{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"product":{"reference-bonus":{"_type":"localeString","en":"Offer a reference bonus","ru":"Предложить бонус за референс"},"configurator":{"en":"Сonfigurator","ru":"Конфигуратор","_type":"localeString"},"i-sell-it":{"_type":"localeString","en":"I sell it","ru":"I sell it"},"i-use-it":{"_type":"localeString","en":"I use it","ru":"I use it"},"roi-calculator":{"en":"ROI-calculator","ru":"ROI-калькулятор","_type":"localeString"},"selling":{"ru":"Продают","_type":"localeString","en":"Selling"},"using":{"_type":"localeString","en":"Using","ru":"Используют"},"show-more-button":{"ru":"Показать еще","_type":"localeString","en":"Show more"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"supplier-popover":{"en":"supplier","ru":"поставщик","_type":"localeString"},"implementation-popover":{"ru":"внедрение","_type":"localeString","en":"deployment"},"manufacturer-popover":{"ru":"производитель","_type":"localeString","en":"manufacturer"},"short-description":{"ru":"Краткое описание","_type":"localeString","en":"Pitch"},"i-use-it-popover":{"ru":"Внесите свое внедрение и получите бонус от ROI4CIO или поставщика.","_type":"localeString","en":"Make your introduction and get a bonus from ROI4CIO or the supplier."},"details":{"en":"Details","ru":"Детальнее","_type":"localeString"},"description":{"ru":"Описание","_type":"localeString","en":"Description"},"product-features":{"ru":"Особенности продукта","_type":"localeString","en":"Product features"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"solutions":{"ru":"Проблемы которые решает","_type":"localeString","en":" Problems that solves"},"values":{"_type":"localeString","en":"Values","ru":"Ценности"},"сomparison-matrix":{"_type":"localeString","en":"Comparison matrix","ru":"Матрица сравнения"},"testing":{"_type":"localeString","en":"Testing","ru":"Тестирование"},"compare":{"ru":"Сравнить с конкурентами","_type":"localeString","en":"Compare with competitors"},"characteristics":{"ru":"Характеристики","_type":"localeString","en":" Characteristics"},"transaction-features":{"en":"Transaction Features","ru":"Особенности сделки","_type":"localeString"},"average-discount":{"ru":"Средняя скидка партнера","_type":"localeString","en":"Partner average discount"},"deal-protection":{"ru":"Защита сделки","_type":"localeString","en":"Deal protection"},"average-deal":{"_type":"localeString","en":"Average deal size","ru":"Средний размер сделки"},"average-time":{"_type":"localeString","en":"Average deal closing time","ru":"Средний срок закрытия сделки"},"login":{"_type":"localeString","en":"Login","ru":"Войти"},"register":{"en":"Register","ru":"Зарегистрироваться","_type":"localeString"},"to-know-more":{"ru":"Чтобы узнать больше","_type":"localeString","en":"To know more"},"scheme":{"en":" Scheme of work","ru":"Схема работы","_type":"localeString"},"competitive-products":{"ru":"Конкурентные продукты","_type":"localeString","en":" Competitive products"},"implementations-with-product":{"_type":"localeString","en":"Deployments with this product","ru":"Внедрения с этим продуктом"},"user-features":{"ru":"Особенности пользователей","_type":"localeString","en":"User features"},"job-roles":{"ru":"Роли заинтересованных сотрудников","_type":"localeString","en":" Roles of Interested Employees"},"organizational-features":{"ru":"Организационные особенности","_type":"localeString","en":"Organizational Features"},"calculate-price":{"ru":"Рассчитать цену продукта","_type":"localeString","en":" Calculate product price"},"selling-stories":{"ru":"Продающие истории","_type":"localeString","en":" Selling stories"},"materials":{"ru":"Материалы","_type":"localeString","en":"Materials"},"about-product":{"_type":"localeString","en":"About Product","ru":"О продукте"},"or":{"en":"or","ru":"или","_type":"localeString"},"program-sends-data":{"_type":"localeString","en":"Program Sends Data"},"calculate-roi":{"en":"Calculate Product ROI","ru":"Рассчитать ROI продукта","_type":"localeString"},"complementary-categories":{"_type":"localeString","en":"Complementary Categories","ru":"Схожие категории"},"program-receives-data":{"_type":"localeString","en":"Program Receives Data"},"rebate":{"ru":"Бонус","_type":"localeString","en":"Bonus"},"rebate-for-poc":{"en":"Bonus 4 POC","ru":"Бонус 4 POC","_type":"localeString"},"configurator-content":{"ru":"Рассчитайте стоимость продукта","_type":"localeString","en":"Calculate price for this product here"},"configurator-link":{"ru":"тут","_type":"localeString","en":"here"},"vendor-popover":{"ru":"производитель","_type":"localeString","en":"vendor"},"user-popover":{"ru":"пользователь","_type":"localeString","en":"user"},"select-for-presentation":{"en":"select product for presentation","ru":"выбрать продукт для презентации","_type":"localeString"},"auth-message":{"ru":"Вам нужно зарегистрироваться или войти.","_type":"localeString","en":"You have to register or login."},"add-to-comparison":{"_type":"localeString","en":"Add to comparison","ru":"Добавить в сравнение"},"added-to-comparison":{"ru":"Добавлено в сравнения","_type":"localeString","en":"Added to comparison"},"roi-calculator-content":{"_type":"localeString","en":"Calculate ROI for this product here","ru":"Рассчитайте ROI для данного продукта"},"not-yet-converted":{"ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later."},"videos":{"en":"Videos","ru":"Видео","_type":"localeString"},"vendor-verified":{"en":"Vendor verified","ru":"Подтверждено производителем","_type":"localeString"},"event-schedule":{"ru":"Расписание событий","_type":"localeString","en":"Events schedule"},"scheduling-tip":{"ru":"Выберите удобную дату и время и зарегистрируйтесь на ивент.","_type":"localeString","en":"Please, сhoose a convenient date and time and register for the event."},"register-to-schedule":{"ru":"Для того чтобы зарегистрироваться на ивент пожалуйста авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString","en":"To register for the event please log in or register on the site."},"comparison-matrix":{"en":"Comparison matrix","ru":"Матрица сравнений","_type":"localeString"},"compare-with-competitive":{"en":" Compare with competitive","ru":"Сравнить с конкурентными","_type":"localeString"},"avg-deal-closing-unit":{"_type":"localeString","en":"months","ru":"месяцев"},"under-construction":{"ru":"Данная услуга всё ещё находится в разработке.","_type":"localeString","en":"Current feature is still developing to become even more useful for you."},"product-presentation":{"en":"Product presentation","ru":"Презентация продукта","_type":"localeString"},"go-to-comparison-table":{"en":" Go to comparison table","ru":"Перейти к таблице сравнения","_type":"localeString"},"see-product-details":{"ru":"Детали","_type":"localeString","en":"See Details"}},"header":{"help":{"de":"Hilfe","ru":"Помощь","_type":"localeString","en":"Help"},"how":{"de":"Wie funktioniert es","ru":"Как это работает","_type":"localeString","en":"How does it works"},"login":{"en":"Log in","de":"Einloggen","ru":"Вход","_type":"localeString"},"logout":{"ru":"Выйти","_type":"localeString","en":"Sign out"},"faq":{"en":"FAQ","de":"FAQ","ru":"FAQ","_type":"localeString"},"references":{"ru":"Мои запросы","_type":"localeString","en":"Requests","de":"References"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find-it-product":{"_type":"localeString","en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"_type":"localeString","en":"Comparison Matrix","ru":"Матрица сравнения"},"roi-calculators":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"b4r":{"_type":"localeString","en":"Bonus for reference","ru":"Бонус за референс"},"business-booster":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"catalogs":{"en":"Catalogs","ru":"Каталоги","_type":"localeString"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"companies":{"_type":"localeString","en":"Companies","ru":"Компании"},"categories":{"_type":"localeString","en":"Categories","ru":"Категории"},"for-suppliers":{"ru":"Поставщикам","_type":"localeString","en":"For suppliers"},"blog":{"ru":"Блог","_type":"localeString","en":"Blog"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"_type":"localeString","en":"My account","ru":"Мой кабинет"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"comparison-deletion":{"ru":"Удаление","_type":"localeString","en":"Deletion"},"comparison-confirm":{"_type":"localeString","en":"Are you sure you want to delete","ru":"Подтвердите удаление"},"search-placeholder":{"ru":"Введите поисковый запрос","_type":"localeString","en":"Enter your search term"},"my-profile":{"en":"My profile","ru":"Мои данные","_type":"localeString"},"about":{"en":"About Us","_type":"localeString"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"en":"Find IT product","_type":"localeString"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"_type":"localeString","en":"Create an avatar for the event"},"catalogs_new":{"en":"Products","_type":"localeString"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"_type":"localeString","en":"Our IT Catalogs"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"_type":"localeString","en":"Our Products"},"it_it_catalogs":{"en":"IT catalogs","_type":"localeString"}},"footer":{"copyright":{"ru":"Все права защищены","_type":"localeString","en":"All rights reserved","de":"Alle rechte vorbehalten"},"company":{"ru":"О компании","_type":"localeString","en":"My Company","de":"Über die Firma"},"about":{"ru":"О нас","_type":"localeString","en":"About us","de":"Über uns"},"infocenter":{"de":"Infocenter","ru":"Инфоцентр","_type":"localeString","en":"Infocenter"},"tariffs":{"de":"Tarife","ru":"Тарифы","_type":"localeString","en":"Subscriptions"},"contact":{"en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами","_type":"localeString"},"marketplace":{"ru":"Marketplace","_type":"localeString","en":"Marketplace","de":"Marketplace"},"products":{"_type":"localeString","en":"Products","de":"Produkte","ru":"Продукты"},"compare":{"de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare"},"calculate":{"de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString","en":"Calculate the cost"},"get_bonus":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference","de":"Holen Sie sich einen Rabatt"},"salestools":{"de":"Salestools","ru":"Salestools","_type":"localeString","en":"Salestools"},"automatization":{"_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов"},"roi_calcs":{"de":"ROI-Rechner","ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"matrix":{"_type":"localeString","en":"Comparison matrix","de":"Vergleichsmatrix","ru":"Матрица сравнения"},"b4r":{"_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference","ru":"Rebate 4 Reference"},"our_social":{"ru":"Наши социальные сети","_type":"localeString","en":"Our social networks","de":"Unsere sozialen Netzwerke"},"subscribe":{"de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString","en":"Subscribe to newsletter"},"subscribe_info":{"ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews"},"policy":{"en":"Privacy Policy","ru":"Политика конфиденциальности","_type":"localeString"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find":{"_type":"localeString","en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта"},"quote":{"ru":"Калькулятор цены","_type":"localeString","en":"Price calculator"},"boosting":{"_type":"localeString","en":"Business boosting","ru":"Развитие бизнеса"},"4vendors":{"_type":"localeString","en":"4 vendors","ru":"поставщикам"},"blog":{"ru":"блог","_type":"localeString","en":"blog"},"pay4content":{"en":"we pay for content","ru":"платим за контент","_type":"localeString"},"categories":{"_type":"localeString","en":"categories","ru":"категории"},"showForm":{"ru":"Показать форму","_type":"localeString","en":"Show form"},"subscribe__title":{"ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!"},"subscribe__email-label":{"en":"Email","ru":"Email","_type":"localeString"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"ru":"Это поле обязательное","_type":"localeString","en":"This field is required"},"subscribe__notify-label":{"_type":"localeString","en":"Yes, please, notify me about news, events and propositions","ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях"},"subscribe__agree-label":{"ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data"},"subscribe__submit-label":{"_type":"localeString","en":"Subscribe","ru":"Подписаться"},"subscribe__email-message":{"ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString","en":"Please, enter the valid email"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"ru":"Имя Фамилия","_type":"localeString","en":"Last, first name"},"subscribe__success":{"ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString","en":"You are successfully subscribed! Check you mailbox."},"subscribe__error":{"ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString","en":"Subscription is unsuccessful. Please, try again later."},"roi4presenter":{"de":"roi4presenter","ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"ru":"Главная","_type":"localeString","en":"Home"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"registration":{"en":"Registration","ru":"Регистрация","_type":"localeString"},"b2b-platform":{"en":"B2B platform for IT buyers, vendors and suppliers","ru":"Портал для покупателей, поставщиков и производителей ИТ","_type":"localeString"}},"comment-form":{"title":{"en":"Leave comment","ru":"Оставить комментарий","_type":"localeString"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"ru":"Фамилия","_type":"localeString","en":"Last name"},"company":{"_type":"localeString","en":"Company name","ru":"Компания"},"position":{"en":"Position","ru":"Должность","_type":"localeString"},"actual-cost":{"_type":"localeString","en":"Actual cost","ru":"Фактическая стоимость"},"received-roi":{"en":"Received ROI","ru":"Полученный ROI","_type":"localeString"},"saving-type":{"_type":"localeString","en":"Saving type","ru":"Тип экономии"},"comment":{"en":"Comment","ru":"Комментарий","_type":"localeString"},"your-rate":{"ru":"Ваша оценка","_type":"localeString","en":"Your rate"},"i-agree":{"ru":"Я согласен","_type":"localeString","en":"I agree"},"terms-of-use":{"en":"With user agreement and privacy policy","ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString"},"send":{"en":"Send","ru":"Отправить","_type":"localeString"},"required-message":{"en":"{NAME} is required filed","ru":"{NAME} - это обязательное поле","_type":"localeString"}},"maintenance":{"title":{"en":"Site under maintenance","ru":"На сайте проводятся технические работы","_type":"localeString"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}}},"translationsStatus":{"product":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"product":{"title":{"en":"ROI4CIO: Product","ru":"ROI4CIO: Продукт","_type":"localeString"},"meta":[{"content":"website","name":"og:type"},{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"}],"translatable_meta":[{"name":"og:title","translations":{"_type":"localeString","en":"Example product","ru":"Конкретный продукт"}},{"name":"og:description","translations":{"ru":"Описание для конкретного продукта","_type":"localeString","en":"Description for one product"}},{"name":"title","translations":{"ru":"Продукт","_type":"localeString","en":"Product"}},{"name":"description","translations":{"ru":"Описание продукта","_type":"localeString","en":"Product description"}},{"name":"keywords","translations":{"_type":"localeString","en":"Product keywords","ru":"Ключевые слова продукта"}}]}},"pageMetaDataStatus":{"product":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{"red-hat-hyperconverged-infrastructure":{"id":996,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Red_Hat_Hyperconverged_Infrastructure.png","logo":true,"schemeURL":"https://old.roi4cio.com/fileadmin/user_upload/Red_Hat_Hyperconverged_Infrastructure_scheme.png","scheme":true,"title":"Red Hat Hyperconverged Infrastructure","vendorVerified":0,"rating":"1.70","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":1,"alias":"red-hat-hyperconverged-infrastructure","companyTitle":"Red Hat","companyTypes":["supplier","vendor"],"companyId":628,"companyAlias":"red-hat","description":"In the banking, telecommunications, energy, and retail industries, remote branch offices often deploy business-critical applications on local server and storage infrastructures. But these offices face challenges like limited budget and space, lack of skilled IT staff, and complex infrastructure-management issues.\r\nRed Hat® Hyperconverged Infrastructure―the integration of Red Hat Virtualization and Red Hat Gluster Storage―provides open source, centrally administered, and cost-effective integrated compute and storage in a compact footprint to meet the needs of remote sites and the edge.\r\nRed Hat Hyperconverged Infrastructure lets you consolidate infrastructure for your remote sites by eliminating the need for an independently managed storage tier and delivering an integrated solution of compute plus software-defined storage. This reduces capital and operating expenses and operational overhead associated with managing a larger, more traditional infrastructure.","shortDescription":"Red Hat Hyperconverged Infrastructure for decentralized IT","type":"Software","isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":10,"sellingCount":7,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Red Hat Hyperconverged Infrastructure","keywords":"storage, Hyperconverged, remote, sites, integrated, infrastructure, offices, compute","description":"In the banking, telecommunications, energy, and retail industries, remote branch offices often deploy business-critical applications on local server and storage infrastructures. But these offices face challenges like limited budget and space, lack of skilled I","og:title":"Red Hat Hyperconverged Infrastructure","og:description":"In the banking, telecommunications, energy, and retail industries, remote branch offices often deploy business-critical applications on local server and storage infrastructures. But these offices face challenges like limited budget and space, lack of skilled I","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Red_Hat_Hyperconverged_Infrastructure.png"},"eventUrl":"","translationId":997,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"},{"id":299,"title":"Application and User Session Virtualization","alias":"application-and-user-session-virtualization","description":"Application virtualization is a technology that allows you to separate the software from the operating system on which it operates. Fully virtualized software is not installed in the traditional sense, although the end-user at first glance can not see it, because the virtualized software works just as normal. The software in the execution process works just as if it interacted with the operating system directly and with all its resources, but can be isolated or executed in a sandbox with different levels of restriction.\r\nModern operating systems, such as Microsoft Windows and Linux, can include limited software virtualization. For example, Windows 7 has Windows XP mode that allows you to run Windows XP software on Windows 7 without any changes.\r\nUser session virtualization is a newer version of desktop virtualization that works at the operating system level. While normal virtualization of the desktop allows an operating system to be run by virtualizing the hardware of the desktop, RDS and App-V allow for the virtualization of the applications. User session virtualization lies between the two.\r\nA desktop has an operating system loaded on the base hardware. This can be either physical or virtual. The user session virtualization keeps track of all changes to the operating system that a user might make by encapsulating the configuration changes and associating them to the user account. This allows the specific changes to be applied to the underlying operating system without actually changing it. This allows several users to have completely different operating system configurations applied to base operating system installation.\r\nIf you are in a distributed desktop environment and there are local file servers available at each location, you can deploy virtualized user sessions in the form of redirected folders and roaming profiles.","materialsDescription":" <span style=\"font-weight: bold;\">Understanding application virtualization</span>\r\nApplication virtualization technology isolates applications from the underlying operating system and from other applications to increase compatibility and manageability. This application virtualization technology enables applications to be streamed from a centralized location into an isolation environment on the target device where they will execute. The application files, configuration, and settings are copied to the target device and the application execution at run time is controlled by the application virtualization layer. When executed, the application run time believes that it is interfacing directly with the operating system when, in fact, it is interfacing with a virtualization environment that proxies all requests to the operating system.\r\n<span style=\"font-weight: bold;\">Understanding session virtualization</span>\r\nSession virtualization uses application streaming to deliver applications to hosting servers in the datacenter. The Application then connects the user to the server. The application then executes entirely on the server. The user interacts with the application remotely by sending mouse-clicks and keystrokes to the server. The server then responds by sending screen updates back to the user’s device. Whereas application virtualization is limited to Windows-based operating systems, session virtualization allows any user on any operating system to access any application delivered by IT. As a result, the application enables Windows, Mac, Linux, iOS and Android devices to run any applications using session virtualization. Furthermore, session virtualization leverages server-side processing power which liberates IT from the endless cycle of PC hardware refreshes which are typically needed to support application upgrades when using traditional application deployment methods.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Application_and_User_Session_Virtualization__1_.png"},{"id":1,"title":"Desktop virtualization","alias":"desktop-virtualization","description":" Desktop virtualization is a virtualization technology that separates an individual's PC applications from his or her desktop. Virtualized desktops are generally hosted on a remote central server, rather than the hard drive of the personal computer. Because the client-server computing model is used in virtualizing desktops, desktop virtualization is also known as client virtualization.\r\nDesktop virtualization provides a way for users to maintain their individual desktops on a single, central server. The users may be connected to the central server through a LAN, WAN or over the Internet.\r\nDesktop virtualization has many benefits, including a lower total cost of ownership (TCO), increased security, reduced energy costs, reduced downtime and centralized management.\r\nLimitations of desktop virtualization include difficulty in maintenance and set up of printer drivers; increased downtime in case of network failures; complexity and costs involved in VDI deployment and security risks in the event of improper network management.