</li><li>Network maintenance</li><li>Network operation</li><li>Network provisioning</li><li>Network security</li></ul>\r\n<span style=\"font-weight: bold;\">Why Is Network Management so Important When It Comes to Network Infrastructure?</span>\r\nThe whole point of network management is to keep the network infrastructure running smoothly and efficiently. Network management helps you:\r\n<ul><li><span style=\"font-style: italic;\">Avoid costly network disruptions.</span> Network downtime can be very costly. In fact, industry research shows the cost can be up to $5,600 per minute or more than $300K per hour. Network disruptions take more than just a financial toll. They also have a negative impact on customer relationships. Slow and unresponsive corporate networks make it harder for employees to serve customers. And customers who feel underserved could be quick to leave.</li><li><span style=\"font-style: italic;\">Improve IT productivity.</span> By monitoring every aspect of the network, an effective network management system does many jobs at once. This frees up IT staff to focus on other things.</li><li><span style=\"font-style: italic;\">Improve network security.</span> With a focus on network management, it’s easy to identify and respond to threats before they propagate and impact end-users. Network management also aims to ensure regulatory and compliance requirements are met.</li><li><span style=\"font-style: italic;\">Gain a holistic view of network performance.</span> Network management gives you a complete view of how your network is performing. It enables you to identify issues and fix them quickly.</li></ul>\r\n<span style=\"font-weight: bold;\">What Are the Challenges of Maintaining Effective Network Management and Network Infrastructure?</span>\r\nNetwork infrastructures can be complex. Because of that complexity, maintaining effective network management is difficult. Advances in technology and the cloud have increased user expectations for faster network speeds and network availability. On top of that, security threats are becoming ever more advanced, varied and numerous. And if you have a large network, it incorporates several devices, systems, and tools that all need to work together seamlessly. As your network scales and your company grows, new potential points of failure are introduced. Increased costs also come into play.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Management_Hardware__1_.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4770,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Dell_PowerEdge_MX7000_Modular_Chassis.jpg","logo":true,"scheme":false,"title":"Dell PowerEdge MX7000 Modular Chassis","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":15,"alias":"dell-poweredge-mx7000-modular-chassis","companyTitle":"DELL","companyTypes":["vendor"],"companyId":169,"companyAlias":"dell","description":"<span style=\"font-weight: bold; \">Liberate IT resources to achieve optimal utilization, productivity and efficiency</span>\r\nAs dynamic and innovative as your business, PowerEdge MX kinetic infrastructure bridges traditional and software-defined data centers with unequal flexibility and agility. At the foundation, PowerEdge MX7000 chassis hosts disaggregated blocks of server and storage to create consumable resources on-demand. Shared power, cooling, networking, I/O and in-chassis management provides outstanding efficiencies.\r\n<ul><li>7U modular enclosure with eight slots holds 2S single or four 4S double-width compute sleds and 12Gbs single-width storage sleds</li><li>25Gb Ethernet, 12Gb SAS and 32Gb Fibre Channel I/O options</li><li>Three I/O networking fabrics, two general purpose and one storage specific, each with redundant modules</li><li>Multi-chassis networking up to 10 chassis</li><li>Single management point for compute, storage and networking</li><li>High-speed technology connections, now and into the future, with no midplane upgrade</li><li>At least three server processor microarchitecture generation support assurance</li></ul>\r\n<span style=\"font-weight: bold; \">Dynamically scale and respond with kinetic infrastructure</span>\r\nDesigned with Dell EMC’s kinetic infrastructure, PowerEdge MX creates shared pools of disaggregated compute and storage resources, connected by scalable fabric, from which workloads can draw resources needed to run most quickly and efficiently. Then when no longer needed the resources are returned into the pool. By essentially creating hardware on the fly the capacity can be managed at a data center level instead of a per server level.\r\n<ul><li>Full-featured, no compromise compute sleds with Intel® Xeon® Scalable processors</li><li>Generous, scalable on-board SAS, SATA, and NVMe storage drives, plus substantial, granular SAS direct-attached storage using optional storage sleds</li><li>Scalable fabric architecture with a grow-as-you-need fabric expansion capability for up to 10 chassis in fabric.</li></ul>\r\n<span style=\"font-weight: bold; \">Increase effectiveness and accelerate operations with unified automation</span>\r\nEmbedded Dell EMC OpenManage Enterprise – Modular Edition delivers the key abilities of OpenMange Enterprise systems management within the PowerEdge MX chassis. A unified simple interface manages compute, storage and fabric, reducing costs and the learning curve and consolidates multiple tools. Redundant management modules ensure highest availability.\r\n<ul><li>Automatic expansion from one to multiple chassis; scale management to thousands of PowerEdge MX and rack servers with OpenManage Enterprise</li><li>Flexible, at-the-box management front control panel options include Quick Sync 2 (wireless), touchscreen LCD and traditional crash cart</li><li>Comprehensive RESTful API helps automate multiple tasks and integrates to third-party tools</li><li>Seamlessly integrates with integrated Dell Remote Access Controller 9 (iDRAC9) and Lifecycle Controller (LC)</li></ul>\r\n<span style=\"font-weight: bold;\">Protect infrastructure and investment with responsive design</span>\r\nReduce the risk of infrastructure investment and help make new innovations more easily available with PowerEdge MX7000 future-forward architecture. Designed to maximize longevity and minimize disruptive technology changes support across both generational and architectural transitions is provided.\r\n<ul><li>Multi-generational assurance with support for at least three server processor microarchitecture generations</li><li>Nearly zero throughput limitations, providing high-speed technology connections, and well into the future, with no midplane upgrade</li><li>Industry-leading thermal architecture and mechanical design and control algorithms support dense configurations and future compatibility</li></ul>","shortDescription":"Dynamically assign, move and scale shared pools of compute, storage and fabric, with greater flexibility and efficiency, and deliver optimal value.