{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"company":{"role-vendor":{"ru":"Производитель","_type":"localeString","en":"Vendor"},"role-supplier":{"ru":"Поставщик","_type":"localeString","en":"Supplier"},"products-popover":{"en":"Products","de":"die produkte","ru":"Продукты","_type":"localeString"},"introduction-popover":{"_type":"localeString","en":"introduction","ru":"внедрения"},"partners-popover":{"en":"partners","ru":"партнеры","_type":"localeString"},"update-profile-button":{"ru":"Обновить профиль","_type":"localeString","en":"Update profile"},"read-more-button":{"ru":"Показать ещё","_type":"localeString","en":"Show more"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"user-implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"categories":{"en":"Categories","ru":"Компетенции","_type":"localeString"},"description":{"ru":"Описание","_type":"localeString","en":"Description"},"role-user":{"ru":"Пользователь","_type":"localeString","en":"User"},"partnership-vendors":{"ru":"Партнерство с производителями","_type":"localeString","en":"Partnership with vendors"},"partnership-suppliers":{"en":"Partnership with suppliers","ru":"Партнерство с поставщиками","_type":"localeString"},"reference-bonus":{"_type":"localeString","en":"Bonus 4 reference","ru":"Бонус за референс"},"partner-status":{"en":"Partner status","ru":"Статус партнёра","_type":"localeString"},"country":{"ru":"Страна","_type":"localeString","en":"Country"},"partner-types":{"ru":"Типы партнеров","_type":"localeString","en":"Partner types"},"branch-popover":{"en":"branch","ru":"область деятельности","_type":"localeString"},"employees-popover":{"en":"number of employees","ru":"количество сотрудников","_type":"localeString"},"partnership-programme":{"ru":"Партнерская программа","_type":"localeString","en":"Partnership program"},"partner-discounts":{"_type":"localeString","en":"Partner discounts","ru":"Партнерские скидки"},"registered-discounts":{"en":"Additional benefits for registering a deal","ru":"Дополнительные преимущества за регистрацию сделки","_type":"localeString"},"additional-advantages":{"ru":"Дополнительные преимущества","_type":"localeString","en":"Additional Benefits"},"additional-requirements":{"ru":"Требования к уровню партнера","_type":"localeString","en":"Partner level requirements"},"certifications":{"en":"Certification of technical specialists","ru":"Сертификация технических специалистов","_type":"localeString"},"sales-plan":{"ru":"Годовой план продаж","_type":"localeString","en":"Annual Sales Plan"},"partners-vendors":{"en":"Partners-vendors","ru":"Партнеры-производители","_type":"localeString"},"partners-suppliers":{"_type":"localeString","en":"Partners-suppliers","ru":"Партнеры-поставщики"},"all-countries":{"ru":"Все страны","_type":"localeString","en":"All countries"},"supplied-products":{"ru":"Поставляемые продукты","_type":"localeString","en":"Supplied products"},"vendored-products":{"en":"Produced products","ru":"Производимые продукты","_type":"localeString"},"vendor-implementations":{"_type":"localeString","en":"Produced deployments","ru":"Производимые внедрения"},"supplier-implementations":{"_type":"localeString","en":"Supplied deployments","ru":"Поставляемые внедрения"},"show-all":{"en":"Show all","ru":"Показать все","_type":"localeString"},"not-yet-converted":{"ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later."},"schedule-event":{"_type":"localeString","en":"Events schedule","ru":"Pасписание событий"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"register":{"ru":"Регистрация ","_type":"localeString","en":"Register"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"auth-message":{"ru":"Для просмотра ивентов компании авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString","en":"To view company events please log in or register on the sit."},"company-presentation":{"ru":"Презентация компании","_type":"localeString","en":"Company presentation"}},"header":{"help":{"_type":"localeString","en":"Help","de":"Hilfe","ru":"Помощь"},"how":{"_type":"localeString","en":"How does it works","de":"Wie funktioniert es","ru":"Как это работает"},"login":{"en":"Log in","de":"Einloggen","ru":"Вход","_type":"localeString"},"logout":{"en":"Sign out","ru":"Выйти","_type":"localeString"},"faq":{"de":"FAQ","ru":"FAQ","_type":"localeString","en":"FAQ"},"references":{"de":"References","ru":"Мои запросы","_type":"localeString","en":"Requests"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find-it-product":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"en":"Comparison Matrix","ru":"Матрица сравнения","_type":"localeString"},"roi-calculators":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"b4r":{"en":"Bonus for reference","ru":"Бонус за референс","_type":"localeString"},"business-booster":{"_type":"localeString","en":"Business boosting","ru":"Развитие бизнеса"},"catalogs":{"ru":"Каталоги","_type":"localeString","en":"Catalogs"},"products":{"_type":"localeString","en":"Products","ru":"Продукты"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"categories":{"_type":"localeString","en":"Categories","ru":"Категории"},"for-suppliers":{"_type":"localeString","en":"For suppliers","ru":"Поставщикам"},"blog":{"en":"Blog","ru":"Блог","_type":"localeString"},"agreements":{"en":"Deals","ru":"Сделки","_type":"localeString"},"my-account":{"_type":"localeString","en":"My account","ru":"Мой кабинет"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"comparison-deletion":{"en":"Deletion","ru":"Удаление","_type":"localeString"},"comparison-confirm":{"ru":"Подтвердите удаление","_type":"localeString","en":"Are you sure you want to delete"},"search-placeholder":{"ru":"Введите поисковый запрос","_type":"localeString","en":"Enter your search term"},"my-profile":{"_type":"localeString","en":"My