<br /><br />","materialsDescription":" <span style=\"font-weight: bold; \">What are types of desktop virtualization technologies?</span>\r\nHost-based forms of desktop virtualization require that users view and interact with their virtual desktops over a network by using a remote display protocol. Because processing takes place in a data center, client devices can be traditional PCs, but also thin clients, zero clients, smartphones and tablets. Examples of host-based desktop virtualization technology include:\r\n<span style=\"font-weight: bold; \">Host-based virtual machines:</span> Each user connects to an individual VM that is hosted in a data center. The user may connect to the same VM every time, allowing for personalization (known as a persistent desktop), or be given a fresh VM at each login (a nonpersistent desktop).\r\n<span style=\"font-weight: bold; \">Shared hosted:</span> Users connect to a shared desktop that runs on a server. Microsoft Remote Desktop Services, formerly Terminal Services, takes this client-server approach. Users may also connect to individual applications running on a server; this technology is an example of application virtualization.\r\n<span style=\"font-weight: bold; \">Host-based physical machines:</span> The operating system runs directly on another device's physical hardware.\r\nClient virtualization requires processing to occur on local hardware; the use of thin clients, zero clients and mobile devices is not possible. These types of desktop virtualization include:\r\n<span style=\"font-weight: bold; \">OS image streaming:</span> The operating system runs on local hardware, but it boots to a remote disk image across the network. This is useful for groups of desktops that use the same disk image. OS image streaming, also known as remote desktop virtualization, requires a constant network connection in order to function.\r\n<span style=\"font-weight: bold; \">Client-based virtual machines:</span> A VM runs on a fully functional PC, with a hypervisor in place. Client-based virtual machines can be managed by regularly syncing the disk image with a server, but a constant network connection is not necessary in order for them to function.\r\n<span style=\"font-weight: bold;\">Desktop virtualization vs. virtual desktop infrastructure</span>\r\nThe terms <span style=\"font-style: italic;\">desktop virtualization</span> and virtual desktop infrastructure (VDI) are often used interchangeably, but they are not the same. While VDI is a type of desktop virtualization, not all desktop virtualization uses VDI.\r\nVDI refers to the use of host-based VMs to deliver virtual desktops, which emerged in 2006 as an alternative to Terminal Services and Citrix's client-server approach to desktop virtualization technology. Other types of desktop virtualization -- including the shared hosted model, host-based physical machines and all methods of client virtualization -- are not examples of VDI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Desktop_virtualization.png"},{"id":2,"title":"Virtual machine and cloud system software","alias":"virtual-machine-and-cloud-system-software","description":" A virtual machine (VM) is a software-based computer that exists within another computer’s operating system, often used for the purposes of testing, backing up data, or running SaaS applications. To fully grasp how VMs work, it’s important to first understand how computer software and hardware are typically integrated by an operating system.\r\n"The cloud" refers to servers that are accessed over the Internet, and the software and databases that run on those servers. Cloud servers are located in data centers all over the world. By using cloud computing, users and companies don't have to manage physical servers themselves or run software applications on their own machines.\r\nThe cloud enables users to access the same files and applications from almost any device, because the computing and storage take place on servers in a data center, instead of locally on the user device. This is why a user can log into their Instagram account on a new phone after their old phone breaks and still find their old account in place, with all their photos, videos, and conversation history. It works the same way with cloud email providers like Gmail or Microsoft Office 365, and with cloud storage providers like Dropbox or Google Drive.\r\nFor businesses, switching to cloud computing removes some IT costs and overhead: for instance, they no longer need to update and maintain their own servers, as the cloud vendor they are using will do that. This especially makes an impact on small businesses that may not have been able to afford their own internal infrastructure but can outsource their infrastructure needs affordably via the cloud. The cloud can also make it easier for companies to operate internationally because employees and customers can access the same files and applications from any location.\r\nSeveral cloud providers offer virtual machines to their customers. These virtual machines typically live on powerful servers that can act as a host to multiple VMs and can be used for a variety of reasons that wouldn’t be practical with a locally-hosted VM. These include:\r\n<ul><li>Running SaaS applications - Software-as-a-Service, or SaaS for short, is a cloud-based method of providing software to users. SaaS users subscribe to an application rather than purchasing it once and installing it. These applications are generally served to the user over the Internet. Often, it is virtual machines in the cloud that are doing the computation for SaaS applications as well as delivering them to users. If the cloud provider has a geographically distributed network edge, then the application will run closer to the user, resulting in faster performance.</li><li>Backing up data - Cloud-based VM services are very popular for backing up data because the data can be accessed from anywhere. Plus, cloud VMs provide better redundancy, require less maintenance, and generally scale better than physical data centers. (For example, it’s generally fairly easy to buy an extra gigabyte of storage space from a cloud VM provider, but much more difficult to build a new local data server for that extra gigabyte of data.)</li><li>Hosting services like email and access management - Hosting these services on cloud VMs is generally faster and more cost-effective, and helps minimize maintenance and offload security concerns as well.</li></ul>","materialsDescription":"What is an operating system?\r\nTraditional computers are built out of physical hardware, including hard disk drives, processor chips, RAM, etc. In order to utilize this hardware, computers rely on a type of software known as an operating system (OS). Some common examples of OSes are Mac OSX, Microsoft Windows, Linux, and Android.\r\nThe OS is what manages the computer’s hardware in ways that are useful to the user. For example, if the user wants to access the Internet, the OS directs the network interface card to make the connection. If the user wants to download a file, the OS will partition space on the hard drive for that file. The OS also runs and manages other pieces of software. For example, it can run a web browser and provide the browser with enough random access memory (RAM) to operate smoothly. Typically, operating systems exist within a physical computer at a one-to-one ratio; for each machine, there is a single OS managing its physical resources.\r\n<span style=\"font-weight: bold;\">Can you have two or more operating systems on one computer?</span>\r\nSome users want to be able to run multiple operating systems simultaneously on one computer, either for testing or one of the other reasons listed in the section below. This can be achieved through a process called virtualization. In virtualization, a piece of software behaves as if it were an independent computer. This piece of software is called a virtual machine, also known as a ‘guest’ computer. (The computer on which the VM is running is called the ‘host’.) The guest has an OS as well as its own virtual hardware.\r\n‘Virtual hardware’ may sound like a bit of an oxymoron, but it works by mapping to real hardware on the host computer. For example, the VM’s ‘hard drive’ is really just a file on the host computer’s hard drive. When the VM wants to save a new file, it actually has to communicate with the host OS, which will write this file to the host hard drive. Because virtual hardware must perform this added step of negotiating with the host to access hardware resources, virtual machines can’t run quite as fast as their host computers.\r\nWith virtualization, one computer can run two or more operating systems. The number of VMs that can run on one host is limited only by the host’s available resources. The user can run the OS of a VM in a window like any other program, or they can run it in fullscreen so that it looks and feels like a genuine host OS.\r\n <span style=\"font-weight: bold; \">What are virtual machines used for?</span>\r\nSome of the most popular reasons people run virtual machines include:\r\n<span style=\"font-weight: bold; \">Testing</span> - Oftentimes software developers want to be able to test their applications in different environments. They can use virtual machines to run their applications in various OSes on one computer. This is simpler and more cost-effective than having to test on several different physical machines.\r\n<span style=\"font-weight: bold; \">Running software designed for other OSes</span> - Although certain software applications are only available for a single platform, a VM can run software designed for a different OS. For example, a Mac user who wants to run software designed for Windows can run a Windows VM on their Mac host.\r\n<span style=\"font-weight: bold; \">Running outdated software</span> - Some pieces of older software can’t be run in modern OSes. Users who want to run these applications can run an old OS on a virtual machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Virtual_machine_and_cloud_system_software.png"}],"characteristics":[],"concurentProducts":[{"id":5031,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/FAS32701.jpg","logo":true,"scheme":false,"title":"NetApp FAS3200 series","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":7,"alias":"netapp-fas3200-series","companyTitle":"NetApp","companyTypes":["vendor"],"companyId":320,"companyAlias":"netapp","description":"The FAS3200 series is designed for faster performance and more bandwidth with proven NetApp availability.\r\nCombining reliable, high-performance hardware with the world’s most popular storage architecture — the NetApp® Data ONTAP® operating system — NetApp FAS3200 series lets you seamlessly scale your storage infrastructure to support demanding business applications and requirements, no matter how quickly your organization changes.\r\nThe FAS3200 series is a midrange platform tailored to deliver the performance, expandability, and capacity scaling critical to the needs of your organization. Fully Flash-ready systems support internal Flash, solid- state disks (SSDs), and advanced server cache, so you can achieve optimum performance while minimizing your total investment in Flash. This significantly reduces the total storage capacity you need.\r\nThe ability to scale FAS3200 performance and capacity without disrupting operations brings a new level of agility to midrange storage. As capacity requirements grow, NetApp clustering technology allows seamless scaling of devices, storage volumes, and even entire storage systems residing within a cluster.\r\n<span style=\"font-weight: bold;\">Flash performance</span>\r\nDesigned to deliver more performance than ever before, new FAS3200 models provide up to 80% more I/O per second, enabling you to drive your organization faster. As needs change you can boost performance further using the broad range of Flash products in the NetApp Virtual Storage Tier. This innovative approach combines the inherent latency and throughput benefits of Flash with intelligent caching capabilities, delivering the performance benefits of Flash while keeping total costs low.\r\n<span style=\"font-weight: bold;\">Highly efficient systems</span>\r\nAt NetApp, storage efficiency is part of the DNA. NetApp seeks out every way possible to reduce your cost per effective gigabyte of storage. What’s more, the NetApp OnCommand® management suite automates the process. Efficiency technologies can be invoked with the click of a button or—in the case of NetApp Workflow Automation—can be encapsulated in your data management policies. This further reduces administrator time and helps you achieve optimum storage efficiency throughout your data infrastructure.\r\n<span style=\"font-weight: bold;\">Reliability and availability</span>\r\nThe FAS3200 series is built on the proven enterprise-class availability of the NetApp storage infrastructure. The FAS3200 models leverage from high-end systems by introducing features such as<br />Alternate Control Path (ACP) and service processor. These enhance our already highly available architecture by enabling additional diagnostics and non disruptive recovery.\r\nHA and cluster configurations support nondisruptive maintenance, upgrade, and other operations to eliminate planned downtime and provide even greater availability to meet your needs. You can further boost data availability and meet stringent servicelevel objectives by combining the FAS3200 series with the NetApp Integrated Data Protection portfolio. High-speed, space-efficient Snapshot copies let you capture a copy of a data volume in seconds, while advanced synchronous and asynchronous replication for business continuity can protect you against both planned and unplanned outages. Deduplication and compression are leveraged across both primary and secondary storage, reducing capacity consumption and network usage.\r\n<span style=\"font-weight: bold;\">Maximum platform flexibility</span>\r\nFor midrange storage, the key to success is platform flexibility.<br />FAS3200 models scale from a few terabytes to over 2PB of storage capacity to adapt readily to your growing storage demands. For maximum performance density and to decrease consumption of space, power, and cooling, the FAS3200 series is available with the DS2246 disk shelf. This disk shelf utilizes the latest high-performance hard-disk technology, with small-form-factor 2.5” disk drives that double the capacity per rack unit, conserving valuable data center resources. With midrange storage, available expansion slots can be a limiting factor.<br />The expanded I/O configurations of the FAS3250 model significantly add to the number of PCIe expansion slots available for network cards, Flash cards, and storage connectivity. Should you reach the limits of a FAS3200 system, all models support clustering, providing you with the flexibility to build clustered systems from 2 nodes to 24 nodes—all managed from a single console.","shortDescription":"NetApp FAS3200 series is designed for faster performance and more bandwidth with proven NetApp availability","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":1,"sellingCount":16,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"NetApp FAS3200 series","keywords":"","description":"The FAS3200 series is designed for faster performance and more bandwidth with proven NetApp availability.\r\nCombining reliable, high-performance hardware with the world’s most popular storage architecture — the NetApp® Data ONTAP® operating system — NetApp FAS3","og:title":"NetApp FAS3200 series","og:description":"The FAS3200 series is designed for faster performance and more bandwidth with proven NetApp availability.\r\nCombining reliable, high-performance hardware with the world’s most popular storage architecture — the NetApp® Data ONTAP® operating system — NetApp FAS3","og:image":"https://old.roi4cio.com/fileadmin/user_upload/FAS32701.jpg"},"eventUrl":"","translationId":5032,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"},{"id":503,"title":"Storage Networking","alias":"storage-networking","description":" A storage area network (SAN) or storage network is a computer network which provides access to consolidated, block-level data storage. SANs are primarily used to enhance accessibility of storage devices, such as disk arrays and tape libraries, to servers so that the devices appear to the operating system as locally-attached devices. A SAN typically is a dedicated network of storage devices not accessible through the local area network (LAN) by other devices, thereby preventing interference of LAN traffic in data transfer.\r\nThe cost and complexity of SANs dropped in the early 2000s to levels allowing wider adoption across both enterprise and small to medium-sized business environments.\r\nA SAN does not provide file abstraction, only block-level operations. However, file systems built on top of SANs do provide file-level access, and are known as shared-disk file systems.\r\nStorage area networks (SANs) are sometimes referred to as network behind the servers and historically developed out of the centralised data storage model, but with its own data network. A SAN is, at its simplest, a dedicated network for data storage. In addition to storing data, SANs allow for the automatic backup of data, and the monitoring of the storage as well as the backup process. A SAN is a combination of hardware and software. It grew out of data-centric mainframe architectures, where clients in a network can connect to several servers that store different types of data. To scale storage capacities as the volumes of data grew, direct-attached storage (DAS) was developed, where disk arrays or just a bunch of disks (JBODs) were attached to servers. In this architecture storage devices can be added to increase storage capacity. However, the server through which the storage devices are accessed is a single point of failure, and a large part of the LAN network bandwidth is used for accessing, storing and backing up data. To solve the single point of failure issue, a direct-attached shared storage architecture was implemented, where several servers could access the same storage device.\r\nDAS was the first network storage system and is still widely implemented where data storage requirements are not very high. Out of it developed the network-attached storage (NAS) architecture, where one or more dedicated file server or storage devices are made available in a LAN. Therefore, the transfer of data, particularly for backup, still takes place over the existing LAN. If more than a terabyte of data was stored at any one time, LAN bandwidth became a bottleneck. Therefore, SANs were developed, where a dedicated storage network was attached to the LAN, and terabytes of data are transferred over a dedicated high speed and bandwidth network. Within the storage network, storage devices are interconnected. Transfer of data between storage devices, such as for backup, happens behind the servers and is meant to be transparent. While in a NAS architecture data is transferred using the TCP and IP protocols over Ethernet, distinct protocols were developed for SANs, such as Fibre Channel, iSCSI, Infiniband. Therefore, SANs often have their own network and storage devices, which have to be bought, installed, and configured. This makes SANs inherently more expensive than NAS architectures.","materialsDescription":"<span style=\"font-weight: bold; \">What is storage virtualization?</span>\r\nA storage area network (SAN) is a dedicated high-speed network or subnetwork that interconnects and presents shared pools of storage devices to multiple servers.\r\nA SAN moves storage resources off the common user network and reorganizes them into an independent, high-performance network. This enables each server to access shared storage as if it were a drive directly attached to the server. When a host wants to access a storage device on the SAN, it sends out a block-based access request for the storage device.\r\nA storage area network is typically assembled using three principle components: cabling, host bus adapters (HBAs), and switches attached to storage arrays and servers. Each switch and storage system on the SAN must be interconnected, and the physical interconnections must support bandwidth levels that can adequately handle peak data activities. IT administrators manage storage area networks centrally.\r\nStorage arrays were initially all hard disk drive systems, but are increasingly populated with flash solid-state drives (SSDs).\r\n<span style=\"font-weight: bold; \">What storage area networks are used for?</span>\r\nFibre Channel (FC) SANs have the reputation of being expensive, complex and difficult to manage. Ethernet-based iSCSI has reduced these challenges by encapsulating SCSI commands into IP packets that don't require an FC connection.\r\nThe emergence of iSCSI means that instead of learning, building and managing two networks -- an Ethernet local area network (LAN) for user communication and an FC SAN for storage -- an organization can use its existing knowledge and infrastructure for both LANs and SANs. This is an especially useful approach in small and midsize businesses that may not have the funds or expertise to support a Fibre Channel SAN.\r\nOrganizations use SANs for distributed applications that need fast local network performance. SANs improve the availability of applications through multiple data paths. They can also improve application performance because they enable IT administrators to offload storage functions and segregate networks.\r\nAdditionally, SANs help increase the effectiveness and use of storage because they enable administrators to consolidate resources and deliver tiered storage. SANs also improve data protection and security. Finally, SANs can span multiple sites, which helps companies with their business continuity strategies.\r\n<span style=\"font-weight: bold;\">Types of network protocols</span>\r\nMost storage networks use the SCSI protocol for communication between servers and disk drive devices.[citation needed] A mapping layer to other protocols is used to form a network:\r\n<ul><li>ATA over Ethernet (AoE), mapping of ATA over Ethernet</li><li>Fibre Channel Protocol (FCP), the most prominent one, is a mapping of SCSI over Fibre Channel</li><li>Fibre Channel over Ethernet (FCoE)</li><li>ESCON over Fibre Channel (FICON), used by mainframe computers</li><li>HyperSCSI, mapping of SCSI over Ethernet</li><li>iFCP or SANoIP mapping of FCP over IP</li><li>iSCSI, mapping of SCSI over TCP/IP</li><li>iSCSI Extensions for RDMA (iSER), mapping of iSCSI over InfiniBand</li><li>Network block device, mapping device node requests on UNIX-like systems over stream sockets like TCP/IP</li><li>SCSI RDMA Protocol (SRP), another SCSI implementation for RDMA transports</li></ul>\r\nStorage networks may also be built using SAS and SATA technologies. SAS evolved from SCSI direct-attached storage. SATA evolved from IDE direct-attached storage. SAS and SATA devices can be networked using SAS Expanders.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_Networking.