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":1,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell PowerEdge MX7000 Modular Chassis","keywords":"","description":"<span style=\"font-weight: bold; \">Liberate IT resources to achieve optimal utilization, productivity and efficiency</span>\r\nAs dynamic and innovative as your business, PowerEdge MX kinetic infrastructure bridges traditional and software-defined data centers wi","og:title":"Dell PowerEdge MX7000 Modular Chassis","og:description":"<span style=\"font-weight: bold; \">Liberate IT resources to achieve optimal utilization, productivity and efficiency</span>\r\nAs dynamic and innovative as your business, PowerEdge MX kinetic infrastructure bridges traditional and software-defined data centers wi","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Dell_PowerEdge_MX7000_Modular_Chassis.jpg"},"eventUrl":"","translationId":4771,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":4,"title":"Data center","alias":"data-center","description":" A data center (or datacenter) is a facility composed of networked computers and storage that businesses or other organizations use to organize, process, store and disseminate large amounts of data. A business typically relies heavily upon the applications, services and data contained within a data center, making it a focal point and critical asset for everyday operations.\r\nData centers are not a single thing, but rather, a conglomeration of elements. At a minimum, data centers serve as the principal repositories for all manner of IT equipment, including servers, storage subsystems, networking switches, routers and firewalls, as well as the cabling and physical racks used to organize and interconnect the IT equipment. A data center must also contain an adequate infrastructure, such as power distribution and supplemental power subsystems, including electrical switching; uninterruptable power supplies; backup generators and so on; ventilation and data center cooling systems, such as computer room air conditioners; and adequate provisioning for network carrier (telco) connectivity. All of this demands a physical facility with physical security and sufficient physical space to house the entire collection of infrastructure and equipment.","materialsDescription":" <span style=\"font-weight: bold;\">What are the requirements for modern data centers?</span>\r\nModernization and data center transformation enhances performance and energy efficiency.\r\nInformation security is also a concern, and for this reason a data center has to offer a secure environment which minimizes the chances of a security breach. A data center must therefore keep high standards for assuring the integrity and functionality of its hosted computer environment.\r\nIndustry research company International Data Corporation (IDC) puts the average age of a data center at nine years old. Gartner, another research company, says data centers older than seven years are obsolete. The growth in data (163 zettabytes by 2025) is one factor driving the need for data centers to modernize.\r\nFocus on modernization is not new: Concern about obsolete equipment was decried in 2007, and in 2011 Uptime Institute was concerned about the age of the equipment therein. By 2018 concern had shifted once again, this time to the age of the staff: "data center staff are aging faster than the equipment."\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Meeting standards for data centers</span></span>\r\nThe Telecommunications Industry Association's Telecommunications Infrastructure Standard for Data Centers specifies the minimum requirements for telecommunications infrastructure of data centers and computer rooms including single tenant enterprise data centers and multi-tenant Internet hosting data centers. The topology proposed in this document is intended to be applicable to any size data center.\r\nTelcordia GR-3160, NEBS Requirements for Telecommunications Data Center Equipment and Spaces, provides guidelines for data center spaces within telecommunications networks, and environmental requirements for the equipment intended for installation in those spaces. These criteria were developed jointly by Telcordia and industry representatives. They may be applied to data center spaces housing data processing or Information Technology (IT) equipment. The equipment may be used to:\r\n<ul><li>Operate and manage a carrier's telecommunication network</li><li>Provide data center based applications directly to the carrier's customers</li><li>Provide hosted applications for a third party to provide services to their customers</li><li>Provide a combination of these and similar data center applications</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Data center transformation</span></span>\r\nData center transformation takes a step-by-step approach through integrated projects carried out over time. This differs from a traditional method of data center upgrades that takes a serial and siloed approach. The typical projects within a data center transformation initiative include standardization/consolidation, virtualization, automation and security.\r\n<ul><li>Standardization/consolidation: Reducing the number of data centers and avoiding server sprawl (both physical and virtual) often includes replacing aging data center equipment, and is aided by standardization.</li><li>Virtualization: Lowers capital and operational expenses, reduce energy consumption. Virtualized desktops can be hosted in data centers and rented out on a subscription basis. Investment bank Lazard Capital Markets estimated in 2008 that 48 percent of enterprise operations will be virtualized by 2012. Gartner views virtualization as a catalyst for modernization.</li><li>Automating: Automating tasks such as provisioning, configuration, patching, release management and compliance is needed, not just when facing fewer skilled IT workers.</li><li>Securing: Protection of virtual systems is integrated with existing security of physical infrastructures.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Machine room</span></span>\r\nThe term "Machine Room" is at times used to refer to the large room within a Data Center where the actual Central Processing Unit is located; this may be separate from where high-speed printers are located. Air conditioning is most important in the machine room.\r\nAside from air-conditioning, there must be monitoring equipment, one type of which is to detect water prior to flood-level situations. One company, for several decades, has had share-of-mind: Water Alert. The company, as of 2018, has 2 competing manufacturers (Invetex, Hydro-Temp) and 3 competing distributors (Longden,Northeast Flooring, Slayton). ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_center.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4772,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_PowerEdge_MX_IO_Modules.jpg","logo":true,"scheme":false,"title":"Dell EMC PowerEdge MX I/O Modules","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":59,"alias":"dell-emc-poweredge-mx-io-modules","companyTitle":"Dell EMC","companyTypes":["vendor"],"companyId":955,"companyAlias":"dell-emc","description":"<span style=\"font-weight: bold;\">SmartFabric Services</span>\r\nRobust yet simple fabric automation that goes beyond the ordinary\r\n<ul><li>Plug and Play fabric deployment with simplified I/O Aggregation providing a single pane of glass view</li><li>Physical topology validation and compliance checking</li><li>Automated per-VLAN Quality of Service assignment based on traffic types</li><li>Self-healing fabric detects misconfigurations and link failure conditions and adjusts where possible</li></ul>\r\n<span style=\"font-weight: bold;\">Scalable fabric architecture</span>\r\nMulti-chassis scalable fabric architecture that can grow with your specific needs\r\n<ul><li>Fabric expansion capability using 25GbE connectivity across multiple chassis</li><li>Single networking domain across the fabric providing a single pane of glass view</li><li>SmartFabric Services provides a robust fabric-level automation framework</li></ul>\r\n<span style=\"font-weight: bold;\">The power of open choice</span>\r\nAn array of hardware platforms, operating systems and management services\r\n<ul><li>Choice of unique Open Networking modular switches</li><li>Choice of Dell EMC OS10 or select 3rd party OS’s</li><li>Choice of leveraging standards-based open automation tools</li></ul>\r\n<span style=\"font-weight: bold;\">Highest performance connectivity</span>\r\nOptimum connectivity to servers and storage platforms in the chassis for demanding workloads\r\n<ul><li>High-performance 25GbE and 32G FC connectivity within the chassis</li><li>High throughput and low latency performance throughout the chassis</li><li>Multi-rate 100GbE uplinks to data center leaf/spine fabric</li></ul>","shortDescription":"Maximize the demanding connectivity needs of today’s data center workloads while also lowering overall costs and network management complexity.