profile","ru":"Мои данные"},"about":{"en":"About Us","_type":"localeString"},"it_catalogs":{"en":"IT catalogs","_type":"localeString"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"en":"Find IT product","_type":"localeString"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"_type":"localeString","en":"Create an avatar for the event"},"catalogs_new":{"_type":"localeString","en":"Products"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"en":"Our IT Catalogs","_type":"localeString"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"en":"Explore IT products by category","_type":"localeString"},"it_our_products":{"_type":"localeString","en":"Our Products"},"it_it_catalogs":{"_type":"localeString","en":"IT catalogs"}},"footer":{"copyright":{"ru":"Все права защищены","_type":"localeString","en":"All rights reserved","de":"Alle rechte vorbehalten"},"company":{"ru":"О компании","_type":"localeString","en":"My Company","de":"Über die Firma"},"about":{"ru":"О нас","_type":"localeString","en":"About us","de":"Über uns"},"infocenter":{"en":"Infocenter","de":"Infocenter","ru":"Инфоцентр","_type":"localeString"},"tariffs":{"de":"Tarife","ru":"Тарифы","_type":"localeString","en":"Subscriptions"},"contact":{"_type":"localeString","en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами"},"marketplace":{"de":"Marketplace","ru":"Marketplace","_type":"localeString","en":"Marketplace"},"products":{"en":"Products","de":"Produkte","ru":"Продукты","_type":"localeString"},"compare":{"de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare"},"calculate":{"de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString","en":"Calculate the cost"},"get_bonus":{"de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference"},"salestools":{"_type":"localeString","en":"Salestools","de":"Salestools","ru":"Salestools"},"automatization":{"_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов"},"roi_calcs":{"de":"ROI-Rechner","ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"matrix":{"en":"Comparison matrix","de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString"},"b4r":{"ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference"},"our_social":{"_type":"localeString","en":"Our social networks","de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети"},"subscribe":{"en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString"},"subscribe_info":{"ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews"},"policy":{"_type":"localeString","en":"Privacy Policy","ru":"Политика конфиденциальности"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"en":"Solutions","ru":"Возможности","_type":"localeString"},"find":{"en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта","_type":"localeString"},"quote":{"ru":"Калькулятор цены","_type":"localeString","en":"Price calculator"},"boosting":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"4vendors":{"en":"4 vendors","ru":"поставщикам","_type":"localeString"},"blog":{"ru":"блог","_type":"localeString","en":"blog"},"pay4content":{"en":"we pay for content","ru":"платим за контент","_type":"localeString"},"categories":{"ru":"категории","_type":"localeString","en":"categories"},"showForm":{"en":"Show form","ru":"Показать форму","_type":"localeString"},"subscribe__title":{"ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!"},"subscribe__email-label":{"_type":"localeString","en":"Email","ru":"Email"},"subscribe__name-label":{"en":"Name","ru":"Имя","_type":"localeString"},"subscribe__required-message":{"ru":"Это поле обязательное","_type":"localeString","en":"This field is required"},"subscribe__notify-label":{"en":"Yes, please, notify me about news, events and propositions","ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString"},"subscribe__agree-label":{"ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data"},"subscribe__submit-label":{"ru":"Подписаться","_type":"localeString","en":"Subscribe"},"subscribe__email-message":{"_type":"localeString","en":"Please, enter the valid email","ru":"Пожалуйста, введите корректный адрес электронной почты"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"ru":"Имя Фамилия","_type":"localeString","en":"Last, first name"},"subscribe__success":{"ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString","en":"You are successfully subscribed! Check you mailbox."},"subscribe__error":{"_type":"localeString","en":"Subscription is unsuccessful. Please, try again later.","ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее."},"roi4presenter":{"ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter","de":"roi4presenter"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"en":"Bonus4Reference","_type":"localeString"}},"breadcrumbs":{"home":{"ru":"Главная","_type":"localeString","en":"Home"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"registration":{"ru":"Регистрация","_type":"localeString","en":"Registration"},"b2b-platform":{"_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers","ru":"Портал для покупателей, поставщиков и производителей ИТ"}},"comment-form":{"title":{"en":"Leave comment","ru":"Оставить комментарий","_type":"localeString"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"_type":"localeString","en":"Last name","ru":"Фамилия"},"company":{"_type":"localeString","en":"Company name","ru":"Компания"},"position":{"en":"Position","ru":"Должность","_type":"localeString"},"actual-cost":{"ru":"Фактическая стоимость","_type":"localeString","en":"Actual cost"},"received-roi":{"ru":"Полученный ROI","_type":"localeString","en":"Received ROI"},"saving-type":{"ru":"Тип экономии","_type":"localeString","en":"Saving type"},"comment":{"ru":"Комментарий","_type":"localeString","en":"Comment"},"your-rate":{"ru":"Ваша оценка","_type":"localeString","en":"Your rate"},"i-agree":{"en":"I