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4778,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/vmware-esxi.png","logo":true,"scheme":false,"title":"VMware ESXi","vendorVerified":0,"rating":"0.00","implementationsCount":2,"suppliersCount":0,"supplierPartnersCount":97,"alias":"vmware-esxi","companyTitle":"VMware","companyTypes":["vendor"],"companyId":168,"companyAlias":"vmware","description":"<span style=\"font-weight: bold;\">VMware ESXi: The Purpose-Built Bare Metal Hypervisor</span>\r\nDiscover a robust, bare-metal hypervisor that installs directly onto your physical server. With direct access to and control of underlying resources, VMware ESXi effectively partitions hardware to consolidate applications and cut costs. It’s the industry leader for efficient architecture, setting the standard for reliability, performance, and support.\r\n<span style=\"font-weight: bold;\">What ESXi Delivers</span>\r\nIT teams are under constant pressure to meet fluctuating market trends and heightened customer demands. At the same time, they must stretch IT resources to accommodate increasingly complex projects. Fortunately, ESXi helps balance the need for both better business outcomes and IT savings. VMware ESXi enables you to:\r\n\r\n<ul><li>Consolidate hardware for higher capacity utilization.</li></ul>\r\n<ul><li>Increase performance for a competitive edge.</li></ul>\r\n<ul><li>Streamline IT administration through centralized management.</li></ul>\r\n<ul><li>Reduce CapEx and OpEx.</li></ul>\r\n<ul><li>Minimize hardware resources needed to run the hypervisor, meaning greater efficiency.</li></ul>\r\n\r\n<span style=\"font-weight: bold;\">FEATURES</span>\r\nBy consolidating multiple servers onto fewer physical devices, ESXi reduces space, power and IT administrative requirements while driving high-speed performance.\r\n<span style=\"font-weight: bold;\">Small Footprint</span><br />\r\nWith a footprint of just 150MB, ESXi lets you do more with less while minimizing security threats to your hypervisor.<br />\r\n<span style=\"font-weight: bold;\">Reliable Performance</span><br />\r\nAccommodate apps of any size. Configure virtual machines up to 128 virtual CPUs, 6 TB of RAM and 120 devices to satisfy all your application needs. Consult individual solution limits to ensure you do not exceed supported configurations for your environment. Learn more about configuration maximums.<br />\r\n<span style=\"font-weight: bold;\">Enhanced Security</span><br />\r\nProtect sensitive virtual machine data with powerful encryption capabilities. Role-based access simplifies administration, and extensive logging and auditing ensure greater accountability and easier forensic analysis.<br />\r\n<span style=\"font-weight: bold;\">Ecosystem Excellence</span><br />\r\nGet support for a broad ecosystem of hardware OEM vendors, technology service partners, apps, and guest operating systems.<br />\r\n<span style=\"font-weight: bold;\">User-Friendly Experience</span><br />\r\nManage day-to-day administrative operations with built-in modern UI based on HTML5 standards. For customers who need to automate their operations, VMware offers both a vSphere Command Line Interface and developer-friendly REST-based APIs.","shortDescription":"VMware ESXi – автономный гипервизор от компании VMware, который представляет собой операционную систему (без консоли управления)","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":4,"sellingCount":20,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"VMware ESXi","keywords":"","description":"<span style=\"font-weight: bold;\">VMware ESXi: The Purpose-Built Bare Metal Hypervisor</span>\r\nDiscover a robust, bare-metal hypervisor that installs directly onto your physical server. With direct access to and control of underlying resources, VMware ESXi effe","og:title":"VMware ESXi","og:description":"<span style=\"font-weight: bold;\">VMware ESXi: The Purpose-Built Bare Metal Hypervisor</span>\r\nDiscover a robust, bare-metal hypervisor that installs directly onto your physical server. With direct access to and control of underlying resources, VMware ESXi effe","og:image":"https://old.roi4cio.com/fileadmin/user_upload/vmware-esxi.png"},"eventUrl":"","translationId":4779,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":299,"title":"Application and User Session Virtualization","alias":"application-and-user-session-virtualization","description":"Application virtualization is a technology that allows you to separate the software from the operating system on which it operates. Fully virtualized software is not installed in the traditional sense, although the end-user at first glance can not see it, because the virtualized software works just as normal. The software in the execution process works just as if it interacted with the operating system directly and with all its resources, but can be isolated or executed in a sandbox with different levels of restriction.\r\nModern operating systems, such as Microsoft Windows and Linux, can include limited software virtualization. For example, Windows 7 has Windows XP mode that allows you to run Windows XP software on Windows 7 without any changes.\r\nUser session virtualization is a newer version of desktop virtualization that works at the operating system level. While normal virtualization of the desktop allows an operating system to be run by virtualizing the hardware of the desktop, RDS and App-V allow for the virtualization of the applications. User session virtualization lies between the two.\r\nA desktop has an operating system loaded on the base hardware. This can be either physical or virtual. The user session virtualization keeps track of all changes to the operating system that a user might make by encapsulating the configuration changes and associating them to the user account. This allows the specific changes to be applied to the underlying operating system without actually changing it. This allows several users to have completely different operating system configurations applied to base operating system installation.\r\nIf you are in a distributed desktop environment and there are local file servers available at each location, you can deploy virtualized user sessions in the form of redirected folders and roaming profiles.","materialsDescription":" <span style=\"font-weight: bold;\">Understanding application virtualization</span>\r\nApplication virtualization technology isolates applications from the underlying operating system and from other applications to increase compatibility and manageability. This application virtualization technology enables applications to be streamed from a centralized location into an isolation environment on the target device where they will execute. The application files, configuration, and settings are copied to the target device and the application execution at run time is controlled by the application virtualization layer. When executed, the application run time believes that it is interfacing directly with the operating system when, in fact, it is interfacing with a virtualization environment that proxies all requests to the operating system.\r\n<span style=\"font-weight: bold;\">Understanding session virtualization</span>\r\nSession virtualization uses application streaming to deliver applications to hosting servers in the datacenter. The Application then connects the user to the server. The application then executes entirely on the server. The user interacts with the application remotely by sending mouse-clicks and keystrokes to the server. The server then responds by sending screen updates back to the user’s device. Whereas application virtualization is limited to Windows-based operating systems, session virtualization allows any user on any operating system to access any application delivered by IT. As a result, the application enables Windows, Mac, Linux, iOS and Android devices to run any applications using session virtualization. Furthermore, session virtualization leverages server-side processing power which liberates IT from the endless cycle of PC hardware refreshes which are typically needed to support application upgrades when using traditional application deployment methods.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Application_and_User_Session_Virtualization__1_.png"},{"id":2,"title":"Virtual machine and cloud system software","alias":"virtual-machine-and-cloud-system-software","description":" A virtual machine (VM) is a software-based computer that exists within another computer’s operating system, often used for the purposes of testing, backing up data, or running SaaS applications. To fully grasp how VMs work, it’s important to first understand how computer software and hardware are typically integrated by an operating system.\r\n"The cloud" refers to servers that are accessed over the Internet, and the software and databases that run on those servers. Cloud servers are located in data centers all over the world. By using cloud computing, users and companies don't have to manage physical servers themselves or run software applications on their own machines.\r\nThe cloud enables users to access the same files and applications from almost any device, because the computing and storage take place on servers in a data center, instead of locally on the user device. This is why a user can log into their Instagram account on a new phone after their old phone breaks and still find their old account in place, with all their photos, videos, and conversation history. It works the same way with cloud email providers like Gmail or Microsoft Office 365, and with cloud storage providers like Dropbox or Google Drive.\r\nFor businesses, switching to cloud computing removes some IT costs and overhead: for instance, they no longer need to update and maintain their own servers, as the cloud vendor they are using will do that. This especially makes an impact on small businesses that may not have been able to afford their own internal infrastructure but can outsource their infrastructure needs affordably via the cloud. The cloud can also make it easier for companies to operate internationally because employees and customers can access the same files and applications from any location.\r\nSeveral cloud providers offer virtual machines to their customers. These virtual machines typically live on powerful servers that can act as a host to multiple VMs and can be used for a variety of reasons that wouldn’t be practical with a locally-hosted VM. These include:\r\n<ul><li>Running SaaS applications - Software-as-a-Service, or SaaS for short, is a cloud-based method of providing software to users. SaaS users subscribe to an application rather than purchasing it once and installing it. These applications are generally served to the user over the Internet. Often, it is virtual machines in the cloud that are doing the computation for SaaS applications as well as delivering them to users. If the cloud provider has a geographically distributed network edge, then the application will run closer to the user, resulting in faster performance.</li><li>Backing up data - Cloud-based VM services are very popular for backing up data because the data can be accessed from anywhere. Plus, cloud VMs provide better redundancy, require less maintenance, and generally scale better than physical data centers. (For example, it’s generally fairly easy to buy an extra gigabyte of storage space from a cloud VM provider, but much more difficult to build a new local data server for that extra gigabyte of data.)</li><li>Hosting services like email and access management - Hosting these services on cloud VMs is generally faster and more cost-effective, and helps minimize maintenance and offload security concerns as well.</li></ul>","materialsDescription":"What is an operating system?\r\nTraditional computers are built out of physical hardware, including hard disk drives, processor chips, RAM, etc. In order to utilize this hardware, computers rely on a type of software known as an operating system (OS). Some common examples of OSes are Mac OSX, Microsoft Windows, Linux, and Android.\r\nThe OS is what manages the computer’s hardware in ways that are useful to the user. For example, if the user wants to access the Internet, the OS directs the network interface card to make the connection. If the user wants to download a file, the OS will partition space on the hard drive for that file. The OS also runs and manages other pieces of software. For example, it can run a web browser and provide the browser with enough random access memory (RAM) to operate smoothly. Typically, operating systems exist within a physical computer at a one-to-one ratio; for each machine, there is a single OS managing its physical resources.\r\n<span style=\"font-weight: bold;\">Can you have two or more operating systems on one computer?</span>\r\nSome users want to be able to run multiple operating systems simultaneously on one computer, either for testing or one of the other reasons listed in the section below. This can be achieved through a process called virtualization. In virtualization, a piece of software behaves as if it were an independent computer. This piece of software is called a virtual machine, also known as a ‘guest’ computer. (The computer on which the VM is running is called the ‘host’.) The guest has an OS as well as its own virtual hardware.\r\n‘Virtual hardware’ may sound like a bit of an oxymoron, but it works by mapping to real hardware on the host computer. For example, the VM’s ‘hard drive’ is really just a file on the host computer’s hard drive. When the VM wants to save a new file, it actually has to communicate with the host OS, which will write this file to the host hard drive. Because virtual hardware must perform this added step of negotiating with the host to access hardware resources, virtual machines can’t run quite as fast as their host computers.\r\nWith virtualization, one computer can run two or more operating systems. The number of VMs that can run on one host is limited only by the host’s available resources. The user can run the OS of a VM in a window like any other program, or they can run it in fullscreen so that it looks and feels like a genuine host OS.\r\n <span style=\"font-weight: bold; \">What are virtual machines used for?</span>\r\nSome of the most popular reasons people run virtual machines include:\r\n<span style=\"font-weight: bold; \">Testing</span> - Oftentimes software developers want to be able to test their applications in different environments. They can use virtual machines to run their applications in various OSes on one computer. This is simpler and more cost-effective than having to test on several different physical machines.\r\n<span style=\"font-weight: bold; \">Running software designed for other OSes</span> - Although certain software applications are only available for a single platform, a VM can run software designed for a different OS. For example, a Mac user who wants to run software designed for Windows can run a Windows VM on their Mac host.\r\n<span style=\"font-weight: bold; \">Running outdated software</span> - Some pieces of older software can’t be run in modern OSes. Users who want to run these applications can run an old OS on a virtual machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Virtual_machine_and_cloud_system_software.png"},{"id":1,"title":"Desktop virtualization","alias":"desktop-virtualization","description":" Desktop virtualization is a virtualization technology that separates an individual's PC applications from his or her desktop. Virtualized desktops are generally hosted on a remote central server, rather than the hard drive of the personal computer. Because the client-server computing model is used in virtualizing desktops, desktop virtualization is also known as client virtualization.\r\nDesktop virtualization provides a way for users to maintain their individual desktops on a single, central server. The users may be connected to the central server through a LAN, WAN or over the Internet.\r\nDesktop virtualization has many benefits, including a lower total cost of ownership (TCO), increased security, reduced energy costs, reduced downtime and centralized management.\r\nLimitations of desktop virtualization include difficulty in maintenance and set up of printer drivers; increased downtime in case of network failures; complexity and costs involved in VDI deployment and security risks in the event of improper network management.<br /><br />","materialsDescription":" <span style=\"font-weight: bold; \">What are types of desktop virtualization technologies?</span>\r\nHost-based forms of desktop virtualization require that users view and interact with their virtual desktops over a network by using a remote display protocol. Because processing takes place in a data center, client devices can be traditional PCs, but also thin clients, zero clients, smartphones and tablets. Examples of host-based desktop virtualization technology include:\r\n<span style=\"font-weight: bold; \">Host-based virtual machines:</span> Each user connects to an individual VM that is hosted in a data center. The user may connect to the same VM every time, allowing for personalization (known as a persistent desktop), or be given a fresh VM at each login (a nonpersistent desktop).\r\n<span style=\"font-weight: bold; \">Shared hosted:</span> Users connect to a shared desktop that runs on a server. Microsoft Remote Desktop Services, formerly Terminal Services, takes this client-server approach. Users may also connect to individual applications running on a server; this technology is an example of application virtualization.\r\n<span style=\"font-weight: bold; \">Host-based physical machines:</span> The operating system runs directly on another device's physical hardware.\r\nClient virtualization requires processing to occur on local hardware; the use of thin clients, zero clients and mobile devices is not possible. These types of desktop virtualization include:\r\n<span style=\"font-weight: bold; \">OS image streaming:</span> The operating system runs on local hardware, but it boots to a remote disk image across the network. This is useful for groups of desktops that use the same disk image. OS image streaming, also known as remote desktop virtualization, requires a constant network connection in order to function.\r\n<span style=\"font-weight: bold; \">Client-based virtual machines:</span> A VM runs on a fully functional PC, with a hypervisor in place. Client-based virtual machines can be managed by regularly syncing the disk image with a server, but a constant network connection is not necessary in order for them to function.\r\n<span style=\"font-weight: bold;\">Desktop virtualization vs. virtual desktop infrastructure</span>\r\nThe terms <span style=\"font-style: italic;\">desktop virtualization</span> and virtual desktop infrastructure (VDI) are often used interchangeably, but they are not the same. While VDI is a type of desktop virtualization, not all desktop virtualization uses VDI.\r\nVDI refers to the use of host-based VMs to deliver virtual desktops, which emerged in 2006 as an alternative to Terminal Services and Citrix's client-server approach to desktop virtualization technology. Other types of desktop virtualization -- including the shared hosted model, host-based physical machines and all methods of client virtualization -- are not examples of VDI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Desktop_virtualization.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4782,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_VMAX_100K.jpg","logo":true,"scheme":false,"title":"Dell EMC VMAX 100K","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":59,"alias":"dell-emc-vmax-100k","companyTitle":"Dell EMC","companyTypes":["vendor"],"companyId":955,"companyAlias":"dell-emc","description":"The VMAX 100K is the entry model in our line of VMAX3 systems. VMAX3 isn’t just bigger and faster enterprise data storage. It’s also a data services platform designed to enable file, backup, mainframe and other rich services.<br /><br />EMC VMAX3 storage arrays ship with virtual provisioning turned on, ready to provision your service level objective with 1 click. Set SLOs for resources within VMAX 100K or with FAST.X for external EMC storage such as XtremIO or third party storage.<br /><br />With attractive pricing, simple management, and embedded file services, VMAX 100K helps you converge mission-critical block, file, and mainframe storage to lower your total cost of ownership. Configure your EMC VMAX 100K as a hybrid storage array with the right amount of flash SSD configured for higher IOPS. You'll get the best response time in the smallest footprint and at the lowest cost.<br /><br /><span style=\"font-weight: bold;\">Key features:</span>\r\n\r\n<ul><li>Extend performance and reliability beyond Tier 1 workloads to enterprise data services</li></ul>\r\n<ul><li>Scale up to 2 VMAX3 engines, up to 48 CPU cores per array</li></ul>\r\n<ul><li>Grow with up to 64 front-end ports and 500 TB usable capacity</li></ul>\r\n<ul><li>Deliver high performance with Dynamic Virtual Matrix for database, OLTP, and file workloads</li></ul>\r\n<ul><li>Shrink data center footprint: VMAX3 engine plus up to 720 drives in a single rack</li></ul>\r\n<ul><li>Use FAST.X to take advantage of VMAX3 data services on externally tiered workloads such as EMC XtremIO all-flash array or non-EMC storage</li></ul>\r\n<ul><li>Ensure 99.9999% uptime with always-on availability, secure data with optional data at rest encryption</li></ul>","shortDescription":"Automate, modernize, and converge your data center infrastructure with an EMC VMAX 100K storage array.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":10,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC VMAX 100K","keywords":"","description":"The VMAX 100K is the entry model in our line of VMAX3 systems. VMAX3 isn’t just bigger and faster enterprise data storage. It’s also a data services platform designed to enable file, backup, mainframe and other rich services.<br /><br />EMC VMAX3 storage array","og:title":"Dell EMC VMAX 100K","og:description":"The VMAX 100K is the entry model in our line of VMAX3 systems. VMAX3 isn’t just bigger and faster enterprise data storage. It’s also a data services platform designed to enable file, backup, mainframe and other rich services.<br /><br />EMC VMAX3 storage array","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_VMAX_100K.jpg"},"eventUrl":"","translationId":4783,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4800,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Hitachi_logo.png","logo":true,"scheme":false,"title":"Hitachi TagmaStore™ Adaptable Modular Storage Model AMS500","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":4,"alias":"hitachi-tagmastoretm-adaptable-modular-storage-model-ams500","companyTitle":"Hitachi Data Systems","companyTypes":["vendor"],"companyId":313,"companyAlias":"hitachi-data-systems","description":"<span style=\"font-weight: bold;\">Enterprise-class Solutions for SMB Customers</span>\r\nSmall-to-midsized businesses (SMBs) are facing big-company challenges of escalating data growth, availability, and protection as well as regulatory compliance and complex storage infrastructures. With many years of experience serving FORTUNE 500 companies, Hitachi Data Systems understands these challenges and has developed Application Optimized Storage™ solutions to match application requirements to storage attributes. Now Hitachi Data Systems brings SMB customers these proven solutions in modular, cost-effective packaging—including the Hitachi TagmaStore™ Adaptable Modular Storage model AMS500.