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":5,"sellingCount":18,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC PowerEdge MX I/O Modules","keywords":"","description":"<span style=\"font-weight: bold;\">SmartFabric Services</span>\r\nRobust yet simple fabric automation that goes beyond the ordinary\r\n<ul><li>Plug and Play fabric deployment with simplified I/O Aggregation providing a single pane of glass view</li><li>Physical topo","og:title":"Dell EMC PowerEdge MX I/O Modules","og:description":"<span style=\"font-weight: bold;\">SmartFabric Services</span>\r\nRobust yet simple fabric automation that goes beyond the ordinary\r\n<ul><li>Plug and Play fabric deployment with simplified I/O Aggregation providing a single pane of glass view</li><li>Physical topo","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_PowerEdge_MX_IO_Modules.jpg"},"eventUrl":"","translationId":4773,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":4,"title":"Data center","alias":"data-center","description":" A data center (or datacenter) is a facility composed of networked computers and storage that businesses or other organizations use to organize, process, store and disseminate large amounts of data. A business typically relies heavily upon the applications, services and data contained within a data center, making it a focal point and critical asset for everyday operations.\r\nData centers are not a single thing, but rather, a conglomeration of elements. At a minimum, data centers serve as the principal repositories for all manner of IT equipment, including servers, storage subsystems, networking switches, routers and firewalls, as well as the cabling and physical racks used to organize and interconnect the IT equipment. A data center must also contain an adequate infrastructure, such as power distribution and supplemental power subsystems, including electrical switching; uninterruptable power supplies; backup generators and so on; ventilation and data center cooling systems, such as computer room air conditioners; and adequate provisioning for network carrier (telco) connectivity. All of this demands a physical facility with physical security and sufficient physical space to house the entire collection of infrastructure and equipment.","materialsDescription":" <span style=\"font-weight: bold;\">What are the requirements for modern data centers?</span>\r\nModernization and data center transformation enhances performance and energy efficiency.\r\nInformation security is also a concern, and for this reason a data center has to offer a secure environment which minimizes the chances of a security breach. A data center must therefore keep high standards for assuring the integrity and functionality of its hosted computer environment.\r\nIndustry research company International Data Corporation (IDC) puts the average age of a data center at nine years old. Gartner, another research company, says data centers older than seven years are obsolete. The growth in data (163 zettabytes by 2025) is one factor driving the need for data centers to modernize.\r\nFocus on modernization is not new: Concern about obsolete equipment was decried in 2007, and in 2011 Uptime Institute was concerned about the age of the equipment therein. By 2018 concern had shifted once again, this time to the age of the staff: "data center staff are aging faster than the equipment."\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Meeting standards for data centers</span></span>\r\nThe Telecommunications Industry Association's Telecommunications Infrastructure Standard for Data Centers specifies the minimum requirements for telecommunications infrastructure of data centers and computer rooms including single tenant enterprise data centers and multi-tenant Internet hosting data centers. The topology proposed in this document is intended to be applicable to any size data center.\r\nTelcordia GR-3160, NEBS Requirements for Telecommunications Data Center Equipment and Spaces, provides guidelines for data center spaces within telecommunications networks, and environmental requirements for the equipment intended for installation in those spaces. These criteria were developed jointly by Telcordia and industry representatives. They may be applied to data center spaces housing data processing or Information Technology (IT) equipment. The equipment may be used to:\r\n<ul><li>Operate and manage a carrier's telecommunication network</li><li>Provide data center based applications directly to the carrier's customers</li><li>Provide hosted applications for a third party to provide services to their customers</li><li>Provide a combination of these and similar data center applications</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Data center transformation</span></span>\r\nData center transformation takes a step-by-step approach through integrated projects carried out over time. This differs from a traditional method of data center upgrades that takes a serial and siloed approach. The typical projects within a data center transformation initiative include standardization/consolidation, virtualization, automation and security.\r\n<ul><li>Standardization/consolidation: Reducing the number of data centers and avoiding server sprawl (both physical and virtual) often includes replacing aging data center equipment, and is aided by standardization.</li><li>Virtualization: Lowers capital and operational expenses, reduce energy consumption. Virtualized desktops can be hosted in data centers and rented out on a subscription basis. Investment bank Lazard Capital Markets estimated in 2008 that 48 percent of enterprise operations will be virtualized by 2012. Gartner views virtualization as a catalyst for modernization.</li><li>Automating: Automating tasks such as provisioning, configuration, patching, release management and compliance is needed, not just when facing fewer skilled IT workers.</li><li>Securing: Protection of virtual systems is integrated with existing security of physical infrastructures.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Machine room</span></span>\r\nThe term "Machine Room" is at times used to refer to the large room within a Data Center where the actual Central Processing Unit is located; this may be separate from where high-speed printers are located. Air conditioning is most important in the machine room.\r\nAside from air-conditioning, there must be monitoring equipment, one type of which is to detect water prior to flood-level situations. One company, for several decades, has had share-of-mind: Water Alert. The company, as of 2018, has 2 competing manufacturers (Invetex, Hydro-Temp) and 3 competing distributors (Longden,Northeast Flooring, Slayton). ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_center.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4774,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_Connectrix_Switches.jpg","logo":true,"scheme":false,"title":"Dell EMC Connectrix Switches","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":59,"alias":"dell-emc-connectrix-switches","companyTitle":"Dell EMC","companyTypes":["vendor"],"companyId":955,"companyAlias":"dell-emc","description":"Bring high bandwidth and zero downtime to your storage network with Connectrix switches. <span style=\"font-weight: bold;\">Connectrix B-Series, Connectrix MDS Series and Connectrix D-Series</span> offer you a range of enterprise, departmental, edge switches and top-of-rack switches for small to large enterprise environments. All 16 and 32Gbs switches are NVMe-ready.\r\n<span style=\"font-weight: bold;\">Connectrix Switches available:</span>\r\n<ul><li>DS-6505B: Up to 24 ports, 16Gbps max</li><li>DS-6510B: Up to 48 ports, 16Gbps max</li><li>DS-6520B: Up to 96 ports, 16Gbps max</li><li>DS-6610B: Up to 24 ports, 32Gbps max</li><li>DS-6620B: Up to 64 ports, 32Gbps max</li><li>DS-6630B: Up to 128 ports, 32Gbps max</li><li>MP-7800B: Up to 16 8Gbs ports and 6 GigE ports</li><li>MP-7810B: Up to 12 32Gbs ports and six 1/10GbE SFP+ ports</li><li>MP-7840B: Up to 24 16Gbs port plus 16 1/10 GigE and 2 40 GigE ports</li><li>MDS-9132T: Up to 32 ports, 32Gbps max</li><li>MDS-9148S: Up to 48 ports, 16Gbps max</li><li>MDS-9396S: Up to 96 ports, 16Gbps max</li><li>MDS-9148T: Up to 48 ports, 32Gbps max</li><li>MDS-9396T: Up to 96 ports, 32Gbps max</li><li>MDS-9250i: Up to 40 FC ports, 2 x 10 GigE ports, 8 FCoE ports and 16Gbps max</li><li>CNX-S4048: Up to 54 ports, 48 10 GbE SFP capable ports and six 40 GbE QSFP capable ports</li></ul>\r\n<span style=\"font-weight: bold;\">Key features:</span>\r\n<ul><li>Offers Fibre Channel connectivity of up to 32 gigabits per second and Gigabit Ethernet speeds up to 40 GbE</li><li>Scales from 8 to 128 ports per system</li><li> Uses redundant components and multipath deployment to ensure high availability and failover</li><li>Monitors your storage networking environment automatically with resilient networking features</li></ul>","shortDescription":"Bring high bandwidth and zero downtime to your storage network with Connectrix switches.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":15,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC Connectrix Switches","keywords":"","description":"Bring high bandwidth and zero downtime to your storage network with Connectrix switches. <span style=\"font-weight: bold;\">Connectrix B-Series, Connectrix MDS Series and Connectrix D-Series</span> offer you a range of enterprise, departmental, edge switches and","og:title":"Dell EMC Connectrix Switches","og:description":"Bring high bandwidth and zero downtime to your storage network with Connectrix switches. <span style=\"font-weight: bold;\">Connectrix B-Series, Connectrix MDS Series and Connectrix D-Series</span> offer you a range of enterprise, departmental, edge switches and","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_Connectrix_Switches.jpg"},"eventUrl":"","translationId":4775,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4316,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/CorreLog.png","logo":true,"scheme":false,"title":"CorreLog SIEM Correlation Server","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"correlog-siem-korreljacionnyi-server","companyTitle":"CorreLog, Inc.","companyTypes":["supplier","vendor"],"companyId":6707,"companyAlias":"correlog-inc","description":"<span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-weight: bold;\">The CorreLog Server </span>is company's flag-ship product, containing the core functionality to implement full SIEM capability for your enterprise.\r\nThis 100% web-based system contains our high-speed message collector, indexed search engine, extensible dashboard facility, reporting facility, ticket facility, and unique correlation engine. Its simplicity and power are setting new benchmarks for industry every day.\r\n<span style=\"font-weight: bold;\">The CorreLog SIEM Server</span> provides a standards-based method of collecting all the system log messages of your network using syslog protocol and SNMP traps. These messages are then correlated into understandable threats, alerts, and actions using sophisticated (but easily configured) rules, and reduced to actionable "tickets" that are sent to users, and which can trigger automatic remediation of incidents.\r\n<span style=\"font-weight: bold;\">The SIEM Serve</span>r provides special application in security monitoring for your enterprise, and furnishes a variety of special functions and features to support this critical role, including data encryption, ready-to-run correlation rules and TCP tunneling software. Other roles of CorreLog, including performance management, analysis of business information, and log file analysis are also supported within the product.\r\n\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \" class=\"align-center\"><span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"><span style=\"font-size: 11pt; font-family: Arial; color: rgb(0, 0, 0); background-color: transparent; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\">System Features</span><span style=\"font-size: 11pt; font-family: Arial; color: rgb(0, 0, 0); background-color: transparent; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;\"></span></span></span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \" class=\"align-center\"> </p>\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">The CorreLog SIEM Server is specifically designed to leverage the capabilities of your existing infrastructure without requiring extensive installation of agents or other software.</span> The program is designed for high capacity, enterprise scale message aggregation, ease of navigation, small footprint, extensibility, and high internal security, available in a single web-based console.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">High Speed Message Reception.</span> CorreLog SIEM is suitable to operate as the single SNMP Trap and Syslog receiver for all devices on the network of large enterprises. CorreLog SIEM can process more than 2000 messages per second and can handle burst traffic of more than 10,000 messages in one second (depending upon the supporting hardware.) CorreLog SIEM tracks and catalogs devices on the network without hard upper limit. You can receive messages from virtually unlimited numbers of sources.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">High Speed Message Correlation</span>. CorreLog SIEM uses an advanced correlation engine, which performs semantic analysis of your messages in real-time. The system employs correlation threads, correlation counters, correlation alerts, and correlation triggers, which refine and reduce your incoming messages into something you can easily understand. </span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Flexible Reporting</span>. CorreLog SIEM incorporates various reporting facilities, including an Excel-based reporting facility that populates spreadsheets with summary and detailed event information, and an ODBC reporting facility that populates one or more databases with report information to support third-party report writers. Additionally, CorreLog SIEM includes a comprehensive dashboard facility, a "Pivot" log analyzer (for analyzing firewall data, HTTP server logs, and other "regular" data) and comprehensive graphing utilities useful for reporting on correlation results. The CorreLog Server comes preconfigured with compliancy reports and correlation rules to support these reports. Additional report templates can be loaded (or saved) using a built-in "Template" facility.