agree","ru":"Я согласен","_type":"localeString"},"terms-of-use":{"ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString","en":"With user agreement and privacy policy"},"send":{"_type":"localeString","en":"Send","ru":"Отправить"},"required-message":{"en":"{NAME} is required filed","ru":"{NAME} - это обязательное поле","_type":"localeString"}},"maintenance":{"title":{"en":"Site under maintenance","ru":"На сайте проводятся технические работы","_type":"localeString"},"message":{"_type":"localeString","en":"Thank you for your understanding","ru":"Спасибо за ваше понимание"}}},"translationsStatus":{"company":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"company":{"title":{"en":"ROI4CIO: Company","ru":"ROI4CIO: Компания","_type":"localeString"},"meta":[{"content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg","name":"og:image"},{"name":"og:type","content":"website"}],"translatable_meta":[{"name":"title","translations":{"_type":"localeString","en":"Company","ru":"Компания"}},{"translations":{"ru":"Описание компании","_type":"localeString","en":"Company description"},"name":"description"},{"name":"keywords","translations":{"en":"Company keywords","ru":"Ключевые слова для компании","_type":"localeString"}}]}},"pageMetaDataStatus":{"company":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{"ampex":{"id":5126,"title":"Ampex","logoURL":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png","alias":"ampex","address":"Hayward, California , United States","roles":[{"id":2,"type":"supplier"},{"id":3,"type":"vendor"}],"description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation, a world leader in design, development and manufacture of airborne recording and avionics systems for rugged applications, is a privately owned company head-quartered in Hayward, California. Ampex offers high-capacity, high performance digital storage systems capable of functioning in demanding environments on land, at sea or in the air. Ampex products are principally used in defence and acceptance or flight test applications to gather digital images and other data from aircraft, satellites and submarines. These products are also used in flight and sensor test applications. ","companyTypes":["supplier","vendor"],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[{"id":734,"title":"Ampex TuffServ for Aerospace","description":"December 2018 – Ampex Data Systems (Ampex), a Delta Information Systems Company, is proud to announce the signing of a long term agreement (LTA) with Collins Aerospace to deliver TuffServ© solid state recorders (SSRs), memory storage systems, and mission data loaders for use in Collins Aerospace’s MS-110 airborne reconnaissance systems.<br /><br />The TuffServ SSRs will leverage use of the Ampex Common Compute Environment (ACCE), which includes network attached storage (NAS) software and graphical user interfaces (GUIs) common to all TuffServ airborne NAS products. Ampex will provide support from its headquarters in Hayward, CA.<br /><br />The TuffServ series is designed to perform in extreme airborne, ground, and space environments and offers the fastest ruggedized Network File Servers on the market. Additionally, the TuffServ series supports the full spectrum of commercial and military operations to include Intelligence, Surveillance, and Reconnaissance (ISR) and Flight Test, provides removable storage capacities up to 100TB, and a range of interfaces and software capabilities.\r\n<blockquote><br />This agreement is a fundamental, ongoing part of Ampex’s strategic approach to working with leading edge mission system providers in the high data rate market. We are exceptionally proud to have been selected by Collins Aerospace and look forward to continued success in supporting this multi-year effort.</blockquote>\r\n\r\n<span style=\"font-style: italic;\">Jim Orahood, Vice President and General Manager of Ampex Data Systems.</span>","alias":"ampex-tuffserv-for-aerospace","roi":0,"seo":{"title":"Ampex TuffServ for Aerospace","keywords":"","description":"December 2018 – Ampex Data Systems (Ampex), a Delta Information Systems Company, is proud to announce the signing of a long term agreement (LTA) with Collins Aerospace to deliver TuffServ© solid state recorders (SSRs), memory storage systems, and mission data ","og:title":"Ampex TuffServ for Aerospace","og:description":"December 2018 – Ampex Data Systems (Ampex), a Delta Information Systems Company, is proud to announce the signing of a long term agreement (LTA) with Collins Aerospace to deliver TuffServ© solid state recorders (SSRs), memory storage systems, and mission data "},"deal_info":"","user":{"id":5127,"title":"Collins Aerospace","logoURL":"https://old.roi4cio.com/uploads/roi/company/Collins_Aerospace.png","alias":"collins-aerospace","address":"","roles":[],"description":" Collins Aerospace, a unit of United Technologies Corp., is a leader in technologically advanced and intelligent solutions for the global aerospace and defense industry. Created in 2018 by bringing together UTC Aerospace Systems and Rockwell Collins, Collins Aerospace has the capabilities, comprehensive portfolio and expertise to solve customers' toughest challenges and to meet the demands of a rapidly evolving global market.\r\nBoth Rockwell Collins and UTC Aerospace Systems also contributed to remarkable moments in space exploration. UTC Aerospace Systems designed the space suits worn by America’s first astronauts during the Mercury program, and Rockwell Collins provided the communications equipment used by every American astronaut traveling through space (including the footage of the first step on the moon). \r\nAs Collins Aerospace, the combined talents of both organizations are committed to honoring their strong legacy while creating comprehensive strategies to propel its customers and the industry toward the future, every day.