<br />\r\n<span style=\"font-weight: bold;\">Business Benefits</span><br />\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Gain high-end performance and capacity, priced for the midrange</span></span>\r\n<ul><li>Move from server-internal storage to scalable external storage, consolidate multiple storage systems into one, or build a first storage area network (SAN); either iSCSI or Fibre Channel connectivity supported.</li></ul>\r\n<ul><li>Use NAS connectivity options for collaborative file-sharing applications.</li></ul>\r\n<ul><li>Deliver application-specific performance, availability, and protection across systems—from a few terabytes to more than 86TB (SATA intermix drives) or 64TB (Fibre Channel drives).</li></ul>\r\n<ul><li>Use advanced features—Cache Partition Manager and RAID-6—to help improve performance, reliability, and usability.</li></ul>\r\n<ul><li>Partition and dedicate cache to maximize performance of high-I/O applications.</li></ul>\r\n<ul><li>Support outstanding performance for virtually any workload, with 2,048 logical units (LUNs).</li></ul>\r\n<ul><li>Choose between SATA intermix and Fibre Channel to host any workload on the most economical storage system.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Consolidate storage, anticipate growth</span></span>\r\n<ul><li>Consolidate and centralize management to reduce costs.</li></ul>\r\n<ul><li>Scale to 86.9TB of SATA and Fibre Channel intermix or to 64.7TB of Fibre Channel storage capacity.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Meet compliance requirements, protect data, and reduce recovery times</span></span>\r\n<ul><li>Enhanced SATA data protection provides unmatched data availability and resiliency.</li></ul>\r\n<ul><li>RAID-6 ensures high availability and flexibility in RAID group rebuild.</li></ul>\r\n<ul><li>Hi-Track® “call-home” service/remote maintenance tool for 24/7 diagnostics keeps potential issues from becoming problems.</li></ul>\r\n<ul><li>Fully redundant and hot-swappable components keep your applications online.</li></ul>\r\n<ul><li>Within-system volume replication or incremental copies provide frequent and nondisruptive backups.</li></ul>\r\n<ul><li>Remote replication is enabled by Hitachi TrueCopy™ Remote Replication software.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Build a first storage network or extend an existing one</span></span>\r\n<ul><li>Plug-and-play SAN Kits for Microsoft Simple SAN and SAN Starter solutions for easy deployment</li></ul>\r\n<ul><li>Diskless boot for SAN-attached servers</li></ul>\r\n<ul><li>High-capacity storage for network attached storage (NAS) applications</li></ul>\r\n<ul><li>Systems management and configuration using Storage Management and Hitachi HiCommand® Suite software</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Leverage for SMB applications or enterprise tiered storage deployments</span></span>\r\n<ul><li>Microsoft Exchange Server, ERP, CRM, database, NAS filer, backup applications, or tape replacement</li></ul>\r\n<ul><li>Archival and long-term tamperproof data retention to meet regulatory requirements</li></ul>\r\n<ul><li>Complete data lifecycle management solutions within a tiered storage environment when combined with Hitachi enterprise-class storage</li></ul>","shortDescription":"Hitachi TagmaStore® Adaptable Modular Storage models AMS500 deliver the best price/performance, availability and best-in-class scalability in the modular storage market space","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":9,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Hitachi TagmaStore™ Adaptable Modular Storage Model AMS500","keywords":"","description":"<span style=\"font-weight: bold;\">Enterprise-class Solutions for SMB Customers</span>\r\nSmall-to-midsized businesses (SMBs) are facing big-company challenges of escalating data growth, availability, and protection as well as regulatory compliance and complex sto","og:title":"Hitachi TagmaStore™ Adaptable Modular Storage Model AMS500","og:description":"<span style=\"font-weight: bold;\">Enterprise-class Solutions for SMB Customers</span>\r\nSmall-to-midsized businesses (SMBs) are facing big-company challenges of escalating data growth, availability, and protection as well as regulatory compliance and complex sto","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Hitachi_logo.png"},"eventUrl":"","translationId":4801,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4844,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/HPE_logo.jpeg","logo":true,"scheme":false,"title":"HPE StoreVirtual VSA Software","vendorVerified":0,"rating":"0.00","implementationsCount":2,"suppliersCount":0,"supplierPartnersCount":451,"alias":"hpe-storevirtual-vsa-software","companyTitle":"Hewlett Packard Enterprise","companyTypes":["supplier","vendor"],"companyId":172,"companyAlias":"hewlett-packard-enterprise","description":"For developing converged compute and storage solutions in virtualized environments, HPE StoreVirtual VSA Software delivers high performance shared storage on your choice of servers and SSD or HDD media. Built on proven data services technology, HPE StoreVirtual VSA delivers software-defined storage by virtualizing up to 50TB of disk capacity per server running VMware vSphere, Microsoft Hyper-V or Linux KVM. The HPE StoreVirtual VSA eliminates the need for external shared storage required to implement advanced hypervisor features.\r\nHPE StoreVirtual VSA uses scale-out, distributed clustering to provide a pool of storage with enterprise storage features and simple management at reduced cost. Multiple StoreVirtual VSAs running on multiple servers create a clustered pool of storage with the ability to make data highly available by protecting volumes with Network RAID. Adding more StoreVirtual VSAs to the cluster grows the storage pool. With Network RAID, blocks of data are striped and mirrored across multiple StoreVirtual VSAs, allowing volumes and applications to stay online in the event of disk, storage subsystem or server failure. iSCSI connectivity on HPE StoreVirtual VSA supports the use of the storage pools by hypervisors as well as other applications. HPE StoreVirtual VSA fully supports 1GbE and 10GbE environments for connections to both virtual and physical hosts.<br />\r\nLeverage existing converged infrastructure with StoreVirtual VSA and enable higher levels of protection for business critical data services. Easy to use installation wizards assist in the deployment of HPE StoreVirtual VSA on VMware vSphere or Microsoft HyperV. Using the Centralized Management Console, StoreVirtual VSA can be deployed at remote sites and managed centrally as a virtual storage system.<br /><br /><span style=\"font-weight: bold;\">Benefits</span>\r\n<ul><li>Gain the benefits of an array without requiring a physical storage infrastructure by virtualizing storage resources in a server – reduces cost, footprint, power and cooling</li></ul>\r\n<ul><li>Take advantage of hypervisor advanced features such as vMotion and Live Migration without purchasing external storage system</li></ul>\r\n<ul><li>Create a storage pool which is available to hypervisors and other applications via iSCSI</li></ul>\r\n<ul><li>Comes complete with all storage management features - no additional software needed</li></ul>\r\n<ul><li>Easily build a clustered, highly available converged storage pool on existing servers</li></ul>\r\n<ul><li>Utilize internal (SATA, MDL, SAS, SSD, PCIe Flash) and external (iSCSI, FC, SAS) storage options supported by VMware, Microsoft or Linux as back end storage</li></ul>\r\n<ul><li>Enable disaster recovery (DR) solutions for remote or branch offices that do not have budget, space, or power for servers and a traditional array</li></ul>\r\n<ul><li>Easily replicate volumes between StoreVirtual VSA and 3PAR with Peer Copy</li></ul>\r\n<ul><li>Reduce cost and complexity with integrated backup to HPE StoreOnce systems using HPE RMC software</li></ul>","shortDescription":"The StoreVirtual VSA software delivers the scalability and high availability of HP StoreVirtual arrays to small and midsize customers.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":7,"sellingCount":14,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE StoreVirtual VSA Software","keywords":"","description":"For developing converged compute and storage solutions in virtualized environments, HPE StoreVirtual VSA Software delivers high performance shared storage on your choice of servers and SSD or HDD media. Built on proven data services technology, HPE StoreVirtua","og:title":"HPE StoreVirtual VSA Software","og:description":"For developing converged compute and storage solutions in virtualized environments, HPE StoreVirtual VSA Software delivers high performance shared storage on your choice of servers and SSD or HDD media. Built on proven data services technology, HPE StoreVirtua","og:image":"https://old.roi4cio.com/fileadmin/user_upload/HPE_logo.jpeg"},"eventUrl":"","translationId":4845,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":1,"title":"Desktop virtualization","alias":"desktop-virtualization","description":" Desktop virtualization is a virtualization technology that separates an individual's PC applications from his or her desktop. Virtualized desktops are generally hosted on a remote central server, rather than the hard drive of the personal computer. Because the client-server computing model is used in virtualizing desktops, desktop virtualization is also known as client virtualization.\r\nDesktop virtualization provides a way for users to maintain their individual desktops on a single, central server. The users may be connected to the central server through a LAN, WAN or over the Internet.\r\nDesktop virtualization has many benefits, including a lower total cost of ownership (TCO), increased security, reduced energy costs, reduced downtime and centralized management.\r\nLimitations of desktop virtualization include difficulty in maintenance and set up of printer drivers; increased downtime in case of network failures; complexity and costs involved in VDI deployment and security risks in the event of improper network management.<br /><br />","materialsDescription":" <span style=\"font-weight: bold; \">What are types of desktop virtualization technologies?</span>\r\nHost-based forms of desktop virtualization require that users view and interact with their virtual desktops over a network by using a remote display protocol. Because processing takes place in a data center, client devices can be traditional PCs, but also thin clients, zero clients, smartphones and tablets. Examples of host-based desktop virtualization technology include:\r\n<span style=\"font-weight: bold; \">Host-based virtual machines:</span> Each user connects to an individual VM that is hosted in a data center. The user may connect to the same VM every time, allowing for personalization (known as a persistent desktop), or be given a fresh VM at each login (a nonpersistent desktop).\r\n<span style=\"font-weight: bold; \">Shared hosted:</span> Users connect to a shared desktop that runs on a server. Microsoft Remote Desktop Services, formerly Terminal Services, takes this client-server approach. Users may also connect to individual applications running on a server; this technology is an example of application virtualization.\r\n<span style=\"font-weight: bold; \">Host-based physical machines:</span> The operating system runs directly on another device's physical hardware.\r\nClient virtualization requires processing to occur on local hardware; the use of thin clients, zero clients and mobile devices is not possible. These types of desktop virtualization include:\r\n<span style=\"font-weight: bold; \">OS image streaming:</span> The operating system runs on local hardware, but it boots to a remote disk image across the network. This is useful for groups of desktops that use the same disk image. OS image streaming, also known as remote desktop virtualization, requires a constant network connection in order to function.\r\n<span style=\"font-weight: bold; \">Client-based virtual machines:</span> A VM runs on a fully functional PC, with a hypervisor in place. Client-based virtual machines can be managed by regularly syncing the disk image with a server, but a constant network connection is not necessary in order for them to function.\r\n<span style=\"font-weight: bold;\">Desktop virtualization vs. virtual desktop infrastructure</span>\r\nThe terms <span style=\"font-style: italic;\">desktop virtualization</span> and virtual desktop infrastructure (VDI) are often used interchangeably, but they are not the same. While VDI is a type of desktop virtualization, not all desktop virtualization uses VDI.\r\nVDI refers to the use of host-based VMs to deliver virtual desktops, which emerged in 2006 as an alternative to Terminal Services and Citrix's client-server approach to desktop virtualization technology. Other types of desktop virtualization -- including the shared hosted model, host-based physical machines and all methods of client virtualization -- are not examples of VDI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Desktop_virtualization.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":788,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/denovo.jpg","logo":true,"scheme":false,"title":"Cloud Datacenter","vendorVerified":0,"rating":"1.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"cloud-datacenter","companyTitle":"De Novo","companyTypes":["supplier","vendor"],"companyId":237,"companyAlias":"de-novo","description":"Varied in backup policy and SLA terms, service classes allow for optimal choice for any business needs – EXPRESS (Express / Silver), ENTERPRISE (Silver / Gold / Platinum), TURBO (Turbo-Silver / Gold).\r\nWith De Novo Cloud Datacenter (Infrastructure as a Service, IaaS) you’re leveraging all the benefits of the cloud-based IT model:\r\nHigh performance. Critical for high-load applications deployment.\r\nFailure tolerance. Hardware failure tolerance is implemented at the Cloud Operating System level (a layer of virtualization and automation). All the software and redundant hardware components needed to provide failure tolerance are incorporated in the De Novo hyper-cloud architecture.\r\nElasticity and configuration fine tuning. Cloud Datacenter is configured according to your tasks and the amount of available resources can be quickly increased or decreased when necessary.\r\nZero maintenance time. Cloud Datacenter does not require a stop for routine maintenance.\r\nNo learning curve. Cloud Datacenter does not require IT staff to be experts in server hardware.\r\nAll inclusive. The cost of Cloud Datacenter already includes all of the operational expenditures (installation, use of datacenter engineering systems, electricity, network equipment ports and KVM ports, routine maintenance costs).\r\nHigh availability, timeliness and cost effectiveness. Cloud Datacenter can be used only when there is a need. Service configuration takes only a few hours. Whether resources and power need to be here now, or they have served their purpose, just buy more or don’t buy any more, that simple.","shortDescription":"Cloud Datacenter is a virtual datacenter which can be managed and fine-tuned as if it was your own infrastructure. The combination of characteristics and possible usage patterns makes Cloud Datacenter similar to a private cloud, thus it can be viewed as a virtual private cloud.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":9,"sellingCount":15,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Cloud Datacenter","keywords":"Cloud, Datacenter, tolerance, maintenance, Service, failure, High, cost","description":"Varied in backup policy and SLA terms, service classes allow for optimal choice for any business needs – EXPRESS (Express / Silver), ENTERPRISE (Silver / Gold / Platinum), TURBO (Turbo-Silver / Gold).\r\nWith De Novo Cloud Datacenter (Infrastructure as a Service","og:title":"Cloud Datacenter","og:description":"Varied in backup policy and SLA terms, service classes allow for optimal choice for any business needs – EXPRESS (Express / Silver), ENTERPRISE (Silver / Gold / Platinum), TURBO (Turbo-Silver / Gold).\r\nWith De Novo Cloud Datacenter (Infrastructure as a Service","og:image":"https://old.roi4cio.com/fileadmin/user_upload/denovo.jpg"},"eventUrl":"","translationId":789,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":2,"title":"Virtual machine and cloud system software","alias":"virtual-machine-and-cloud-system-software","description":" A virtual machine (VM) is a software-based computer that exists within another computer’s operating system, often used for the purposes of testing, backing up data, or running SaaS applications. To fully grasp how VMs work, it’s important to first understand how computer software and hardware are typically integrated by an operating system.\r\n"The cloud" refers to servers that are accessed over the Internet, and the software and databases that run on those servers. Cloud servers are located in data centers all over the world. By using cloud computing, users and companies don't have to manage physical servers themselves or run software applications on their own machines.\r\nThe cloud enables users to access the same files and applications from almost any device, because the computing and storage take place on servers in a data center, instead of locally on the user device. This is why a user can log into their Instagram account on a new phone after their old phone breaks and still find their old account in place, with all their photos, videos, and conversation history. It works the same way with cloud email providers like Gmail or Microsoft Office 365, and with cloud storage providers like Dropbox or Google Drive.\r\nFor businesses, switching to cloud computing removes some IT costs and overhead: for instance, they no longer need to update and maintain their own servers, as the cloud vendor they are using will do that. This especially makes an impact on small businesses that may not have been able to afford their own internal infrastructure but can outsource their infrastructure needs affordably via the cloud. The cloud can also make it easier for companies to operate internationally because employees and customers can access the same files and applications from any location.\r\nSeveral cloud providers offer virtual machines to their customers. These virtual machines typically live on powerful servers that can act as a host to multiple VMs and can be used for a variety of reasons that wouldn’t be practical with a locally-hosted VM. These include:\r\n<ul><li>Running SaaS applications - Software-as-a-Service, or SaaS for short, is a cloud-based method of providing software to users. SaaS users subscribe to an application rather than purchasing it once and installing it. These applications are generally served to the user over the Internet. Often, it is virtual machines in the cloud that are doing the computation for SaaS applications as well as delivering them to users. If the cloud provider has a geographically distributed network edge, then the application will run closer to the user, resulting in faster performance.</li><li>Backing up data - Cloud-based VM services are very popular for backing up data because the data can be accessed from anywhere. Plus, cloud VMs provide better redundancy, require less maintenance, and generally scale better than physical data centers. (For example, it’s generally fairly easy to buy an extra gigabyte of storage space from a cloud VM provider, but much more difficult to build a new local data server for that extra gigabyte of data.)</li><li>Hosting services like email and access management - Hosting these services on cloud VMs is generally faster and more cost-effective, and helps minimize maintenance and offload security concerns as well.</li></ul>","materialsDescription":"What is an operating system?\r\nTraditional computers are built out of physical hardware, including hard disk drives, processor chips, RAM, etc. In order to utilize this hardware, computers rely on a type of software known as an operating system (OS). Some common examples of OSes are Mac OSX, Microsoft Windows, Linux, and Android.\r\nThe OS is what manages the computer’s hardware in ways that are useful to the user. For example, if the user wants to access the Internet, the OS directs the network interface card to make the connection. If the user wants to download a file, the OS will partition space on the hard drive for that file. The OS also runs and manages other pieces of software. For example, it can run a web browser and provide the browser with enough random access memory (RAM) to operate smoothly. Typically, operating systems exist within a physical computer at a one-to-one ratio; for each machine, there is a single OS managing its physical resources.\r\n<span style=\"font-weight: bold;\">Can you have two or more operating systems on one computer?</span>\r\nSome users want to be able to run multiple operating systems simultaneously on one computer, either for testing or one of the other reasons listed in the section below. This can be achieved through a process called virtualization. In virtualization, a piece of software behaves as if it were an independent computer. This piece of software is called a virtual machine, also known as a ‘guest’ computer. (The computer on which the VM is running is called the ‘host’.) The guest has an OS as well as its own virtual hardware.\r\n‘Virtual hardware’ may sound like a bit of an oxymoron, but it works by mapping to real hardware on the host computer. For example, the VM’s ‘hard drive’ is really just a file on the host computer’s hard drive. When the VM wants to save a new file, it actually has to communicate with the host OS, which will write this file to the host hard drive. Because virtual hardware must perform this added step of negotiating with the host to access hardware resources, virtual machines can’t run quite as fast as their host computers.\r\nWith virtualization, one computer can run two or more operating systems. The number of VMs that can run on one host is limited only by the host’s available resources. The user can run the OS of a VM in a window like any other program, or they can run it in fullscreen so that it looks and feels like a genuine host OS.\r\n <span style=\"font-weight: bold; \">What are virtual machines used for?</span>\r\nSome of the most popular reasons people run virtual machines include:\r\n<span style=\"font-weight: bold; \">Testing</span> - Oftentimes software developers want to be able to test their applications in different environments. They can use virtual machines to run their applications in various OSes on one computer. This is simpler and more cost-effective than having to test on several different physical machines.\r\n<span style=\"font-weight: bold; \">Running software designed for other OSes</span> - Although certain software applications are only available for a single platform, a VM can run software designed for a different OS. For example, a Mac user who wants to run software designed for Windows can run a Windows VM on their Mac host.