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Data Aggregation and Archiving Functions.</span> The CorreLog SIEM system can aggregate vast amounts of data. It can collect in excess of 1 Gigabyte of data each day at a single site, and save this data online for up to 500 days (given enough storage.) Additionally, CorreLog SIEM compresses and archives your data, retaining this data for a period of more than 10 years (5000 days). To assist in forensics and long-term analysis, CorreLog SIEM generates archival data such as MD5 checksums and Security Codes.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Data Searching Ability.</span> One of the most important functions of the CorreLog SIEM system program is its search capability. CorreLog SIEM uses its proprietary GenDex (Generate Data Extraction) program, which employs a high speed, real time index system. This allows quick searches through massive amounts of message data. The performance of this engine rivals the fastest search engines currently available. Users can search a terabyte of data for a particular keyword in less than one second.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Taxonomy, Ontology, and Catalog Functions.</span> Taxonomy and categorization of data is at the center of our unique correlation system. The CorreLog SIEM Server automatically catalogs information by IP address, username, facility, and severity. Users can further create catalogs of information based upon simple or complex match patterns. Data is cataloged based upon specifications consisting of simple keywords, wildcards and regular expressions, logical expressions of wildcards, macro definitions of regular expressions, and logical combinations of macros. This provides a complete flexibility in managing and grouping message data, while still maintaining high data throughputs, and avoiding the rigors of data normalization.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Ability To Define New Syslog Facilities.</span> One of the commonly noticed limitations of Syslog protocol has always been that the "Facility" codes (which define the data sources for syslog messages) are limited to 24 predefined codes. The CorreLog program removes this restriction, permitting users to define their own facilities, such as "applications", and "devmsgs", so that data can be better categorized and managed. This important extension to the syslog protocol opens important new vistas in the practical use of Syslog messages and their correlation, not otherwise available using the standard specification.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Ability To Override Message Content. </span>One of the commonly noticed limitations of SNMP Trap and Syslog protocol has always been that, since messages are unsolicited, the message collector is stuck with whatever message, severity, or facility was originally specified by the message sender. In some cases the severities or facilities within a message may be nonsensical. The CorreLog program recognizes this existing limitation and implements a sophisticated "override" scheme, which allows users to override the facility, severity, or device name in any message. This greatly assists with the control and correlation of data.</span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Input Filtering.</span> To reduce data loading, and permit precise control over incoming messages, CorreLog SIEM can filter input data by device, facility, severity, message keyword, time of day, or any combination of these. Filtered data can be discarded, or put into a separate repository (and possibly permanently archived) for further analysis or forensics. When data is filtered, it is automatically tagged with the particular filter expression, assisting in the analysis of filtered data. CorreLog treats filtered data with respect, permitting you to re-import discarded data and undo any particular filtering function.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Automatic Remediation And Response.</span> The CorreLog SIEM system incorporates a simple and extensible "Actions" capability, which permits you to target specific messages based upon device, keyword, facility, severity and/ or time of day, and run programs on that data. CorreLog SIEM includes utility programs to update relational ODBC databases, relay syslog messages, send SNMP traps, send e-mail, and perform other actions. The facility is designed for easy extensibility by administrators and developers to extend correlation and ticketing services of the program.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Web Based Configuration.</span> CorreLog SIEM is entirely web-based. All activities, including the establishment of logins and permissions, are completely achieved without a native console. This means that an administrator does not ordinarily need access to the CorreLog Server platform, except in rare instances to startup or shutdown the process. The location of the CorreLog Server can be strategically placed in a Network Operations Center (NOC) or secure cabinet, which has important implications for security.</span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"><span style=\"font-weight: bold;\">Suite of Utilities.</span> The CorreLog Server system incorporates a suite of Win32 utilities, in one small package that is easily installed on Windows Vista, XP, or Windows 2000 servers. These utilities are redistributable, and greatly extend the ability to manage these platforms using Syslog protocol.</span></li></ul>","shortDescription":"Correlation Server system contains high-speed message collector, indexed search engine, extensible dashboard facility, reporting facility, ticket facility and unique correlation engine.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":2,"sellingCount":4,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"CorreLog SIEM Correlation Server","keywords":"","description":"<span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"fo","og:title":"CorreLog SIEM Correlation Server","og:description":"<span style=\"font-size:11pt; font-family:Arial; color:#000000; background-color:transparent; font-weight:400; font-style:normal; font-variant:normal; text-decoration:none; vertical-align:baseline; white-space:pre; white-space:pre-wrap; \"></span><span style=\"fo","og:image":"https://old.roi4cio.com/fileadmin/user_upload/CorreLog.png"},"eventUrl":"","translationId":4317,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4861,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/lanner_electronics.jpg","logo":true,"scheme":false,"title":"Lanner Industrial IoT Gateway","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"lanner-industrial-iot-gateway","companyTitle":"Lanner Electronics","companyTypes":["supplier","vendor"],"companyId":5268,"companyAlias":"lanner-electronics","description":"Lanner’s Fanless IoT Gateway solutions offer wired/wireless operation and integration with industrial equipment through its rich I/O and PCI expansion options. These Industrial IoT Gateways are purpose-built to deliver secure and reliable IoT applications using cellular communication in harsh environments such as Manufacturing, Energy, Construction and Agriculture.