\r\n\r\n","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.collinsaerospace.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Collins Aerospace","keywords":"","description":" Collins Aerospace, a unit of United Technologies Corp., is a leader in technologically advanced and intelligent solutions for the global aerospace and defense industry. Created in 2018 by bringing together UTC Aerospace Systems and Rockwell Collins, Collins A","og:title":"Collins Aerospace","og:description":" Collins Aerospace, a unit of United Technologies Corp., is a leader in technologically advanced and intelligent solutions for the global aerospace and defense industry. Created in 2018 by bringing together UTC Aerospace Systems and Rockwell Collins, Collins A","og:image":"https://old.roi4cio.com/uploads/roi/company/Collins_Aerospace.png"},"eventUrl":""},"supplier":{"id":5126,"title":"Ampex","logoURL":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png","alias":"ampex","address":"Hayward, California , United States","roles":[],"description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation, a world leader in design, development and manufacture of airborne recording and avionics systems for rugged applications, is a privately owned company head-quartered in Hayward, California. Ampex offers high-capacity, high performance digital storage systems capable of functioning in demanding environments on land, at sea or in the air. Ampex products are principally used in defence and acceptance or flight test applications to gather digital images and other data from aircraft, satellites and submarines. These products are also used in flight and sensor test applications. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.ampex.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Ampex","keywords":"","description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:title":"Ampex","og:description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:image":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png"},"eventUrl":""},"vendors":[{"id":5126,"title":"Ampex","logoURL":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png","alias":"ampex","address":"Hayward, California , United States","roles":[],"description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation, a world leader in design, development and manufacture of airborne recording and avionics systems for rugged applications, is a privately owned company head-quartered in Hayward, California. Ampex offers high-capacity, high performance digital storage systems capable of functioning in demanding environments on land, at sea or in the air. Ampex products are principally used in defence and acceptance or flight test applications to gather digital images and other data from aircraft, satellites and submarines. These products are also used in flight and sensor test applications. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.ampex.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Ampex","keywords":"","description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:title":"Ampex","og:description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:image":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png"},"eventUrl":""}],"products":[{"id":3253,"logo":false,"scheme":false,"title":"Ampex TuffServ","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"alias":"ampex-tuffserv","companyTypes":[],"description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performance needs of the marketplace, Ampex provides its customers with product solutions for their most demanding applications across the entire pricing spectrum - TuffServ 282, TuffServ 480GE, TuffServ 480v2, TuffServ 540, TuffServ 640, TuffServ 641, TuffServ® 481, TuffServ® TS 485. \r\nTuffServ®Series.\r\nEmploying a common architecture found throughout the TuffServ offerings all products advance performance and scalability to an entirely new level. With blazing read/write speeds of up 1GB/sec, 12.8TB of removable solid-statememory, and dual 10Gbit optical Ethernet ports, TuffServ offers unparalleled performance for a wide variety of airborne and mobile applications.\r\nThey addresses key issues encountered when attempting to take products designed for data center use into aerospace environments: cooling, removable storage and the management of internal cables in high-vibration environments.7","shortDescription":"The TuffServ is series of servers designed to perform in extreme airborne, ground, and space environments and offers the fastest ruggedized Network File Servers on the market. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Ampex TuffServ","keywords":"","description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc","og:title":"Ampex TuffServ","og:description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc"},"eventUrl":"","translationId":3253,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":307,"title":"Enhance Competitive Ability"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":354,"title":"Low bandwidth data channels"},{"id":175,"title":"Aging IT infrastructure"}]}},"categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://www.ampex.com/ampex-data-systems-announces-a-long-term-agreement-with-collins-aerospace/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0}],"vendorImplementations":[{"id":734,"title":"Ampex TuffServ for Aerospace","description":"December 2018 – Ampex Data Systems (Ampex), a Delta Information Systems Company, is proud to announce the signing of a long term agreement (LTA) with Collins Aerospace to deliver TuffServ© solid state recorders (SSRs), memory storage systems, and mission data loaders for use in Collins Aerospace’s MS-110 airborne reconnaissance systems.