\r\n<span style=\"font-weight: bold; \">Running outdated software</span> - Some pieces of older software can’t be run in modern OSes. Users who want to run these applications can run an old OS on a virtual machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Virtual_machine_and_cloud_system_software.png"},{"id":4,"title":"Data center","alias":"data-center","description":" A data center (or datacenter) is a facility composed of networked computers and storage that businesses or other organizations use to organize, process, store and disseminate large amounts of data. A business typically relies heavily upon the applications, services and data contained within a data center, making it a focal point and critical asset for everyday operations.\r\nData centers are not a single thing, but rather, a conglomeration of elements. At a minimum, data centers serve as the principal repositories for all manner of IT equipment, including servers, storage subsystems, networking switches, routers and firewalls, as well as the cabling and physical racks used to organize and interconnect the IT equipment. A data center must also contain an adequate infrastructure, such as power distribution and supplemental power subsystems, including electrical switching; uninterruptable power supplies; backup generators and so on; ventilation and data center cooling systems, such as computer room air conditioners; and adequate provisioning for network carrier (telco) connectivity. All of this demands a physical facility with physical security and sufficient physical space to house the entire collection of infrastructure and equipment.","materialsDescription":" <span style=\"font-weight: bold;\">What are the requirements for modern data centers?</span>\r\nModernization and data center transformation enhances performance and energy efficiency.\r\nInformation security is also a concern, and for this reason a data center has to offer a secure environment which minimizes the chances of a security breach. A data center must therefore keep high standards for assuring the integrity and functionality of its hosted computer environment.\r\nIndustry research company International Data Corporation (IDC) puts the average age of a data center at nine years old. Gartner, another research company, says data centers older than seven years are obsolete. The growth in data (163 zettabytes by 2025) is one factor driving the need for data centers to modernize.\r\nFocus on modernization is not new: Concern about obsolete equipment was decried in 2007, and in 2011 Uptime Institute was concerned about the age of the equipment therein. By 2018 concern had shifted once again, this time to the age of the staff: "data center staff are aging faster than the equipment."\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Meeting standards for data centers</span></span>\r\nThe Telecommunications Industry Association's Telecommunications Infrastructure Standard for Data Centers specifies the minimum requirements for telecommunications infrastructure of data centers and computer rooms including single tenant enterprise data centers and multi-tenant Internet hosting data centers. The topology proposed in this document is intended to be applicable to any size data center.\r\nTelcordia GR-3160, NEBS Requirements for Telecommunications Data Center Equipment and Spaces, provides guidelines for data center spaces within telecommunications networks, and environmental requirements for the equipment intended for installation in those spaces. These criteria were developed jointly by Telcordia and industry representatives. They may be applied to data center spaces housing data processing or Information Technology (IT) equipment. The equipment may be used to:\r\n<ul><li>Operate and manage a carrier's telecommunication network</li><li>Provide data center based applications directly to the carrier's customers</li><li>Provide hosted applications for a third party to provide services to their customers</li><li>Provide a combination of these and similar data center applications</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Data center transformation</span></span>\r\nData center transformation takes a step-by-step approach through integrated projects carried out over time. This differs from a traditional method of data center upgrades that takes a serial and siloed approach. The typical projects within a data center transformation initiative include standardization/consolidation, virtualization, automation and security.\r\n<ul><li>Standardization/consolidation: Reducing the number of data centers and avoiding server sprawl (both physical and virtual) often includes replacing aging data center equipment, and is aided by standardization.</li><li>Virtualization: Lowers capital and operational expenses, reduce energy consumption. Virtualized desktops can be hosted in data centers and rented out on a subscription basis. Investment bank Lazard Capital Markets estimated in 2008 that 48 percent of enterprise operations will be virtualized by 2012. Gartner views virtualization as a catalyst for modernization.</li><li>Automating: Automating tasks such as provisioning, configuration, patching, release management and compliance is needed, not just when facing fewer skilled IT workers.</li><li>Securing: Protection of virtual systems is integrated with existing security of physical infrastructures.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Machine room</span></span>\r\nThe term "Machine Room" is at times used to refer to the large room within a Data Center where the actual Central Processing Unit is located; this may be separate from where high-speed printers are located. Air conditioning is most important in the machine room.\r\nAside from air-conditioning, there must be monitoring equipment, one type of which is to detect water prior to flood-level situations. One company, for several decades, has had share-of-mind: Water Alert. The company, as of 2018, has 2 competing manufacturers (Invetex, Hydro-Temp) and 3 competing distributors (Longden,Northeast Flooring, Slayton). ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_center.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1522,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/sibis-logo.png","logo":true,"scheme":false,"title":"Hitachi Unified Storage VM and Power 730 Express (8231-E2D) by SI BIS","vendorVerified":0,"rating":"1.40","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"hitachi-unified-storage-vm-and-power-730-express-8231-e2d-by-si-bis","companyTitle":"SI BIS","companyTypes":["supplier","vendor"],"companyId":246,"companyAlias":"si-bis","description":"Модернизация инфраструктуры СХД посредством установки высокопроизводительной платформы на базе Hitachi Unified Storage VM (виртуализация существующей СХД с миграцией данных на HUS VM) - для бесперебойной работы;\r\nрасширение серверного оборудования IBM более производительной системой Power 730 Express (8231-E2D), созданной на основе новейшей процессорной технологии Power7 - приспособленной для больших объемов информации.\r\n\r\n","shortDescription":"Комплексная модернизация АПК на базе Hitachi Unified Storage VM и расширения серверного оборудования IBM более производительной системой Power 730 Express (8231-E2D)","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Hitachi Unified Storage VM and Power 730 Express (8231-E2D) by SI BIS","keywords":"Hitachi, Unified, 8231-E2D, Express, Storage, Power, технологии, более","description":"Модернизация инфраструктуры СХД посредством установки высокопроизводительной платформы на базе Hitachi Unified Storage VM (виртуализация существующей СХД с миграцией данных на HUS VM) - для бесперебойной работы;\r\nрасширение серверного оборудования IBM более пр","og:title":"Hitachi Unified Storage VM and Power 730 Express (8231-E2D) by SI BIS","og:description":"Модернизация инфраструктуры СХД посредством установки высокопроизводительной платформы на базе Hitachi Unified Storage VM (виртуализация существующей СХД с миграцией данных на HUS VM) - для бесперебойной работы;\r\nрасширение серверного оборудования IBM более пр","og:image":"https://old.roi4cio.com/fileadmin/user_upload/sibis-logo.png"},"eventUrl":"","translationId":7118,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":502,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Nimble_Storage_Adaptive_Flash_Storage_Arrays__Hybrid_.jpeg","logo":true,"scheme":false,"title":"Nimble Storage Adaptive Flash Storage Arrays (Hybrid)","vendorVerified":0,"rating":"1.40","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"nimble-storage-adaptive-flash-storage-arrays-hybrid","companyTitle":"Nimble Storage","companyTypes":["supplier","vendor"],"companyId":2952,"companyAlias":"nimble-storage","description":"<span style=\"font-weight: bold;\">Flash Performance for Every Mainstream Application</span>\r\n<span style=\"font-weight: bold;\">Speed Efficiency</span>\r\nPurpose-built flash architecture delivers sub-ms performance with unparalleled efficiency. And it’s five times faster than the competition.\r\n<span style=\"font-weight: bold;\">Scale to Fit</span>\r\nIndependently scale the performance and capacity of a single array, grow the amount of flash to suit any application and scale-out to Petabytes in a cluster. All non-disruptively.\r\n<span style=\"font-weight: bold;\">Adaptive Service Levels</span>\r\nAssign, or change, the service level of any application at the click of a button. Auto Flash, All Flash or Minimal Flash.","shortDescription":"Nimble Storage Adaptive Flash Storage Arrays. The industry’s only Predictive Hybrid Flash Array. Combines a flash-optimized architecture with predictive analytics to deliver data velocity for all mainstream applications.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":9,"sellingCount":8,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Nimble Storage Adaptive Flash Storage Arrays (Hybrid)","keywords":"Flash, performance, application, Adaptive, Storage, flash, Petabytes, scale-out","description":"<span style=\"font-weight: bold;\">Flash Performance for Every Mainstream Application</span>\r\n<span style=\"font-weight: bold;\">Speed Efficiency</span>\r\nPurpose-built flash architecture delivers sub-ms performance with unparalleled efficiency. And it’s five times","og:title":"Nimble Storage Adaptive Flash Storage Arrays (Hybrid)","og:description":"<span style=\"font-weight: bold;\">Flash Performance for Every Mainstream Application</span>\r\n<span style=\"font-weight: bold;\">Speed Efficiency</span>\r\nPurpose-built flash architecture delivers sub-ms performance with unparalleled efficiency. And it’s five times","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Nimble_Storage_Adaptive_Flash_Storage_Arrays__Hybrid_.jpeg"},"eventUrl":"","translationId":503,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":249,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Parallels_Desktop_dlja_Mac_Business_Edition.png","logo":true,"scheme":false,"title":"Parallels Desktop for Mac Business Edition","vendorVerified":0,"rating":"1.40","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":1,"alias":"parallels-desktop-for-mac-business-edition","companyTitle":"Parallels","companyTypes":["supplier","vendor"],"companyId":2790,"companyAlias":"parallels","description":"Work with business critical applications like Microsoft Office, Visual Studio, and QuickBooks seamlessly on your Mac. Ideal for any work environment from education to financial services, technology, consulting, or medical, Parallels Desktop Business Edition has productivity features for teams from 1-100 (or more!).\r\n\r\nLove Your Mac—Work in Windows\r\nUse Internet Explorer®, Windows Media Player, Access®, and hundreds of other Windows® applications not available on the Mac® while still enjoying all the features of your MacBook, iMac, Mac Mini, or MacPro.\r\n\r\nMake Work Easier\r\nQuickly switch between Mac and Windows, without rebooting. Seamlessly utilize Mac features inside Windows and leverage Windows' strengths on your Mac. More productivity and power for your team or organization.\r\n\r\nPowerful Performance\r\nParallels Desktop optimizes your virtual machine settings for your primary usage such as productivity, design, or development—Parallels Desktop is ready to help you be effective in any work setting.\r\n\r\nLicense Management Portal\r\nView vital information, such as license expirations, usage statistics, and real-time licensing activities to easily manage all of your deployed licenses. Administrators will be able to set up a new Parallels Desktop Business Edition account, with the ability to see, deploy, deactivate, and blacklist licenses as well as host name, user name, and serial numbers.\r\n\r\nAdvanced Security Controls\r\nParallels Desktop for Business provides best-in-class user performance while maintaining control at the IT level. Improve endpoint security with virtual machine lockdown and encryption, and maintain corporate compliance requirements via the elimination of third-party product and in-product notifications as well as individual user registration requirements. \r\n\r\nSimplify Mass Deployment \u0003and Administration\r\nParallels Desktop for Business can be deployed through standard software deployment tools. Our package-builder application and detailed mass deployment guides help administrators set up hundreds or thousands of clients easily.\r\n\r\nQuickly Switch into Coherence Mode\r\nQuickly switch into Coherence Mode, maintaining the look and feel of OS X for your Windows apps.\r\n\r\nReal-Time Location\r\nMac Location Center information is now shared with Windows.\r\n\r\nAction Center Comes to Mac\r\nWhile in Coherence Mode, quickly view notifications through an icon located in your OS X menu bar. (Only available with Windows 10)\r\n\r\nWindows Printing made Easy\r\nNo need to install a print driver in Windows; printing from the virtual machine now opens the native OS X printer dialog to print to your OS X configured printer.\r\n\r\nDeveloper Tool Integration\r\nLeverage popular productivity tools to reduce time spent on development and testing with Parallels Desktop Business Edition. Validate web apps in any browser on any operating system. Learn More\r\n\r\nDocker Integration \r\nCreate and manage Docker virtual machines from within Parallels Desktop Business Edition.\r\n\r\nAdvanced Networking Tools\r\nCreate virtual networks for complex network scenarios and testing, including simulating various network instabilities.\r\n\r\nBusiness Cloud Service Support\r\nWith Parallels Desktop Business Editions, virtual machines gain easy access to Business Cloud Services, including OneDrive Business, Box.net, and DropBox for Business.\r\n\r\nReady for IT\r\nIncludes all the power features of the Pro Edition, plus advanced control and management features for IT.\r\n\r\nUnified Volume License Key\r\nSimplifies installation and allows for centralized administration via the Parallels License Management Portal.\r\n\r\nPremier Support\r\nBusiness-level support including 24/7 phone and email options.\r\n\r\nMass provisioning\r\nCreate packages to include pre-built virtual machine images and deploy through standard software distribution tools.\r\n\r\nEnforce corporate compliance\r\nSupport corporate compliance directives by restricting virtual machines and USB device policies.\r\n\r\nBest-in-class User Experience\r\nProvide users with the most powerful and fastest way to seamlessly run Windows applications without rebooting–regardless of network connectivity.\r\n\r\nIntegration with Parallels Mac Management for Microsoft SCCM\r\nIf your company uses Microsoft System Center Configuration Manager (SCCM) to manage PCs, you can easily extend it to manage Mac, Parallels Desktop Business Edition, and your approved corporate Windows image.","shortDescription":"Parallels Desktop for Mac Business Edition - a virtualization solution on the Mac platform, to run Windows-based applications on a Mac without rebooting, parallel work with Windows and Mac applications, switching between PC and Mac","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":7,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Parallels Desktop for Mac Business Edition","keywords":"Business, your, Windows, Parallels, Desktop, virtual, with, Edition","description":"Work with business critical applications like Microsoft Office, Visual Studio, and QuickBooks seamlessly on your Mac. Ideal for any work environment from education to financial services, technology, consulting, or medical, Parallels Desktop Business Edition ha","og:title":"Parallels Desktop for Mac Business Edition","og:description":"Work with business critical applications like Microsoft Office, Visual Studio, and QuickBooks seamlessly on your Mac. Ideal for any work environment from education to financial services, technology, consulting, or medical, Parallels Desktop Business Edition ha","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Parallels_Desktop_dlja_Mac_Business_Edition.png"},"eventUrl":"","translationId":250,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":2,"title":"Virtual machine and cloud system software","alias":"virtual-machine-and-cloud-system-software","description":" A virtual machine (VM) is a software-based computer that exists within another computer’s operating system, often used for the purposes of testing, backing up data, or running SaaS applications. To fully grasp how VMs work, it’s important to first understand how computer software and hardware are typically integrated by an operating system.\r\n"The cloud" refers to servers that are accessed over the Internet, and the software and databases that run on those servers. Cloud servers are located in data centers all over the world. By using cloud computing, users and companies don't have to manage physical servers themselves or run software applications on their own machines.\r\nThe cloud enables users to access the same files and applications from almost any device, because the computing and storage take place on servers in a data center, instead of locally on the user device. This is why a user can log into their Instagram account on a new phone after their old phone breaks and still find their old account in place, with all their photos, videos, and conversation history. It works the same way with cloud email providers like Gmail or Microsoft Office 365, and with cloud storage providers like Dropbox or Google Drive.\r\nFor businesses, switching to cloud computing removes some IT costs and overhead: for instance, they no longer need to update and maintain their own servers, as the cloud vendor they are using will do that. This especially makes an impact on small businesses that may not have been able to afford their own internal infrastructure but can outsource their infrastructure needs affordably via the cloud. The cloud can also make it easier for companies to operate internationally because employees and customers can access the same files and applications from any location.\r\nSeveral cloud providers offer virtual machines to their customers. These virtual machines typically live on powerful servers that can act as a host to multiple VMs and can be used for a variety of reasons that wouldn’t be practical with a locally-hosted VM. These include:\r\n<ul><li>Running SaaS applications - Software-as-a-Service, or SaaS for short, is a cloud-based method of providing software to users. SaaS users subscribe to an application rather than purchasing it once and installing it. These applications are generally served to the user over the Internet. Often, it is virtual machines in the cloud that are doing the computation for SaaS applications as well as delivering them to users. If the cloud provider has a geographically distributed network edge, then the application will run closer to the user, resulting in faster performance.</li><li>Backing up data - Cloud-based VM services are very popular for backing up data because the data can be accessed from anywhere. Plus, cloud VMs provide better redundancy, require less maintenance, and generally scale better than physical data centers. (For example, it’s generally fairly easy to buy an extra gigabyte of storage space from a cloud VM provider, but much more difficult to build a new local data server for that extra gigabyte of data.)</li><li>Hosting services like email and access management - Hosting these services on cloud VMs is generally faster and more cost-effective, and helps minimize maintenance and offload security concerns as well.</li></ul>","materialsDescription":"What is an operating system?\r\nTraditional computers are built out of physical hardware, including hard disk drives, processor chips, RAM, etc. In order to utilize this hardware, computers rely on a type of software known as an operating system (OS). Some common examples of OSes are Mac OSX, Microsoft Windows, Linux, and Android.\r\nThe OS is what manages the computer’s hardware in ways that are useful to the user. For example, if the user wants to access the Internet, the OS directs the network interface card to make the connection. If the user wants to download a file, the OS will partition space on the hard drive for that file. The OS also runs and manages other pieces of software. For example, it can run a web browser and provide the browser with enough random access memory (RAM) to operate smoothly. Typically, operating systems exist within a physical computer at a one-to-one ratio; for each machine, there is a single OS managing its physical resources.\r\n<span style=\"font-weight: bold;\">Can you have two or more operating systems on one computer?</span>\r\nSome users want to be able to run multiple operating systems simultaneously on one computer, either for testing or one of the other reasons listed in the section below. This can be achieved through a process called virtualization. In virtualization, a piece of software behaves as if it were an independent computer. This piece of software is called a virtual machine, also known as a ‘guest’ computer. (The computer on which the VM is running is called the ‘host’.) The guest has an OS as well as its own virtual hardware.\r\n‘Virtual hardware’ may sound like a bit of an oxymoron, but it works by mapping to real hardware on the host computer. For example, the VM’s ‘hard drive’ is really just a file on the host computer’s hard drive. When the VM wants to save a new file, it actually has to communicate with the host OS, which will write this file to the host hard drive. Because virtual hardware must perform this added step of negotiating with the host to access hardware resources, virtual machines can’t run quite as fast as their host computers.\r\nWith virtualization, one computer can run two or more operating systems. The number of VMs that can run on one host is limited only by the host’s available resources. The user can run the OS of a VM in a window like any other program, or they can run it in fullscreen so that it looks and feels like a genuine host OS.\r\n <span style=\"font-weight: bold; \">What are virtual machines used for?