\r\nWith features such as TPM 2.0, wide operating temperature, dust/humidity protection, these IoT Gateways offer a perfect platform with inbuilt security and protection against the physical environment and cyber threats.\r\n<span style=\"font-weight: bold;\">LEC-6041</span>\r\nIEC 61850-3 Wide Temperature ICS Cyber Security Gateway with Intel Atom CPU.\r\n<span style=\"font-weight: bold;\">LEC-7233</span>\r\nSFF MES Thin Client Gateway with Intel® Celeron® N2807 SoC and Rich I/O.\r\n<span style=\"font-weight: bold;\">LEC-2281</span>\r\n4th Gen Intel® Core™ i7/i5/i3 Platform with Rich I/O and Expansion.\r\n<span style=\"font-weight: bold;\">LEC-7230M</span>\r\nCompact Fanless All-purpose IPC with Intel® J1900 CPU.\r\n<span style=\"font-weight: bold;\">LEC-7480</span>\r\nFanless Box PC with Intel® Core® i7/i3 CPU and Wide Temperature Design.\r\n<span style=\"font-weight: bold;\">LEC-2280</span>\r\nFanless Embedded Computer with 3rd Gen Intel Core i7/i5/i3.\r\n<span style=\"font-weight: bold;\">LEC-2530</span>\r\nIndustrial Gateway Controller with Intel® Atom E3825 CPU (Bay Trail).","shortDescription":"Lanner’s Fanless IoT Gateway solutions offer wired/wireless operation and integration with industrial equipment through its rich I/O and PCI expansion options.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":16,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Lanner Industrial IoT Gateway","keywords":"","description":"Lanner’s Fanless IoT Gateway solutions offer wired/wireless operation and integration with industrial equipment through its rich I/O and PCI expansion options. These Industrial IoT Gateways are purpose-built to deliver secure and reliable IoT applications usin","og:title":"Lanner Industrial IoT Gateway","og:description":"Lanner’s Fanless IoT Gateway solutions offer wired/wireless operation and integration with industrial equipment through its rich I/O and PCI expansion options. These Industrial IoT Gateways are purpose-built to deliver secure and reliable IoT applications usin","og:image":"https://old.roi4cio.com/fileadmin/user_upload/lanner_electronics.jpg"},"eventUrl":"","translationId":4862,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":178,"title":"IoT - Internet of Things","alias":"iot-internet-of-things","description":"The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.\r\nThe definition of the Internet of things has evolved due to the convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation). and others all contribute to enabling the Internet of things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the "smart home", covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.\r\nThe IoT concept has faced prominent criticism, especially in regards to privacy and security concerns related to these devices and their intention of pervasive presence.","materialsDescription":"<span style=\"font-weight: bold;\">What is the Internet of Things (IoT)?</span>\r\nThe Internet of things refers to the network of things (physical objects) that can be connected to the Internet to collect and share data without human-to-human or human-to-computer interaction.\r\n<span style=\"font-weight: bold;\">Why is it called the Internet of Things?</span>\r\nThe term Internet of things was coined by Kevin Ashton in 1999. Stemming from Kevin Ashton’s experience with RFID, the term Internet of things originally described the concept of tagging every object in a person’s life with machine-readable codes. This would allow computers to easily manage and inventory all of these things.\r\nThe term IoT today has evolved to a much broader prospect. It now encompasses ubiquitous connectivity, devices, sensors, analytics, machine learning, and many other technologies.\r\n<span style=\"font-weight: bold;\">What is an IoT solution?</span>\r\nAn IoT solution is a combination of devices or other data sources, outfitted with sensors and Internet connected hardware to securely report information back to an IoT platform. This information is often a physical metric which can help users answer a question or solve a specific problem.\r\n<span style=\"font-weight: bold;\">What is an IoT Proof of Concept (PoC)?</span>\r\nThe purpose of a PoC is to experiment with a solution in your environment, collect data, and evaluate performance from a set timeline on a set budget. A PoC is a low-risk way to introduce IoT to an organization.\r\n<span style=\"font-weight: bold;\">What is an IoT cloud platform?</span>\r\nAn IoT platform provides users with one or more of these key elements — visualization tools, data security features, a workflow engine and a custom user interface to utilize the information collected from devices and other data sources in the field. These platforms are based in the cloud and can be accessed from anywhere.\r\n<span style=\"font-weight: bold;\">What is industrial equipment monitoring?</span>\r\nIndustrial equipment monitoring uses a network of connected sensors - either native to a piece of equipment or retrofitted - to inform owners/operators of a machine’s output, component conditions, need for service or impending failure. Industrial equipment monitoring is an IoT solution which can utilize an IoT platform to unify disparate data and enable decision-makers to respond to real-time data.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IoT_-_Internet_of_Things.png"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3557,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/aws.png","logo":true,"scheme":false,"title":"AWS Snowball Edge","vendorVerified":0,"rating":"2.40","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":4,"alias":"aws-snowball-edge","companyTitle":"Amazon Web Services","companyTypes":["supplier","vendor"],"companyId":176,"companyAlias":"amazon-web-services","description":"AWS Snowball Edge is a data migration and edge computing device that comes in two options. Snowball Edge Storage Optimized provides both block storage and Amazon S3-compatible object storage, and 24 vCPUs. It is well suited for local storage and large scale-data transfer. Snowball Edge Compute Optimized provides 52 vCPUs, block and object storage, and an optional GPU for use cases such as advanced machine learning and full motion video analysis in disconnected environments. Customers can use these two options for data collection, machine learning and processing, and storage in environments with intermittent connectivity (such as manufacturing, industrial, and transportation) or in extremely remote locations (such as military or maritime operations) before shipping it back to AWS. These devices may also be rack mounted and clustered together to build larger, temporary installations.\r\nSnowball Edge supports specific Amazon EC2 instance types as well as AWS Lambda functions, so customers may develop and test in AWS then deploy applications on devices in remote locations to collect, pre-process, and return the data. Common use cases include data migration, data transport, image collation, IoT sensor stream capture, and machine learning.\r\n\r\n<span style=\"font-weight: bold;\">BENEFITS</span>\r\nEASY DATA MOVEMENT\r\nSnowball Edge moves terabytes of data in about a week. Customers use it to move things like databases, backups, archives, healthcare records, analytics datasets, IoT sensor data and media content, especially when network conditions prevent realistic timelines for transferring large amounts of data both into and out of AWS.