<br /><br />The TuffServ SSRs will leverage use of the Ampex Common Compute Environment (ACCE), which includes network attached storage (NAS) software and graphical user interfaces (GUIs) common to all TuffServ airborne NAS products. Ampex will provide support from its headquarters in Hayward, CA.<br /><br />The TuffServ series is designed to perform in extreme airborne, ground, and space environments and offers the fastest ruggedized Network File Servers on the market. Additionally, the TuffServ series supports the full spectrum of commercial and military operations to include Intelligence, Surveillance, and Reconnaissance (ISR) and Flight Test, provides removable storage capacities up to 100TB, and a range of interfaces and software capabilities.\r\n<blockquote><br />This agreement is a fundamental, ongoing part of Ampex’s strategic approach to working with leading edge mission system providers in the high data rate market. We are exceptionally proud to have been selected by Collins Aerospace and look forward to continued success in supporting this multi-year effort.</blockquote>\r\n\r\n<span style=\"font-style: italic;\">Jim Orahood, Vice President and General Manager of Ampex Data Systems.</span>","alias":"ampex-tuffserv-for-aerospace","roi":0,"seo":{"title":"Ampex TuffServ for Aerospace","keywords":"","description":"December 2018 – Ampex Data Systems (Ampex), a Delta Information Systems Company, is proud to announce the signing of a long term agreement (LTA) with Collins Aerospace to deliver TuffServ© solid state recorders (SSRs), memory storage systems, and mission data ","og:title":"Ampex TuffServ for Aerospace","og:description":"December 2018 – Ampex Data Systems (Ampex), a Delta Information Systems Company, is proud to announce the signing of a long term agreement (LTA) with Collins Aerospace to deliver TuffServ© solid state recorders (SSRs), memory storage systems, and mission data "},"deal_info":"","user":{"id":5127,"title":"Collins Aerospace","logoURL":"https://old.roi4cio.com/uploads/roi/company/Collins_Aerospace.png","alias":"collins-aerospace","address":"","roles":[],"description":" Collins Aerospace, a unit of United Technologies Corp., is a leader in technologically advanced and intelligent solutions for the global aerospace and defense industry. Created in 2018 by bringing together UTC Aerospace Systems and Rockwell Collins, Collins Aerospace has the capabilities, comprehensive portfolio and expertise to solve customers' toughest challenges and to meet the demands of a rapidly evolving global market.\r\nBoth Rockwell Collins and UTC Aerospace Systems also contributed to remarkable moments in space exploration. UTC Aerospace Systems designed the space suits worn by America’s first astronauts during the Mercury program, and Rockwell Collins provided the communications equipment used by every American astronaut traveling through space (including the footage of the first step on the moon). \r\nAs Collins Aerospace, the combined talents of both organizations are committed to honoring their strong legacy while creating comprehensive strategies to propel its customers and the industry toward the future, every day.\r\n\r\n","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.collinsaerospace.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Collins Aerospace","keywords":"","description":" Collins Aerospace, a unit of United Technologies Corp., is a leader in technologically advanced and intelligent solutions for the global aerospace and defense industry. Created in 2018 by bringing together UTC Aerospace Systems and Rockwell Collins, Collins A","og:title":"Collins Aerospace","og:description":" Collins Aerospace, a unit of United Technologies Corp., is a leader in technologically advanced and intelligent solutions for the global aerospace and defense industry. Created in 2018 by bringing together UTC Aerospace Systems and Rockwell Collins, Collins A","og:image":"https://old.roi4cio.com/uploads/roi/company/Collins_Aerospace.png"},"eventUrl":""},"supplier":{"id":5126,"title":"Ampex","logoURL":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png","alias":"ampex","address":"Hayward, California , United States","roles":[],"description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation, a world leader in design, development and manufacture of airborne recording and avionics systems for rugged applications, is a privately owned company head-quartered in Hayward, California. Ampex offers high-capacity, high performance digital storage systems capable of functioning in demanding environments on land, at sea or in the air. Ampex products are principally used in defence and acceptance or flight test applications to gather digital images and other data from aircraft, satellites and submarines. These products are also used in flight and sensor test applications. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.ampex.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Ampex","keywords":"","description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:title":"Ampex","og:description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:image":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png"},"eventUrl":""},"vendors":[{"id":5126,"title":"Ampex","logoURL":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png","alias":"ampex","address":"Hayward, California , United States","roles":[],"description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation, a world leader in design, development and manufacture of airborne recording and avionics systems for rugged applications, is a privately owned company head-quartered in Hayward, California. Ampex offers high-capacity, high performance digital storage systems capable of functioning in demanding environments on land, at sea or in the air. Ampex products are principally used in defence and acceptance or flight test applications to gather digital images and other data from aircraft, satellites and submarines. These products are also used in flight and sensor test applications. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.ampex.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Ampex","keywords":"","description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:title":"Ampex","og:description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:image":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png"},"eventUrl":""}],"products":[{"id":3253,"logo":false,"scheme":false,"title":"Ampex TuffServ","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"alias":"ampex-tuffserv","companyTypes":[],"description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performance needs of the marketplace, Ampex provides its customers with product solutions for their most demanding applications across the entire pricing spectrum - TuffServ 282, TuffServ 480GE, TuffServ 480v2, TuffServ 540, TuffServ 640, TuffServ 641, TuffServ® 481, TuffServ® TS 485. \r\nTuffServ®Series.\r\nEmploying a common architecture found throughout the TuffServ offerings all products advance performance and scalability to an entirely new level. With blazing read/write speeds of up 1GB/sec, 12.8TB of removable solid-statememory, and dual 10Gbit optical Ethernet ports, TuffServ offers unparalleled performance for a wide variety of airborne and mobile applications.\r\nThey addresses key issues encountered when attempting to take products designed for data center use into aerospace environments: cooling, removable storage and the management of internal cables in high-vibration environments.7","shortDescription":"The TuffServ is series of servers designed to perform in extreme airborne, ground, and space environments and offers the fastest ruggedized Network File Servers on the market. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Ampex TuffServ","keywords":"","description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc","og:title":"Ampex TuffServ","og:description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc"},"eventUrl":"","translationId":3253,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":307,"title":"Enhance Competitive Ability"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":354,"title":"Low bandwidth data channels"},{"id":175,"title":"Aging IT infrastructure"}]}},"categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://www.ampex.com/ampex-data-systems-announces-a-long-term-agreement-with-collins-aerospace/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0}],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{"5":{"id":5,"title":"Security Software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png","alias":"security-software"},"59":{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png","alias":"scada-supervisory-control-and-data-acquisition"},"203":{"id":203,"title":"Electrical Engineering","description":" Electrical engineering is a professional engineering discipline that generally deals with the study and application of electricity, electronics, and electromagnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broadcasting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.\r\nElectrical engineering has now divided into a wide range of fields including electronics, digital computers, computer engineering, power engineering, telecommunications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electromagnetics and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, mechatronics, electrical materials science, and much more. See glossary of electrical and electronics engineering.\r\nElectrical engineers typically hold a degree in electrical engineering or electronic engineering. Practising engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (IET) (formerly the IEE).\r\nElectrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software. ","materialsDescription":" <span style=\"font-weight: bold;\">What is Electrical Engineering?</span>\r\nElectrical Engineering deals with the study and application of electricity, electronics, and electromagnetism in all of their forms.\r\nWhenever you go to flip a light switch in your house or even check the time on your smartphone, it took a series of electrical engineers to make that happen. The everyday things that we take for granted – like being able to turn on a light when it’s dark – are actually the result of hundreds of years worth of work by dedicated engineers.\r\nIn the grand scheme of academic study, electrical engineering is fairly new. But in its short life, it has become an absolutely essential field in providing us the everyday comforts we enjoy.\r\n<span style=\"font-weight: bold;\">Why does the world need Electrical Engineering?</span>\r\n English physician, physicist, and philosopher William Gilbert are credited with introducing the term “electricity.” Although he did not spark the scientific interest in electricity that already existed, he could be called the first electrical engineer. Following in his footsteps in the 19th and early 20th centuries were such luminaries as Michael Faraday, Nikola Tesla, and Thomas Edison.\r\nAs technology progressed and electricity became much more widespread – from the electric telegraph to the lightbulb – so did the demand for people who studied and could work in this new field. At first, electrical engineers studied within the physics department at schools like Cornell and MIT, but soon they had their own programs. The first electrical engineering department in the U.S. was founded at the University of Missouri in 1886.