</span>\r\nSome of the most popular reasons people run virtual machines include:\r\n<span style=\"font-weight: bold; \">Testing</span> - Oftentimes software developers want to be able to test their applications in different environments. They can use virtual machines to run their applications in various OSes on one computer. This is simpler and more cost-effective than having to test on several different physical machines.\r\n<span style=\"font-weight: bold; \">Running software designed for other OSes</span> - Although certain software applications are only available for a single platform, a VM can run software designed for a different OS. For example, a Mac user who wants to run software designed for Windows can run a Windows VM on their Mac host.\r\n<span style=\"font-weight: bold; \">Running outdated software</span> - Some pieces of older software can’t be run in modern OSes. Users who want to run these applications can run an old OS on a virtual machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Virtual_machine_and_cloud_system_software.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":279,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Intel_R__Storage_System.png","logo":true,"scheme":false,"title":"Intel® Storage System","vendorVerified":0,"rating":"1.90","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":8,"alias":"intelr-storage-system","companyTitle":"Intel","companyTypes":["vendor"],"companyId":2800,"companyAlias":"intel","description":"Chassis Dimensions<span style=\"white-space:pre\">\t</span>16.93" x 24.95" x 3.44"\r\n\r\nIncluded Items<span style=\"white-space:pre\">\t</span>(24) 2.5" Hot-swap drive carriers, (1) Backplane, (2) 460W Redundant power supplies, (1) Power distribution board, (3) Hot-swap redundant system fans, (1) Control panel, (2) Internal to external sas connector converter boards, (2) Dual-port internal interface card, (2) Expanders, (16) internal SAS cables, (1) Rack handle set, (1) Value rail kit\r\n\r\nFront Drive Form Factor<span class=\"Apple-tab-span\" style=\"white-space:pre\">\t</span>Hot-swap 2.5"\r\n","shortDescription":"Intel® Storage System is an A 2U JBOD Storage system with 24 2.5\" dual-ported drives, dual expanders, hot-swap redundant fans,and hot-swap redundant power supplies.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":4,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Intel® Storage System","keywords":"Hot-swap, internal, Factor, Dual-port, interface, card, boards, converter","description":"Chassis Dimensions<span style=\"white-space:pre\">\t</span>16.93" x 24.95" x 3.44"\r\n\r\nIncluded Items<span style=\"white-space:pre\">\t</span>(24) 2.5" Hot-swap drive carriers, (1) Backplane, (2) 460W Redundant power supplies, (1) Power distributi","og:title":"Intel® Storage System","og:description":"Chassis Dimensions<span style=\"white-space:pre\">\t</span>16.93" x 24.95" x 3.44"\r\n\r\nIncluded Items<span style=\"white-space:pre\">\t</span>(24) 2.5" Hot-swap drive carriers, (1) Backplane, (2) 460W Redundant power supplies, (1) Power distributi","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Intel_R__Storage_System.png"},"eventUrl":"","translationId":280,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":361,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/RackStation_serija_Plus.png","logo":true,"scheme":false,"title":"RackStation series Plus","vendorVerified":0,"rating":"1.90","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":2,"alias":"rackstation-series-plus","companyTitle":"Synology","companyTypes":["vendor"],"companyId":2822,"companyAlias":"synology","description":"Next-generation data protection and integrity\r\nWhen dealing with large-scale data storage, businesses require a solution that offers reliable backup and prevents file corruption. With support for the next-generation Btrfs file system, RackStation series Plus ensures information is stored with a high level of data integrity, while providing flexible and efficient data protection tools.\r\n\r\nFast and efficient snapshots\r\n\r\nSnapshots preserve the history of a shared folder allowing you to save up to 2561 backup copies for point-in-time recovery. Snapshots can be automatically captured up to every 5 minutes, without noticeably impacting system performance.\r\n\r\nMetadata mirroring and survivability\r\n\r\nBtrfs file system stores two copies of critical metadata on a volume, improving the availability and ensuring the integrity of your file system.\r\n\r\nCorruption detection and correction\r\n\r\nBtrfs generates checksums for data and metadata, and then verifies the checksums during each read process to ensure the integrity of the filesystem and files. If the file system discovers a mismatch, metadata will be repaired to keep file system consistent. In the mean time, corrupted files will be reported and logged.\r\n\r\nCustomizable quotas for shared folders\r\n\r\nWith Btrfs, you can specify a storage limit for each shared folder, making it possible to precisely control space consumption when multiple teams or departments save files on the same Synology NAS server.\r\n\r\nQuad-core CPU for speedy performance\r\nRackStation series Plus is powered by a quad-core CPU running at 2.4 GHz. Combined with 2GB of DDR3 RAM (expandable to 6GB), it delivers blazing-fast performance over 450 MB/s reading and 380 MB/s writing2. This kind of power makes it easy for RackStation series Plus to run multiple applications and deliver consistently high throughput to all connected clients.\r\n\r\nOn-the-fly scalability up to 24 drives\r\nAs your data storage needs grow, RackStation series Plus can be connected to a dedicated RackStation series Plus expansion unit3, allowing you to expand storage capacity to 24 drives for a total of 192TB4 without disrupting service. The specially-designed connection cables ensure high-speed data transmission between the main server and expansion unit.\r\n","shortDescription":"Designed for growing businesses, RackStation series Plus is a powerful network-attached storage solution featuring schedulable snapshots and resilient data integrity powered by the Btrfs file system, on-the-fly scalability up to 24 drives, as well as reliable performance required by modern workplaces.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":5,"sellingCount":15,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"RackStation series Plus","keywords":"data, system, series, RackStation, file, Plus, Btrfs, integrity","description":"Next-generation data protection and integrity\r\nWhen dealing with large-scale data storage, businesses require a solution that offers reliable backup and prevents file corruption. With support for the next-generation Btrfs file system, RackStation series Plus e","og:title":"RackStation series Plus","og:description":"Next-generation data protection and integrity\r\nWhen dealing with large-scale data storage, businesses require a solution that offers reliable backup and prevents file corruption. With support for the next-generation Btrfs file system, RackStation series Plus e","og:image":"https://old.roi4cio.com/fileadmin/user_upload/RackStation_serija_Plus.png"},"eventUrl":"","translationId":362,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1036,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/dell_emc_product.jpg","logo":true,"scheme":false,"title":"Dell EMC NFV Ready Bundle for VMware","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":59,"alias":"dell-emc-nfv-ready-bundle-for-vmware","companyTitle":"Dell EMC","companyTypes":["vendor"],"companyId":955,"companyAlias":"dell-emc","description":"The Dell EMC NFV Ready Bundle for VMware combines hardware, software, and Dell EMC engineering and is designed to create a more flexible, scalable, and agile platform for CSPs. It includes open standards-based Dell EMC cloud infrastructure hardware (compute, networking) and a choice of a Virtual Infrastructure Manager (vCloud Director or VMware Integrated OpenStack) with vSAN or Dell EMC ScaleIO.\r\nThe solution is pre-validated with VMware vCloud NFV Platform, and it encompasses both hardware and software. This specific software bundle is optimized around Dell EMC cloud infrastructure hardware.\r\nThe pre-validated solution minimizes adoption time and significantly reduces time to service from weeks to days/hours. In addition, the solution provides carrier-grade reliability to meet SLA requirements.\r\nAt its core, the VMware vCloud NFV Platform includes the vSphere virtualization platform, vSAN, NSX, vCloud Director or VMware Integrated OpenStack for the VIM, and vRealize Operations for operations management. Deploying VMware vSphere as host nodes and virtual machines will allow the gaining performance, security, and operational advantages.\r\nAs an alternative to vSAN, Dell EMC ScaleIO can be used as the software-defined storage option for the Dell EMC NFV Ready Bundle for VMware if it is more suitable for your storage needs.\r\nIn addition, there are two VIM options available with the Dell EMC NFV Ready Bundle for VMware. You can select either VMware vCloud Director or VMware Integrated OpenStack depending on which option best fits your VIM requirements. \r\n\r\nDell EMC NFV Ready Bundle for VMware benefits:\r\n<ul><li>Ease of ordering: The full bundle is orderable from Dell EMC. No need to purchase vCloud NFV Platform software separately.</li><li>Choice: VMware vCloud NFV provides a choice of Virtual Infrastructure Manager, giving you the flexibility to deploy on OpenStack or using vCloud Director.</li><li>Long lifecycle deployment: The solution includes long-life Intel® Xeon® processors which reduces your investment risk and protects your investment in the solution for the long-term.</li><li>Seamless customer experience: Dell EMC provides a single point of contact for pre-sales and post-sales support for the entire solution and length of your deployment for peace of mind.</li><li>World-class professional services: The solution includes Dell EMC professional services that spans consulting, deployment, and design support to guide your deployment needs.</li><li>Customizable solution: The solution is prescriptive, but it can be customized to address each customer’s unique virtual network function (VNF) workload requirements. </li></ul>","shortDescription":"The Dell EMC NFV Ready Bundle for VMware is a turnkey solution optimized to simplify and accelerate production deployments. With this solution, Dell EMC has built a fully integrated and validated solution that enables service providers to immediately launch their own services on top of this Network Function Virtualization (NFV) platform, minimizing, if not eliminating, the need to apply engineering resources to develop their own infrastructure.\r\n\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":2,"sellingCount":14,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC NFV Ready Bundle for VMware","keywords":"Dell, VMware, solution, vCloud, your, Bundle, Ready, deployment","description":"The Dell EMC NFV Ready Bundle for VMware combines hardware, software, and Dell EMC engineering and is designed to create a more flexible, scalable, and agile platform for CSPs. It includes open standards-based Dell EMC cloud infrastructure hardware (compute, n","og:title":"Dell EMC NFV Ready Bundle for VMware","og:description":"The Dell EMC NFV Ready Bundle for VMware combines hardware, software, and Dell EMC engineering and is designed to create a more flexible, scalable, and agile platform for CSPs. It includes open standards-based Dell EMC cloud infrastructure hardware (compute, n","og:image":"https://old.roi4cio.com/fileadmin/user_upload/dell_emc_product.jpg"},"eventUrl":"","translationId":1037,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":2,"title":"Virtual machine and cloud system software","alias":"virtual-machine-and-cloud-system-software","description":" A virtual machine (VM) is a software-based computer that exists within another computer’s operating system, often used for the purposes of testing, backing up data, or running SaaS applications. To fully grasp how VMs work, it’s important to first understand how computer software and hardware are typically integrated by an operating system.\r\n"The cloud" refers to servers that are accessed over the Internet, and the software and databases that run on those servers. Cloud servers are located in data centers all over the world. By using cloud computing, users and companies don't have to manage physical servers themselves or run software applications on their own machines.\r\nThe cloud enables users to access the same files and applications from almost any device, because the computing and storage take place on servers in a data center, instead of locally on the user device. This is why a user can log into their Instagram account on a new phone after their old phone breaks and still find their old account in place, with all their photos, videos, and conversation history. It works the same way with cloud email providers like Gmail or Microsoft Office 365, and with cloud storage providers like Dropbox or Google Drive.\r\nFor businesses, switching to cloud computing removes some IT costs and overhead: for instance, they no longer need to update and maintain their own servers, as the cloud vendor they are using will do that. This especially makes an impact on small businesses that may not have been able to afford their own internal infrastructure but can outsource their infrastructure needs affordably via the cloud. The cloud can also make it easier for companies to operate internationally because employees and customers can access the same files and applications from any location.\r\nSeveral cloud providers offer virtual machines to their customers. These virtual machines typically live on powerful servers that can act as a host to multiple VMs and can be used for a variety of reasons that wouldn’t be practical with a locally-hosted VM. These include:\r\n<ul><li>Running SaaS applications - Software-as-a-Service, or SaaS for short, is a cloud-based method of providing software to users. SaaS users subscribe to an application rather than purchasing it once and installing it. These applications are generally served to the user over the Internet. Often, it is virtual machines in the cloud that are doing the computation for SaaS applications as well as delivering them to users. If the cloud provider has a geographically distributed network edge, then the application will run closer to the user, resulting in faster performance.</li><li>Backing up data - Cloud-based VM services are very popular for backing up data because the data can be accessed from anywhere. Plus, cloud VMs provide better redundancy, require less maintenance, and generally scale better than physical data centers. (For example, it’s generally fairly easy to buy an extra gigabyte of storage space from a cloud VM provider, but much more difficult to build a new local data server for that extra gigabyte of data.)</li><li>Hosting services like email and access management - Hosting these services on cloud VMs is generally faster and more cost-effective, and helps minimize maintenance and offload security concerns as well.</li></ul>","materialsDescription":"What is an operating system?\r\nTraditional computers are built out of physical hardware, including hard disk drives, processor chips, RAM, etc. In order to utilize this hardware, computers rely on a type of software known as an operating system (OS). Some common examples of OSes are Mac OSX, Microsoft Windows, Linux, and Android.\r\nThe OS is what manages the computer’s hardware in ways that are useful to the user. For example, if the user wants to access the Internet, the OS directs the network interface card to make the connection. If the user wants to download a file, the OS will partition space on the hard drive for that file. The OS also runs and manages other pieces of software. For example, it can run a web browser and provide the browser with enough random access memory (RAM) to operate smoothly. Typically, operating systems exist within a physical computer at a one-to-one ratio; for each machine, there is a single OS managing its physical resources.\r\n<span style=\"font-weight: bold;\">Can you have two or more operating systems on one computer?</span>\r\nSome users want to be able to run multiple operating systems simultaneously on one computer, either for testing or one of the other reasons listed in the section below. This can be achieved through a process called virtualization. In virtualization, a piece of software behaves as if it were an independent computer. This piece of software is called a virtual machine, also known as a ‘guest’ computer. (The computer on which the VM is running is called the ‘host’.) The guest has an OS as well as its own virtual hardware.\r\n‘Virtual hardware’ may sound like a bit of an oxymoron, but it works by mapping to real hardware on the host computer. For example, the VM’s ‘hard drive’ is really just a file on the host computer’s hard drive. When the VM wants to save a new file, it actually has to communicate with the host OS, which will write this file to the host hard drive. Because virtual hardware must perform this added step of negotiating with the host to access hardware resources, virtual machines can’t run quite as fast as their host computers.\r\nWith virtualization, one computer can run two or more operating systems. The number of VMs that can run on one host is limited only by the host’s available resources. The user can run the OS of a VM in a window like any other program, or they can run it in fullscreen so that it looks and feels like a genuine host OS.\r\n <span style=\"font-weight: bold; \">What are virtual machines used for?</span>\r\nSome of the most popular reasons people run virtual machines include:\r\n<span style=\"font-weight: bold; \">Testing</span> - Oftentimes software developers want to be able to test their applications in different environments. They can use virtual machines to run their applications in various OSes on one computer. This is simpler and more cost-effective than having to test on several different physical machines.\r\n<span style=\"font-weight: bold; \">Running software designed for other OSes</span> - Although certain software applications are only available for a single platform, a VM can run software designed for a different OS. For example, a Mac user who wants to run software designed for Windows can run a Windows VM on their Mac host.\r\n<span style=\"font-weight: bold; \">Running outdated software</span> - Some pieces of older software can’t be run in modern OSes. Users who want to run these applications can run an old OS on a virtual machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Virtual_machine_and_cloud_system_software.png"},{"id":293,"title":"System Software","alias":"system-software","description":" System software is a type of computer program that is designed to run a computer’s hardware and application programs. If we think of the computer system as a layered model, the system software is the interface between the hardware and user applications. The operating system (OS) is the best-known example of system software. The OS manages all the other programs on a computer.\r\nOther examples of system software include:\r\n<ul><li>The BIOS (basic input/output system) gets the computer system started after you turn it on and manages the data flow between the operating system and attached devices such as the hard disk, video adapter, keyboard, mouse and printer.</li><li>The boot program loads the operating system into the computer's main memory or random access memory (RAM).</li><li>An assembler takes basic computer instructions and converts them into a pattern of bits that the computer's processor can use to perform its basic operations.</li><li>A device driver controls a particular type of device that is attached to your computers, such as a keyboard or a mouse. The driver program converts the more general input/output instructions of the operating system to messages that the device type can understand.</li></ul>\r\nAdditionally, system software can also include system utilities, such as the disk defragmenter and System Restore, and development tools, such as compilers and debuggers.\r\nSystem software and application programs are the two main types of computer software. Unlike system software, an application program (often just called an application or app) performs a particular function for the user. Examples include browsers, email clients, word processors, and spreadsheets.","materialsDescription":" \r\n<span style=\"font-weight: bold; \">What is system software?</span>\r\nSystem software is software designed to provide a platform for other software. Examples of system software include operating systems like macOS, GNU/Linux and Microsoft Windows, computational science software, game engines, industrial automation, and software as a service applications.\r\nIn contrast to system software, software that allows users to do user-oriented tasks such as create text documents, play games, listen to music, or browse the web are collectively referred to as application software.\r\nIn the early days of computing most application software was custom-written by computer users to fit their specific hardware and requirements. In contrast, system software was usually supplied by the manufacturer of the computer hardware and was intended to be used by most or all users of that system.\r\nThe line where the distinction should be drawn is not always clear. Many operating systems bundle[jargon] application software. Such software is not considered system software when it can be uninstalled usually without affecting the functioning of other software. Exceptions could be e.g. web browsers such as Internet Explorer where Microsoft argued in court that it was system software that could not be uninstalled. Later examples are Chrome OS and Firefox OS where the browser functions as the only user interface and the only way to run programs (and other web browsers can not be installed in their place), then they can well be argued to be (part of) the operating system and hence system software.\r\nAnother borderline example is cloud-based software. This software provides services to a software client (usually a web browser or a JavaScript application running in the web browser), not to the user directly, and is therefore systems software. It is also developed using system programming methodologies and systems programming languages. Yet from the perspective of functionality there is little difference between a word processing application and word processing web application.\r\n<span style=\"font-weight: bold; \">Operating systems or system control program</span>\r\nThe operating system (prominent examples being Microsoft Windows, macOS, Linux, and z/OS), allows the parts of a computer to work together by performing tasks like transferring data between memory and disks or rendering output onto a display device. It provides a platform (hardware abstraction layer) to run high-level system software and application software.\r\nA kernel is the core part of the operating system that defines an API for applications programs (including some system software) and an interface to device drivers.\r\nDevice drivers, including also computer BIOS and device firmware, provide basic functionality to operate and control the hardware connected to or built into the computer.