\r\nSIMPLE TO USE\r\nJobs are created in the AWS Management Console. Once a job is created, AWS automatically ships a pre-provisioned Snowball Edge device to your location. When you receive the device, simply attach it to your local network and connect your applications. Once the device is ready to be returned, the E Ink shipping label automatically updates and your freight carrier transports it to the correct AWS facility where the upload begins. Job status can be tracked via Amazon SNS generated text or email messages or directly in the Console.\r\nPROCESS & ANALYZE DATA LOCALLY\r\nRun EC2 AMIs and deploy AWS Lambda code on Snowball Edge to run local processing or analysis with machine learning or other applications. Developers and administrators can run applications directly on the device as a consistent AWS environment without network connectivity. This capability helps customers develop their machine learning and analysis tools and test them in the cloud but operate them in locations with limited or non-existent network connections before shipping the data back to AWS. Snowball Edge can capture the data from the remote site and any additional unrecognized data so the machine learning models can be refined and propagated.\r\nSTAND-ALONE STORAGE\r\nSnowball Edge devices can provide local storage to existing on-premises applications through a file sharing protocol (NFS) or object storage interface (the S3 API). Additionally, you can use on-board block storage volumes for applications running on Amazon EC2 instances on the Snowball Edge. You can also cluster Snowball Edge devices together into a single, larger, storage tier with increased durability. If a Snowball Edge needs to be replaced, it can be removed from the cluster and replaced with a new Snowball Edge.\r\nSECURE\r\nSnowball Edge devices use tamper-evident enclosures, 256-bit encryption, and industry-standard Trusted Platform Modules (TPM) designed to ensure both security and full chain-of-custody for your data. Encryption keys are managed with the AWS Key Management Service (KMS) and they are never stored on the device.\r\nSCALABLE\r\nSnowball Edge devices can transport multiple terabytes of data and multiple devices can be used in parallel or clustered together to transfer petabytes of data into or out of AWS. Snowball Edge is currently available in select regions and your location will be verified once you create a job in the AWS Management Console.","shortDescription":"AWS Snowball Edge – Petabyte-scale data transport with on-board storage and compute capabilities","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"AWS Snowball Edge","keywords":"","description":"AWS Snowball Edge is a data migration and edge computing device that comes in two options. Snowball Edge Storage Optimized provides both block storage and Amazon S3-compatible object storage, and 24 vCPUs. It is well suited for local storage and large scale-da","og:title":"AWS Snowball Edge","og:description":"AWS Snowball Edge is a data migration and edge computing device that comes in two options. Snowball Edge Storage Optimized provides both block storage and Amazon S3-compatible object storage, and 24 vCPUs. It is well suited for local storage and large scale-da","og:image":"https://old.roi4cio.com/fileadmin/user_upload/aws.png"},"eventUrl":"","translationId":3557,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"jobRoles":[{"id":58,"title":"Chief Executive Officer"},{"id":60,"title":"Chief Information Officer"},{"id":62,"title":"Chief Technical Officer"},{"id":64,"title":"Chief IT Security Officer"}],"organizationalFeatures":[],"complementaryCategories":[],"solutions":["Non-compliant with IT security requirements"],"materials":[{"id":1732,"title":"","description":"HP ProCurve Switch 5400zl Series overview","uri":"http://www.hp.com/hpinfo/newsroom/press_kits/2010/HPOptimizesAppDelivery/E5400zl_Switch_Series_Data_Sheet.pdf"}],"useCases":[],"best_practices":[],"values":["Ensure Compliance"],"implementations":[{"id":936,"title":"HP ProCurve 5400zl switch for TRK Ukraine TV channel","url":"https://old.roi4cio.com/vnedrenija/vnedrenie/hp-procurve-5400zl-switch-for-trk-ukraine-tv-channel/"},{"id":950,"title":"HP EVA, HP BladeSystem, HP 3PAR StoreServ, HP ProCurve for PepsiCo","url":"https://old.roi4cio.com/vnedrenija/vnedrenie/hp-eva-hp-bladesystem-hp-3par-storeserv-hp-procurve-for-pepsico/"},{"id":964,"title":"HP BladeSystem, HP ProCurve, HP BL-servers for Kovalskaya plant","url":"https://old.roi4cio.com/vnedrenija/vnedrenie/hp-bladesystem-hp-procurve-hp-bl-servers-for-kovalskaya-plant/"}],"presenterCodeLng":"","productImplementations":[{"id":936,"title":"HP ProCurve 5400zl switch for TRK Ukraine TV channel","description":"Description is not ready yet","alias":"hp-procurve-5400zl-switch-for-trk-ukraine-tv-channel","roi":0,"seo":{"title":"HP ProCurve 5400zl switch for TRK Ukraine TV channel","keywords":"","description":"Description is not ready yet","og:title":"HP ProCurve 5400zl switch for TRK Ukraine TV channel","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":7276,"title":"Media Group Ukraine","logoURL":"https://old.roi4cio.com/uploads/roi/company/media-group-ukraine.jpg","alias":"media-gruppa-ukraina","address":"","roles":[],"description":" Media Group Ukraine' is a media holding company that manages SCM' television and new media projects. Our strategic goal is to create an integrated system in which the holding company's all assets will supplement each other. Our holding company is a professional investor in Ukrainian media business. 'Media Group Ukraine' is one of the largest media holding companies in Ukraine.\r\nThe company was established in 2010 and currently includes:\r\n<ul><li>"Ukraine" - a national FTA TV channel;</li></ul>\r\n<ul><li>TV channel for a young audience "NLO TV"</li></ul>\r\n<ul><li>thematic TV channel "Indigo TV";</li></ul>\r\n<ul><li>thematic TV channels "Football 1"/ "Football 2", also are presented in HD version;</li></ul>\r\n<ul><li>regional TV channels - "Donbass", "TV channel 34", "Sigma"</li></ul>\r\n<ul><li>satellite TV operator - Xtra TV</li></ul>\r\n<ul><li>international TV channels Ukraine 1/ Ukriane 2, NLO TV 1/ NLO TV 2;</li></ul>\r\n<ul><li>prodcos "Tele Pro" and "Dopomozhemo TV"</li></ul>\r\n<ul><li>the full-service media agency "Media Partnership Buying"</li></ul>\r\n<ul><li>multimedia project Vogue UA</li></ul>\r\nMultymedia platform SEGODNYA - TV news "Segodnya" and site segodnya.ua<br />"Media Group Ukraine" invests into development and promotion of existing business areas and technologies and into new, prospective projects.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://mgukraine.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Media Group Ukraine","keywords":"","description":" Media Group Ukraine' is a media holding company that manages SCM' television and new media projects. Our strategic goal is to create an integrated system in which the holding company's all assets will supplement each other. Our holding company is a prof","og:title":"Media Group Ukraine","og:description":" Media Group Ukraine' is a media holding company that manages SCM' television and new media projects. Our strategic goal is to create an integrated system in which the holding company's all assets will supplement each other. Our holding company is a prof","og:image":"https://old.roi4cio.com/uploads/roi/company/media-group-ukraine.jpg"},"eventUrl":""},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":452,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{},"categories":[],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"http://integritysys.com.ua/success-networks/trk-ukraine/","title":"-"}},"comments":[],"referencesCount":0},{"id":950,"title":"HP EVA, HP BladeSystem, HP 3PAR StoreServ, HP ProCurve for PepsiCo","description":"Description is not ready yet","alias":"hp-eva-hp-bladesystem-hp-3par-storeserv-hp-procurve-for-pepsico","roi":0,"seo":{"title":"HP EVA, HP BladeSystem, HP 3PAR StoreServ, HP ProCurve for PepsiCo","keywords":"","description":"Description is not ready yet","og:title":"HP EVA, HP BladeSystem, HP 3PAR StoreServ, HP ProCurve for PepsiCo","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":527,"title":"PepsiCo","logoURL":"https://old.roi4cio.com/uploads/roi/company/PepsiCo.png","alias":"pepsico","address":"","roles":[],"description":"PepsiCo is the world's second-largest food and beverage producer with annual sales of more than $ 65 billion. The company produces a wide range of products, including 22 brands, each year with annual retail sales of more than a billion dollars.