\r\nElectrical engineers in the U.S. today would probably be hard pressed to find a job where they work with telegraphs, but there are myriad other applications for this specialized knowledge in the modern world. Electrical engineers make it possible for us to enjoy many of the modern comforts we have in the U.S., from smartphones and tablets to public utilities.\r\n<span style=\"font-weight: bold;\">The Present and Future of Electrical Engineering</span>\r\n Electrical engineering is just as important and exciting a field as it was when Nikola Tesla was still struggling to understand the true power of electricity. Though it is easy to look at the news and assume that computer programming, design, and mobile applications are the only important technologies to pursue, none of those things would be possible without the help of electrical engineers. Even the car company that bears Tesla’s name would not be able to exist without the field of electrical engineering and a team of people who understood how to make an electric car work, and how to maximize its battery life (still an area in need of further engineering innovation).\r\nThe future of electrical engineering work is likely to be both large and small. Electrical engineers will be able to choose whether they want to focus on the intricate circuits that make up personal computing devices or the huge instruments that control spacecraft, and even entire power grids.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Electrical_Engineering.png","alias":"electrical-engineering"},"471":{"id":471,"title":"Hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg","alias":"hardware"},"532":{"id":532,"title":"Software","description":" Computer software, or simply software, is a collection of data or computer instructions that tell the computer how to work. This is in contrast to physical hardware, from which the system is built and actually performs the work. In computer science and software engineering, computer software is all information processed by computer systems, programs, and data. Computer software includes computer programs, libraries and related non-executable data, such as online documentation or digital media. Computer hardware and software require each other and neither can be realistically used on its own.\r\nAt the lowest programming level, executable code consists of machine language instructions supported by an individual processor — typically a central processing unit (CPU) or a graphics processing unit (GPU). A machine language consists of groups of binary values signifying processor instructions that change the state of the computer from its preceding state. For example, an instruction may change the value stored in a particular storage location in the computer—an effect that is not directly observable to the user. An instruction may also invoke one of many input or output operations, for example displaying some text on a computer screen; causing state changes that should be visible to the user. The processor executes the instructions in the order they are provided, unless it is instructed to "jump" to a different instruction, or is interrupted by the operating system. As of 2015, most personal computers, smartphone devices, and servers have processors with multiple execution units or multiple processors performing computation together, and computing has become a much more concurrent activity than in the past.\r\nThe majority of software is written in high-level programming languages. They are easier and more efficient for programmers because they are closer to natural languages than machine languages. High-level languages are translated into machine language using a compiler or an interpreter or a combination of the two. Software may also be written in a low-level assembly language, which has strong correspondence to the computer's machine language instructions and is translated into machine language using an assembler.","materialsDescription":" <span style=\"font-weight: bold; \">What is software?</span>\r\nSometimes abbreviated as SW and S/W, software is a collection of instructions that enable the user to interact with a computer, its hardware, or perform tasks. Without software, most computers would be useless. For example, without your Internet browser software, you could not surf the Internet or read this page. Without an operating system, the browser could not run on your computer. The picture shows a Microsoft Excel box, an example of a spreadsheet software program.\r\n<span style=\"font-weight: bold; \">How do you get software?</span>\r\nSoftware can be purchased at a retail computer store or online and come in a box containing all the disks (floppy diskette, CD, DVD, or Blu-ray), manuals, warranty, and other documentation.\r\nSoftware can also be downloaded to a computer over the Internet. Once downloaded, setup files are run to start the installation process on your computer.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Free software</span></span>\r\nThere are also a lot of free software programs available that are separated into different categories.\r\n<ul><li>Shareware or trial software is software that gives you a few days to try the software before you have to buy the program. After the trial time expires, you'll be asked to enter a code or register the product before you can continue to use it.</li><li>Freeware is completely free software that never requires payment, as long as it is not modified.</li><li>Open-source software is similar to freeware. Not only is the program given away free, but the source code used to make the program is also, allowing anyone to modify the program or view how it was created.</li></ul>\r\n<span style=\"font-weight: bold; \">How do you use computer software?