\r\nA user interface "allows users to interact with a computer." Either a command-line interface (CLI) or, since the 1980s a graphical user interface (GUI). Since this is the part of the operating system the user directly interacts with, it may be considered an application and therefore not system software.\r\n<span style=\"font-weight: bold;\">Utility software or system support programs</span>\r\nFor historical reasons, some organizations use the term systems programmer to describe a job function which is more accurately termed systems administrator. Software tools these employees use are then called system software. This so-called Utility software helps to analyze, configure, optimize and maintain the computer, such as virus protection. In some publications, the term system software also includes software development tools (like a compiler, linker or debugger).","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_System_and_Network_Management_Software.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1044,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/microsoft.png","logo":true,"scheme":false,"title":"Microsoft System Center Virtual Machine Manager Analytics solution","vendorVerified":0,"rating":"2.00","implementationsCount":2,"suppliersCount":0,"supplierPartnersCount":272,"alias":"microsoft-system-center-virtual-machine-manager-analytics-solution","companyTitle":"Microsoft","companyTypes":["vendor"],"companyId":163,"companyAlias":"microsoft","description":"The Virtual Machine Manager Analytics solution comes with some built-in reports with preconfigured data visualizations so you can easily get started with frequently used queries, such as:\r\n\r\n<ul><li>Distribution of failed jobs across VMM instances to easily scope down the broken instances.</li><li>Distribution of failures over time to find sudden spikes, and to help with correlating the cause and failures.</li><li>Distribution of failed jobs and errors to help with identifying the most error-prone jobs and the cause.</li><li>Distribution of the job runtime across different runs to identify the sluggish and error-prone jobs.</li></ul>\r\nThese are just a few examples of the possibilities with Virtual Machine Manager Analytics. Because the solution is open-source, we are looking forward to contributions from the community for other data visualizations.\r\nFurther, the data from System Center Virtual Machine Manager can be combined with several features in OMS for compelling use cases, including:\r\n<ul><li>Bring together the jobs data from multiple VMM instances to a single OMS workspace. With a view, now you can keep an eye on job details for all your VMM instances together.</li><li>Configure your OMS alerts with VMM jobs information to raise notifications for completion or failure of VMM jobs, and inform the appropriate teams.</li><li>Correlate VMM job data with other events in OMS log analytics for faster troubleshooting of failures. You can easily identify the possible causes of sudden failures on a VMM machine by correlating the VMM job logs with information from solutions like Change Tracking and Hyper-V management solutions.</li><li>Use Azure Automation runbooks with VMM job data to help enable automatic remediation for known or frequent issues.</li></ul>","shortDescription":"Virtual Machine Manager Analytics is an open-source solution that can be included in your OMS workspace. This solution brings in the job data of your on-premises VMM instances to the log analytics in OMS. VMM admins can then use this versatile platform to construct queries for searching the relevant data and creating data visualizations.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":7,"sellingCount":14,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Microsoft System Center Virtual Machine Manager Analytics solution","keywords":"with, jobs, data, failures, Distribution, instances, Manager, from","description":"The Virtual Machine Manager Analytics solution comes with some built-in reports with preconfigured data visualizations so you can easily get started with frequently used queries, such as:\r\n\r\n<ul><li>Distribution of failed jobs across VMM instances to easily sc","og:title":"Microsoft System Center Virtual Machine Manager Analytics solution","og:description":"The Virtual Machine Manager Analytics solution comes with some built-in reports with preconfigured data visualizations so you can easily get started with frequently used queries, such as:\r\n\r\n<ul><li>Distribution of failed jobs across VMM instances to easily sc","og:image":"https://old.roi4cio.com/fileadmin/user_upload/microsoft.png"},"eventUrl":"","translationId":1045,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":2,"title":"Virtual machine and cloud system software","alias":"virtual-machine-and-cloud-system-software","description":" A virtual machine (VM) is a software-based computer that exists within another computer’s operating system, often used for the purposes of testing, backing up data, or running SaaS applications. To fully grasp how VMs work, it’s important to first understand how computer software and hardware are typically integrated by an operating system.\r\n"The cloud" refers to servers that are accessed over the Internet, and the software and databases that run on those servers. Cloud servers are located in data centers all over the world. By using cloud computing, users and companies don't have to manage physical servers themselves or run software applications on their own machines.\r\nThe cloud enables users to access the same files and applications from almost any device, because the computing and storage take place on servers in a data center, instead of locally on the user device. This is why a user can log into their Instagram account on a new phone after their old phone breaks and still find their old account in place, with all their photos, videos, and conversation history. It works the same way with cloud email providers like Gmail or Microsoft Office 365, and with cloud storage providers like Dropbox or Google Drive.\r\nFor businesses, switching to cloud computing removes some IT costs and overhead: for instance, they no longer need to update and maintain their own servers, as the cloud vendor they are using will do that. This especially makes an impact on small businesses that may not have been able to afford their own internal infrastructure but can outsource their infrastructure needs affordably via the cloud. The cloud can also make it easier for companies to operate internationally because employees and customers can access the same files and applications from any location.\r\nSeveral cloud providers offer virtual machines to their customers. These virtual machines typically live on powerful servers that can act as a host to multiple VMs and can be used for a variety of reasons that wouldn’t be practical with a locally-hosted VM. These include:\r\n<ul><li>Running SaaS applications - Software-as-a-Service, or SaaS for short, is a cloud-based method of providing software to users. SaaS users subscribe to an application rather than purchasing it once and installing it. These applications are generally served to the user over the Internet. Often, it is virtual machines in the cloud that are doing the computation for SaaS applications as well as delivering them to users. If the cloud provider has a geographically distributed network edge, then the application will run closer to the user, resulting in faster performance.</li><li>Backing up data - Cloud-based VM services are very popular for backing up data because the data can be accessed from anywhere. Plus, cloud VMs provide better redundancy, require less maintenance, and generally scale better than physical data centers. (For example, it’s generally fairly easy to buy an extra gigabyte of storage space from a cloud VM provider, but much more difficult to build a new local data server for that extra gigabyte of data.)</li><li>Hosting services like email and access management - Hosting these services on cloud VMs is generally faster and more cost-effective, and helps minimize maintenance and offload security concerns as well.</li></ul>","materialsDescription":"What is an operating system?\r\nTraditional computers are built out of physical hardware, including hard disk drives, processor chips, RAM, etc. In order to utilize this hardware, computers rely on a type of software known as an operating system (OS). Some common examples of OSes are Mac OSX, Microsoft Windows, Linux, and Android.\r\nThe OS is what manages the computer’s hardware in ways that are useful to the user. For example, if the user wants to access the Internet, the OS directs the network interface card to make the connection. If the user wants to download a file, the OS will partition space on the hard drive for that file. The OS also runs and manages other pieces of software. For example, it can run a web browser and provide the browser with enough random access memory (RAM) to operate smoothly. Typically, operating systems exist within a physical computer at a one-to-one ratio; for each machine, there is a single OS managing its physical resources.\r\n<span style=\"font-weight: bold;\">Can you have two or more operating systems on one computer?</span>\r\nSome users want to be able to run multiple operating systems simultaneously on one computer, either for testing or one of the other reasons listed in the section below. This can be achieved through a process called virtualization. In virtualization, a piece of software behaves as if it were an independent computer. This piece of software is called a virtual machine, also known as a ‘guest’ computer. (The computer on which the VM is running is called the ‘host’.) The guest has an OS as well as its own virtual hardware.\r\n‘Virtual hardware’ may sound like a bit of an oxymoron, but it works by mapping to real hardware on the host computer. For example, the VM’s ‘hard drive’ is really just a file on the host computer’s hard drive. When the VM wants to save a new file, it actually has to communicate with the host OS, which will write this file to the host hard drive. Because virtual hardware must perform this added step of negotiating with the host to access hardware resources, virtual machines can’t run quite as fast as their host computers.\r\nWith virtualization, one computer can run two or more operating systems. The number of VMs that can run on one host is limited only by the host’s available resources. The user can run the OS of a VM in a window like any other program, or they can run it in fullscreen so that it looks and feels like a genuine host OS.\r\n <span style=\"font-weight: bold; \">What are virtual machines used for?</span>\r\nSome of the most popular reasons people run virtual machines include:\r\n<span style=\"font-weight: bold; \">Testing</span> - Oftentimes software developers want to be able to test their applications in different environments. They can use virtual machines to run their applications in various OSes on one computer. This is simpler and more cost-effective than having to test on several different physical machines.\r\n<span style=\"font-weight: bold; \">Running software designed for other OSes</span> - Although certain software applications are only available for a single platform, a VM can run software designed for a different OS. For example, a Mac user who wants to run software designed for Windows can run a Windows VM on their Mac host.\r\n<span style=\"font-weight: bold; \">Running outdated software</span> - Some pieces of older software can’t be run in modern OSes. Users who want to run these applications can run an old OS on a virtual machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Virtual_machine_and_cloud_system_software.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":823,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/FUJITSU_Integrated_System_PRIMEFLEX_for_Storage_Spaces_Direct.png","logo":true,"scheme":false,"title":"FUJITSU Integrated System PRIMEFLEX for Storage Spaces Direct","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":13,"alias":"fujitsu-integrated-system-primeflex-for-storage-spaces-direct","companyTitle":"Fujitsu","companyTypes":["vendor"],"companyId":2750,"companyAlias":"fujitsu","description":"For a quick setup of a Microsoft-based hyper-converged IT infrastructure, Fujitsu offers with PRIMEFLEX for Storage Spaces Direct an integrated system including all hardware and software to simplify procurement and deployment of a Microsoft-based hyper-converged IT infrastructure. The solution leverages high performance and energy-efficient Fujitsu PRIMERGY standard x86 servers and software-defined server and storage technology integrated in Microsoft Windows Server 2016 to reduce complexity and TCO in data center infrastructure operations. In order to meet specific customer requirements, Fujitsu offers a range of validated server configurations including single point of contact for support. Customer benefits at a glance:\r\nFast time to production for your virtual infrastructure\r\nEasy to order, deploy, operate and scale\r\nHigh performance, availability and efficiency\r\nGrow as you go with no large upfront investments\r\nReduce storage costs, save floor space, power and cooling expenses\r\nSingle point of contact for support","shortDescription":"Fast track to your Microsoft hyper-converged IT infrastructure\r\nWhile converged infrastructure deployment models have greatly improved data center operations in the last couple of years, many organizations are now looking at hyper-converged infrastructures (HCI) as the next step forward by leveraging the software defined design principles to further streamline the convergence of infrastructure. These systems are designed to be simple, resilient, and agile in order for IT organizations to respond to the needs of their business through the ability to easily adapt their infrastructure to the actual demand.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"FUJITSU Integrated System PRIMEFLEX for Storage Spaces Direct","keywords":"infrastructure, Fujitsu, contact, offers, integrated, including, server, storage","description":"For a quick setup of a Microsoft-based hyper-converged IT infrastructure, Fujitsu offers with PRIMEFLEX for Storage Spaces Direct an integrated system including all hardware and software to simplify procurement and deployment of a Microsoft-based hyper-converg","og:title":"FUJITSU Integrated System PRIMEFLEX for Storage Spaces Direct","og:description":"For a quick setup of a Microsoft-based hyper-converged IT infrastructure, Fujitsu offers with PRIMEFLEX for Storage Spaces Direct an integrated system including all hardware and software to simplify procurement and deployment of a Microsoft-based hyper-converg","og:image":"https://old.roi4cio.com/fileadmin/user_upload/FUJITSU_Integrated_System_PRIMEFLEX_for_Storage_Spaces_Direct.png"},"eventUrl":"","translationId":823,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1097,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/FUJITSU_Storage_ETERNUS_CS200c_S4.png","logo":true,"scheme":false,"title":"Fujitsu Storage ETERNUS CS200c S4","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":13,"alias":"fujitsu-storage-eternus-cs200c-s4","companyTitle":"Fujitsu","companyTypes":["vendor"],"companyId":2750,"companyAlias":"fujitsu","description":"<span style=\"font-weight: 700; \">Features<span style=\"white-space:pre\">\t</span>and Benefits:</span>\r\n<span style=\"font-weight: 700; \">Integrates correctly-sized system technology and leading data protection software </span>\r\nEasy and fast deployment, simple to purchase\r\nMaximizes resources\r\nBudget security\r\n<span style=\"font-weight: 700; \">Backup, archiving and deduplication capabilities </span><span style=\"font-weight: 700;\">within one appliance</span>\r\nManaging the complete data lifecycle efficiently\r\nReduces network requirements and storage costs\r\n<span style=\"font-weight: 700; \">Protects a wide range of applications, virtual and hyper-converged infrastructures with a single integrated solution</span>\r\nIncreases availability and recoverability meeting highest RTO/RPO demands\r\nCuts cost and downtime","shortDescription":"The FUJITSU Storage ETERNUS CS200c simplifies data protection and management in a single integrated solution for the digital world. Industry-leading software from Commvault is perfectly aligned with powerful Fujitsu system technology providing excellent features for business efficiency and continuity. The appliance addresses the challenges in protecting business applications, virtualized and hyper-converged environments and facilitates compliance with regulations.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":10,"sellingCount":13,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Fujitsu Storage ETERNUS CS200c S4","keywords":"data, range, wide, hyper-converged, virtual, applications, costs, Reduces","description":"<span style=\"font-weight: 700; \">Features<span style=\"white-space:pre\">\t</span>and Benefits:</span>\r\n<span style=\"font-weight: 700; \">Integrates correctly-sized system technology and leading data protection software </span>\r\nEasy and fast deployment, simp","og:title":"Fujitsu Storage ETERNUS CS200c S4","og:description":"<span style=\"font-weight: 700; \">Features<span style=\"white-space:pre\">\t</span>and Benefits:</span>\r\n<span style=\"font-weight: 700; \">Integrates correctly-sized system technology and leading data protection software </span>\r\nEasy and fast deployment, simp","og:image":"https://old.roi4cio.com/fileadmin/user_upload/FUJITSU_Storage_ETERNUS_CS200c_S4.png"},"eventUrl":"","translationId":1098,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":859,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_dlja_rezervnogo_kopirovanija_i_vosstanovlenija_dannykh.png","logo":true,"scheme":false,"title":"Dell EMC для резервного копирования и восстановления данных","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":59,"alias":"dell-emc-dlja-rezervnogo-kopirovanija-i-vosstanovlenija-dannykh","companyTitle":"Dell EMC","companyTypes":["vendor"],"companyId":955,"companyAlias":"dell-emc","description":"Обзор Решения Dell EMC для резервного копирования и восстановления данных\r\n Дисковая система резервного копирования и восстановления данных Ленточные системы резервного копирования и восстановления Защита данных Дисковая система резервного копирования и восстановления данныхЛенточные системы резервного копирования и восстановленияЗащита данных\r\n\r\nРезервное копирование на съемные дисковые накопители и непрерывная защита данных\r\n\r\nЭкономичное и надежное резервное копирование, архивирование и удаленное хранение данных.\r\n\r\nСэкономьте время и деньги и повысьте эффективность работы ИТ-отдела с помощью упрощенного комплексного подхода к развертыванию систем.","shortDescription":"Надежное резервное копирование на диск или ленточный накопитель, удаленное хранение, непрерывная защита данных и долгосрочное архивирование.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":16,"sellingCount":19,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC для резервного копирования и восстановления данных","keywords":"данных, копирования, резервного, восстановления, Дисковая, система, Dell, копирование","description":"Обзор Решения Dell EMC для резервного копирования и восстановления данных\r\n Дисковая система резервного копирования и восстановления данных Ленточные системы резервного копирования и восстановления Защита данных Дисковая си","og:title":"Dell EMC для резервного копирования и восстановления данных","og:description":"Обзор Решения Dell EMC для резервного копирования и восстановления данных\r\n Дисковая система резервного копирования и восстановления данных Ленточные системы резервного копирования и восстановления Защита данных Дисковая си","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Dell_EMC_dlja_rezervnogo_kopirovanija_i_vosstanovlenija_dannykh.png"},"eventUrl":"","translationId":7016,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":131,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/VMware_vSphere_with_Operations_Management.png","logo":true,"scheme":false,"title":"VMware vSphere with Operations Management","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":97,"alias":"vmware-vsphere-with-operations-management","companyTitle":"VMware","companyTypes":["vendor"],"companyId":168,"companyAlias":"vmware","description":"Deploy vSphere with Operations Management 6.0 on the ESXi hypervisor architecture\r\nVMware vSphere with Operations Management 6.0 is available exclusively on the vSphere ESXi hypervisor architecture. ESXi is the latest hypervisor architecture and users can upgrade to ESXi from ESX as part of an upgrade to vSphere with Operations Management 6.0.","shortDescription":"VMware vSphere with Operations Management makes it easy to find, select, and download the content needed to install or upgrade a VMware product or suite with the push of a button.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"VMware vSphere with Operations Management","keywords":"vSphere, ESXi, Operations, Management, with, hypervisor, architecture, VMware","description":"Deploy vSphere with Operations Management 6.0 on the ESXi hypervisor architecture\r\nVMware vSphere with Operations Management 6.0 is available exclusively on the vSphere ESXi hypervisor architecture. ESXi is the latest hypervisor architecture and users can upgr","og:title":"VMware vSphere with Operations Management","og:description":"Deploy vSphere with Operations Management 6.0 on the ESXi hypervisor architecture\r\nVMware vSphere with Operations Management 6.0 is available exclusively on the vSphere ESXi hypervisor architecture. ESXi is the latest hypervisor architecture and users can upgr","og:image":"https://old.roi4cio.com/fileadmin/user_upload/VMware_vSphere_with_Operations_Management.png"},"eventUrl":"","translationId":132,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":305,"title":"Storage Replication Software","alias":"storage-replication-software","description":" Storage replication is becoming more popular in the enterprise and if you're already operating in a virtual environment, you have multiple replication solutions to choose from. While SAN products have been offering integrated hardware/software replication solutions for years, virtualization vendors have started integrating this feature into their newer products. VMware, for example, offers a storage replication feature in its newest version of vSphere. If you already have a SAN that supports replication you can choose how you want to replicate. Not a bad idea since VMware’s solution is version 1.0. One of the replication chief benefits is its ability to automate the process of data backup and redundancy.\r\nRestoring your data is as simple as the original storage replication process. You just go online and switch over to the replicated server. Depending on your provider, the complexity of your infrastructure and your comfort level with technology, it may also be possible to set an automatic failover to prevent any customer-facing outage at all. But recovery is as simple as getting online and synchronizing the replicated data to the original server, restoring it to the state of its last backup. You will still have some data loss, the transactions, and records from the intervening period. But if that backup was recent, within the last day or two, the effort required to reconstruct lost transactions and records will be relatively minor.