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.pepsico.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"PepsiCo","keywords":"annual, company, produces, dollars, wide, including, products, range","description":"PepsiCo is the world's second-largest food and beverage producer with annual sales of more than $ 65 billion. The company produces a wide range of products, including 22 brands, each year with annual retail sales of more than a billion dollars.","og:title":"PepsiCo","og:description":"PepsiCo is the world's second-largest food and beverage producer with annual sales of more than $ 65 billion. The company produces a wide range of products, including 22 brands, each year with annual retail sales of more than a billion dollars.","og:image":"https://old.roi4cio.com/uploads/roi/company/PepsiCo.png"},"eventUrl":""},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":452,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{},"categories":[],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://ko.com.ua/pepsico_integrirovannaya_i_katastrofoustojchivaya_102860","title":"-"}},"comments":[],"referencesCount":0},{"id":964,"title":"HP BladeSystem, HP ProCurve, HP BL-servers for Kovalskaya plant","description":"Description is not ready yet","alias":"hp-bladesystem-hp-procurve-hp-bl-servers-for-kovalskaya-plant","roi":0,"seo":{"title":"HP BladeSystem, HP ProCurve, HP BL-servers for Kovalskaya plant","keywords":"","description":"Description is not ready yet","og:title":"HP BladeSystem, HP ProCurve, HP BL-servers for Kovalskaya plant","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":7491,"title":"KOVALSKA Industrial-Construction Group","logoURL":"https://old.roi4cio.com/uploads/roi/company/Kovalska.jpg","alias":"kovalskaja-promyshlenno-stroitelnaja-gruppa","address":"","roles":[],"description":" ICG Kovalska - (full name: Association "Industrial and Construction Group" Kovalska ") - Ukrainian manufacturer of building materials and builder. It is a part of Joint Stock Company «Reinforced Concrete Structures Plant. Svetlana Kowalska ”, and at that time the Reinforced Concrete Products Factory No. 3 was founded in 1956.\r\nToday, Kovalska PBG brings together 11 enterprises, 28 concrete mixing units. The Group's activities are based on the production of granite raw materials, manufactured building materials (concrete mixes, reinforced concrete products, concrete elements of landscape design, dry mixes, paints and decorative plaster), providing transportation for its customers, designing, erecting and operating facilities commercial and social purpose.<br />\r\nPlant of Reinforced Concrete Structures. Svetlana Kowalska<br />\r\nThe Group's companies have 3,500 employees\r\nSource: https://uk.wikipedia.org/wiki/%D0%9F%D0%91%D0%93_%C2%AB%D0%9A%D0%BE%D0%B2%D0%B0%D0%BB%D1%8C%D1%81%D1%8C%D0%BA%D0%B0%C2%BB","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":2,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://kovalska.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"KOVALSKA Industrial-Construction Group","keywords":"","description":" ICG Kovalska - (full name: Association "Industrial and Construction Group" Kovalska ") - Ukrainian manufacturer of building materials and builder. It is a part of Joint Stock Company «Reinforced Concrete Structures Plant. Svetlana Kowalska ”, a","og:title":"KOVALSKA Industrial-Construction Group","og:description":" ICG Kovalska - (full name: Association "Industrial and Construction Group" Kovalska ") - Ukrainian manufacturer of building materials and builder. It is a part of Joint Stock Company «Reinforced Concrete Structures Plant. Svetlana Kowalska ”, a","og:image":"https://old.roi4cio.com/uploads/roi/company/Kovalska.jpg"},"eventUrl":""},"supplier":{"id":201,"title":"IT Solutions Ukraine","logoURL":"https://old.roi4cio.com/uploads/roi/company/IT_Solutions.jpg","alias":"it-solutions-ukraine","address":"04050, г. Киев , ул. Студенческая, 3","roles":[],"description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field of IT consulting and information security. Fulfills orders for large commercial and state organizations in all regions of Ukraine.<br />When developing possible solutions for the project, the requirements of the customer and the particular infrastructure of the enterprise are taken into account. After that, solutions are offered based on the hardware and software of the world's leading partner manufacturers: HPE, HP inc., Cisco, Lenovo, NetApp, VMware, Oracle, Huawei, Microsoft, TrueConf, APC, MobileIron, ESET, IBM, Fortinet, Veritas, Dell-emc\r\n<span style=\"font-weight: bold;\">IT-Solutions Services</span><br />IT Infrastructure Solutions:\r\n<ul><li>physical (data storage systems, servers, data transmission and cybersecurity devices, construction of server and data processing centers, SCS, VKS, uninterruptible power supply, personal equipment, peripherals, software)</li></ul>\r\n<ul><li>virtualized (servers, storage, network, desktops)</li></ul>\r\n<ul><li>on information security (network, users, email, information security and security events management)</li></ul>\r\nDesign and implementation of infrastructure services:\r\n<ul><li>backup systems</li></ul>\r\n<ul><li>virtualization</li></ul>\r\n<ul><li>cloud services</li></ul>\r\n<ul><li>IT Service Management (ITSM)</li></ul>\r\n<ul><li>information security</li></ul>\r\n<ul><li>monitoring and control systems</li></ul>\r\nConsulting:\r\n<ul><li>data management (storage, backup, recovery)</li></ul>\r\n<ul><li>IT service continuity</li></ul>\r\n<ul><li>analytics (IT audit, business analytics, vScore - preliminary performance assessment for the implementation of virtualization, dScore - data management performance assessment)</li></ul>\r\n<ul><li>Information Security</li></ul>","companyTypes":[],"products":{},"vendoredProductsCount":2,"suppliedProductsCount":228,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":14,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://it-solutions.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"IT Solutions Ukraine","keywords":"Partner, Solutions, projects, Gold, Silver, Business, Enterprise, VMware","description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field","og:title":"IT Solutions Ukraine","og:description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field","og:image":"https://old.roi4cio.com/uploads/roi/company/IT_Solutions.jpg"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":452,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{},"categories":[],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://it-solutions.ua/portfolio/kovalskaya/","title":"-"}},"comments":[],"referencesCount":0}]}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}