\r\nIt's important to understand that storage replication only insures you against hardware failures, and does nothing about the risk of accidental deletion or of your virtualization provider failing to follow best practices. If you have replicated your data, you have a copy of it as it existed at the moment you replicated it. But don't assume that your virtualization provider stores your replicated data at a different data center.","materialsDescription":" <span style=\"font-weight: bold;\">What is Data Replication Software?</span>\r\nData replication software supports data security, disaster resilience and business continuity by rapidly creating a data replica in a location independent of the data’s source. The software provides central management of replication policy across heterogeneous data sources and targets. Different from backups, data replicas update frequently rather than retain one unchanged copy for an extended period.\r\nData replication software ensures consistency for end-users accessing multiple data stores in the normal course of business. Other potential uses are zero-downtime data migration and multi-site replication for business continuity in case of site disaster. Data replication is a necessary part of long-term data retention and archiving. More recently, data replication software is offered as capably providing real-time transactional data delivery and integration into data lakes to support big data initiatives.\r\nVendors boast data policy compliance, any-point-in-time recovery and failover, and continuous replication with limited risk of data loss. They compete on providing minimum disruption to network activities and low bandwidth consumption, without cost to security.\r\n<span style=\"font-weight: bold;\">Data Replication Software Features</span>\r\nData replication application provides the following features:\r\n<ul><li>Continuous replication with many recovery points</li><li>Cross-platform replication (e.g. disk to cloud, cloud to disk)</li><li>Database replication in remote locations</li><li>Automated compliance-driven data retention</li><li>Instant failover, automatic user redirect to secondary server</li><li>Monitor replication environment via GUI</li><li>Disaster recovery simulation, testing</li><li>Synchronous data replication with zero data loss</li><li>Asynchronous data replication for performance</li><li>Orchestration of data replication, migration</li><li>Perform analytics upon data sets separately</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Storage_Replication_Software1.png"},{"id":2,"title":"Virtual machine and cloud system software","alias":"virtual-machine-and-cloud-system-software","description":" A virtual machine (VM) is a software-based computer that exists within another computer’s operating system, often used for the purposes of testing, backing up data, or running SaaS applications. To fully grasp how VMs work, it’s important to first understand how computer software and hardware are typically integrated by an operating system.\r\n"The cloud" refers to servers that are accessed over the Internet, and the software and databases that run on those servers. Cloud servers are located in data centers all over the world. By using cloud computing, users and companies don't have to manage physical servers themselves or run software applications on their own machines.\r\nThe cloud enables users to access the same files and applications from almost any device, because the computing and storage take place on servers in a data center, instead of locally on the user device. This is why a user can log into their Instagram account on a new phone after their old phone breaks and still find their old account in place, with all their photos, videos, and conversation history. It works the same way with cloud email providers like Gmail or Microsoft Office 365, and with cloud storage providers like Dropbox or Google Drive.\r\nFor businesses, switching to cloud computing removes some IT costs and overhead: for instance, they no longer need to update and maintain their own servers, as the cloud vendor they are using will do that. This especially makes an impact on small businesses that may not have been able to afford their own internal infrastructure but can outsource their infrastructure needs affordably via the cloud. The cloud can also make it easier for companies to operate internationally because employees and customers can access the same files and applications from any location.\r\nSeveral cloud providers offer virtual machines to their customers. These virtual machines typically live on powerful servers that can act as a host to multiple VMs and can be used for a variety of reasons that wouldn’t be practical with a locally-hosted VM. These include:\r\n<ul><li>Running SaaS applications - Software-as-a-Service, or SaaS for short, is a cloud-based method of providing software to users. SaaS users subscribe to an application rather than purchasing it once and installing it. These applications are generally served to the user over the Internet. Often, it is virtual machines in the cloud that are doing the computation for SaaS applications as well as delivering them to users. If the cloud provider has a geographically distributed network edge, then the application will run closer to the user, resulting in faster performance.</li><li>Backing up data - Cloud-based VM services are very popular for backing up data because the data can be accessed from anywhere. Plus, cloud VMs provide better redundancy, require less maintenance, and generally scale better than physical data centers. (For example, it’s generally fairly easy to buy an extra gigabyte of storage space from a cloud VM provider, but much more difficult to build a new local data server for that extra gigabyte of data.)</li><li>Hosting services like email and access management - Hosting these services on cloud VMs is generally faster and more cost-effective, and helps minimize maintenance and offload security concerns as well.</li></ul>","materialsDescription":"What is an operating system?\r\nTraditional computers are built out of physical hardware, including hard disk drives, processor chips, RAM, etc. In order to utilize this hardware, computers rely on a type of software known as an operating system (OS). Some common examples of OSes are Mac OSX, Microsoft Windows, Linux, and Android.\r\nThe OS is what manages the computer’s hardware in ways that are useful to the user. For example, if the user wants to access the Internet, the OS directs the network interface card to make the connection. If the user wants to download a file, the OS will partition space on the hard drive for that file. The OS also runs and manages other pieces of software. For example, it can run a web browser and provide the browser with enough random access memory (RAM) to operate smoothly. Typically, operating systems exist within a physical computer at a one-to-one ratio; for each machine, there is a single OS managing its physical resources.\r\n<span style=\"font-weight: bold;\">Can you have two or more operating systems on one computer?</span>\r\nSome users want to be able to run multiple operating systems simultaneously on one computer, either for testing or one of the other reasons listed in the section below. This can be achieved through a process called virtualization. In virtualization, a piece of software behaves as if it were an independent computer. This piece of software is called a virtual machine, also known as a ‘guest’ computer. (The computer on which the VM is running is called the ‘host’.) The guest has an OS as well as its own virtual hardware.\r\n‘Virtual hardware’ may sound like a bit of an oxymoron, but it works by mapping to real hardware on the host computer. For example, the VM’s ‘hard drive’ is really just a file on the host computer’s hard drive. When the VM wants to save a new file, it actually has to communicate with the host OS, which will write this file to the host hard drive. Because virtual hardware must perform this added step of negotiating with the host to access hardware resources, virtual machines can’t run quite as fast as their host computers.\r\nWith virtualization, one computer can run two or more operating systems. The number of VMs that can run on one host is limited only by the host’s available resources. The user can run the OS of a VM in a window like any other program, or they can run it in fullscreen so that it looks and feels like a genuine host OS.\r\n <span style=\"font-weight: bold; \">What are virtual machines used for?</span>\r\nSome of the most popular reasons people run virtual machines include:\r\n<span style=\"font-weight: bold; \">Testing</span> - Oftentimes software developers want to be able to test their applications in different environments. They can use virtual machines to run their applications in various OSes on one computer. This is simpler and more cost-effective than having to test on several different physical machines.\r\n<span style=\"font-weight: bold; \">Running software designed for other OSes</span> - Although certain software applications are only available for a single platform, a VM can run software designed for a different OS. For example, a Mac user who wants to run software designed for Windows can run a Windows VM on their Mac host.\r\n<span style=\"font-weight: bold; \">Running outdated software</span> - Some pieces of older software can’t be run in modern OSes. Users who want to run these applications can run an old OS on a virtual machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Virtual_machine_and_cloud_system_software.png"},{"id":319,"title":"Event Management Tools","alias":"event-management-tools","description":" <span style=\"font-weight: bold; \">Event management software</span> is the generic term for a wide range of software products that are used in the management of professional and academic conferences, trade exhibitions, conventions and smaller events such as Continuing Professional Development (CPD) meetings.\r\nIn brief, event management software programs are solutions that assists event organizers in driving success through all aspects of their events—from event registration and event check-in, to event promotion and reporting.\r\nSome providers claim to offer event organizer software when in actuality they are really offering a software that solves one particular pain point, like event check in software. These platforms have their uses, but are limited in breadth of functionality. Best event management system is <span style=\"font-weight: bold; \">all-in-one event management software</span>, which serves as a one-stop shop for all of an event organizer’s needs. This type of software is sometimes called “event success software” or an “events cloud.”\r\n<p class=\"align-left\"><span style=\"color: rgb(97, 97, 97); \">Events are becoming more prevalent than ever and event management software is what is allowing them to do so. <span style=\"font-weight: bold; \">Today’s event management platform:</span></span></p>\r\n<ul><li><span style=\"color: rgb(97, 97, 97); \">Fulfills a wide range of functions such as event registration, event marketing and reporting.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Drives event success for a variety of B2B and B2C events.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Helps event organizers save time, save money, increase security and reduce event headaches thanks to a structure that is seamlessly integrated from end-to-end.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Should be reliable easy-to-use, come with a dedicated customer success team and should measurably impact your event goals.</span></li><li><span style=\"color: rgb(97, 97, 97); \">And should be sold as a complete product, not a series of add-ons.</span></li></ul>\r\nThe most common event management applications are event schedule planning; customized event website creation; online event registration platforms; ticketing and delegate management including online payment; event budgeting; lead retrieval; event venue booking software; procurement, sourcing, and RFPs event marketing; event networking for attendee engagement; content management including abstract and/or paper management, reviewing, program development and publishing; exhibition management including floor planning, booking and billing; on-site operations including registration, badges, and networking; audience response solutions, live slide sharing and second-screen tools as live polls, Q+A, etc. \r\n\r\n","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: bold; \">Why Use Event Management Software?</span></h1>\r\n<p class=\"align-left\">What are the benefits of an event management software? These solutions can streamline or automate the back office processes in running an event. From pre-event, event and to post-event, these solutions provide efficiency, accuracy and cost savings. Here are the main benefits:</p>\r\n<ul><li><span style=\"font-weight: bold; \">Consolidate different teams</span></li></ul>\r\nEvents software systems provide a single platform that coordinates the tasks and activities, not just of the event team, but of your various teams, including sales & marketing, logistics, accounting and travel management. It makes it easy to associate the different but connected items across your organization. A change in one item, for example, can trigger alerts on related items ensuring everyone has the latest information. A shift in venue, increase in attendance, change in menu, etc. are cases that require quick coordination among teams.\r\n<ul><li><span style=\"font-weight: bold; \">Lower overheads</span></li></ul>\r\nWith across and top-down visibility on your event operations, it is easy to control expenses and keep to budget caps leading to savings and higher returns. Likewise, event management services are good at automating certain event management processes, thereby, you cut down on time spent in completing tasks. This can translate to reduced staff time. Moreover, a small team can perform multiple tasks with the aid of a good event solution. Tools like coding-free event web builder, self-service online registration, autoresponders and data management perform some of the most time-consuming back office processes in organizing events, freeing you from soliciting additional contractors.\r\n<ul><li><span style=\"font-weight: bold; \">Smooth workflows in the entire event lifecycle</span></li></ul>\r\nSome event software programs solutions help you from planning to promotion to on-site operation and to post-event evaluation. They feature tools for event management, event marketing and post-analytics reporting and survey mechanism. Many of these tools ease out off your shoulder the traditional burden of building your database. Online registration, for example, allows participants enter their details instead of you. The database can be sorted differently, too, for targeted email marketing.\r\n<ul><li><span style=\"font-weight: bold; \">More focused event marketing</span></li></ul>\r\nCritical to the success of your event is a long-term promotion. Months (or even years) before the event, the solution, depending on its sophistication, can help you aggregate social media mentions, online communities, mailing lists, media and blog placements, etc. so you can start engaging potential participants. Some event management packages provide communication channels to get prospects’ feedback or questions or build a mailing list for staggered and targeted email marketing stages leading to the event date.\r\n<ul><li><span style=\"font-weight: bold; \">Efficient data management</span></li></ul>\r\nWith a single database event management software solutions can collate online registration details, sort them for various email marketing campaigns and run real-time and post-event analytics for insights. A centralized database also means various users are accessing the same latest data, eliminating misinformation. Different parties are quickly notified of changes in the database like number of participant, venue, programme, etc. Documents and reports are likewise updated and consistent throughout the organization. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Event_Management_Tools.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1690,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/NetAppHzt.png","logo":true,"scheme":false,"title":"NetApp Ontap AI","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":7,"alias":"netapp-ontap-ai","companyTitle":"NetApp","companyTypes":["vendor"],"companyId":320,"companyAlias":"netapp","description":"<span style=\"font-weight: 700; \">Get started in AI faster</span>\r\nEliminate guesswork with a validated reference architecture that detangles design complexity. With NetApp ONTAP AI proven architecture, you’ll also reduce overall costs while accelerating AI innovation and productivity.\r\n<span style=\"font-weight: 700; \"><br /></span>\r\n<span style=\"font-weight: 700; \">NVIDIA + NetApp</span>\r\nONTAP AI : Built on a verified architecture that combines NVIDIA DGX-1 supercomputers, NetApp AFF storage, and Cisco networking supercharges your AI/DL environments.\r\n<span style=\"font-weight: 700; \">Industry-leading NVIDIA DGX-1 AI supercomputers.</span>\r\nAt the heart of ONTAP AI is the NVIDIA DGX-1 supercomputer, a fully-integrated hardware and software turnkey system that is purpose-built for DL. The DGX platform leverages the NVIDIA GPU Cloud Deep Learning Software Stack, which is optimized for maximum GPU accelerated DL performance.\r\n<span style=\"font-weight: 700; \"><br /></span>\r\n<span style=\"font-weight: 700; \">The world’s fastest cloud-connected flash: NetApp AFF systems</span>\r\nNetApp AFF systems keep data flowing to DL processes with the industry’s fastest and most flexible all flash storage, featuring the world’s first end-to-end NVMe technologies. The A800 is capable of feeding data to NVIDIA DGX-1 systems up to 4 times faster than competing solutions","shortDescription":"NetApp's and Nvidia's NetApp Ontap AI combines NetApp’s hybrid cloud data services and AFF A800 cloud-connected all-flash storage with Nvidia’s GPU-powered DGX supercomputers.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":15,"sellingCount":4,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"NetApp Ontap AI","keywords":"","description":"<span style=\"font-weight: 700; \">Get started in AI faster</span>\r\nEliminate guesswork with a validated reference architecture that detangles design complexity. With NetApp ONTAP AI proven architecture, you’ll also reduce overall costs while accelerating AI inn","og:title":"NetApp Ontap AI","og:description":"<span style=\"font-weight: 700; \">Get started in AI faster</span>\r\nEliminate guesswork with a validated reference architecture that detangles design complexity. With NetApp ONTAP AI proven architecture, you’ll also reduce overall costs while accelerating AI inn","og:image":"https://old.roi4cio.com/fileadmin/user_upload/NetAppHzt.png"},"eventUrl":"","translationId":1691,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"},{"id":69,"title":"Business Analytics","alias":"business-analytics","description":"Business Analytics is “the study of data through statistical and operations analysis, the formation of predictive models, application of optimization techniques, and the communication of these results to customers, business partners, and college executives.” Business Analytics requires quantitative methods and evidence-based data for business modeling and decision making; as such, Business Analytics requires the use of Big Data.\r\nSAS describes Big Data as “a term that describes the large volume of data – both structured and unstructured – that inundates a business on a day-to-day basis.” What’s important to keep in mind about Big Data is that the amount of data is not as important to an organization as the analytics that accompany it. When companies analyze Big Data, they are using Business Analytics to get the insights required for making better business decisions and strategic moves.\r\nCompanies use Business Analytics (BA) to make data-driven decisions. The insight gained by BA enables these companies to automate and optimize their business processes. In fact, data-driven companies that utilize Business Analytics achieve a competitive advantage because they are able to use the insights to:\r\n<ul><li>Conduct data mining (explore data to find new patterns and relationships)</li><li>Complete statistical analysis and quantitative analysis to explain why certain results occur</li><li>Test previous decisions using A/B testing and multivariate testing</li><li>Make use of predictive modeling and predictive analytics to forecast future results</li></ul>\r\nBusiness Analytics also provides support for companies in the process of making proactive tactical decisions, and BA makes it possible for those companies to automate decision making in order to support real-time responses.","materialsDescription":"<span style=\"font-weight: bold; \">What does Business Analytics (BA) mean?</span>\r\nBusiness analytics (BA) refers to all the methods and techniques that are used by an organization to measure performance. Business analytics are made up of statistical methods that can be applied to a specific project, process or product. Business analytics can also be used to evaluate an entire company. Business analytics are performed in order to identify weaknesses in existing processes and highlight meaningful data that will help an organization prepare for future growth and challenges.\r\nThe need for good business analytics has spurred the creation of business analytics software and enterprise platforms that mine an organization’s data in order to automate some of these measures and pick out meaningful insights.\r\nAlthough the term has become a bit of a buzzword, business analytics are a vital part of any business. Business analytics make up a large portion of decision support systems, continuous improvement programs and many of the other techniques used to keep a business competitive. Consequently, accurate business analytics like efficiency measures and capacity utilization rates are the first step to properly implementing these techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Business_Analytics.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":419,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/KHranilishcha_HP_EVA.jpg","logo":true,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"supplierPartnersCount":451,"alias":"hp-eva-storage","companyTitle":"Hewlett Packard Enterprise","companyTypes":["supplier","vendor"],"companyId":172,"companyAlias":"hewlett-packard-enterprise","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:image":"https://old.roi4cio.com/fileadmin/user_upload/KHranilishcha_HP_EVA.jpg"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":["Total high cost of ownership of IT infrastructure (TCO)"],"materials":[],"useCases":[],"best_practices":[],"values":["Ensure Security and Business Continuity","Reduce Costs"],"implementations":[],"presenterCodeLng":"","productImplementations":[]}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}