</span>\r\nOnce the software is installed on the computer hard drive, the program can be used anytime by finding the program on the computer. On a Windows computer, a program icon is added to the Start menu or Start screen, depending on your version of Windows.\r\n<span style=\"font-weight: bold;\">How to maintain software?</span>\r\nAfter the software is installed on your computer, it may need to be updated to fix any found errors. Updating a program can be done using software patches. Once updates are installed, any problems that may have been experienced in the program will no longer occur.\r\n<span style=\"font-weight: bold;\">How is software created and how does it work?</span>\r\nA computer programmer (or several computer programmers) writes the instructions using a programming language, defining how the software should operate on structured data. The program may then be interpreted or compiled into machine code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Software.png","alias":"software"},"591":{"id":591,"title":"Software Development","description":" Software development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining applications, frameworks, or other software components. Software development is a process of writing and maintaining the source code, but in a broader sense, it includes all that is involved between the conception of the desired software through to the final manifestation of the software, sometimes in a planned and structured process. Therefore, software development may include research, new development, prototyping, modification, reuse, re-engineering, maintenance, or any other activities that result in software products.\r\nSoftware can be developed for a variety of purposes, the three most common being to meet specific needs of a specific client/business (the case with custom software), to meet a perceived need of some set of potential users (the case with commercial and open-source software), or for personal use (e.g. a scientist may write software to automate a mundane task). Embedded software development, that is, the development of embedded software, such as used for controlling consumer products, requires the development process to be integrated with the development of the controlled physical product. System software underlies applications and the programming process itself and is often developed separately.\r\nThe need for better quality control of the software development process has given rise to the discipline of software engineering, which aims to apply the systematic approach exemplified in the engineering paradigm to the process of software development.\r\nThere are many approaches to software project management, known as software development life cycle models, methodologies, processes, or models. The waterfall model is a traditional version, contrasted with the more recent innovation of agile software development.","materialsDescription":" <span style=\"font-weight: bold; \">What is software development?</span>\r\nSoftware itself is the set of instructions or programs that tell a computer what to do. It is independent of hardware and makes computers programmable. There are three basic types:\r\n<span style=\"font-weight: bold; \">System software</span> to provide core functions such as operating systems, disk management, utilities, hardware management, and other operational necessities.\r\n<span style=\"font-weight: bold; \">Programming software</span> to give programmers tools such as text editors, compilers, linkers, debuggers and other tools to create code.\r\n<span style=\"font-weight: bold; \">Application software</span> (applications or apps) to help users perform tasks. Office productivity suites, data management software, media players and security programs are examples. Applications also refer to web and mobile applications like those used to shop on Amazon.com, socialize with Facebook or post pictures to Instagram.\r\nA possible fourth type is <span style=\"font-weight: bold; \">embedded software.</span> Embedded systems software is used to control machines and devices not typically considered computers — telecommunications networks, cars, industrial robots and more. These devices, and their software, can be connected as part of the Internet of Things (IoT).\r\nSoftware development is primarily conducted by programmers, software engineers, and software developers. These roles interact and overlap, and the dynamics between them vary greatly across development departments and communities.\r\n<span style=\"font-weight: bold; \">Programmers, or coders,</span> write source code to program computers for specific tasks like merging databases, processing online orders, routing communications, conducting searches or displaying text and graphics. Programmers typically interpret instructions from software developers and engineers and use programming languages like C++ or Java to carry them out.\r\n<span style=\"font-weight: bold; \">Software engineers</span> apply engineering principles to build software and systems to solve problems. They use modeling language and other tools to devise solutions that can often be applied to problems in a general way, as opposed to merely solving for a specific instance or client. Software engineering solutions adhere to the scientific method and must work in the real world, as with bridges or elevators.\r\n<span style=\"font-weight: bold; \">Software developers</span> have a less formal role than engineers and can be closely involved with specific project areas — including writing code. At the same time, they drive the overall software development lifecycle — including working across functional teams to transform requirements into features, managing development teams and processes, and conducting software testing and maintenance.\r\nThe work of software development isn’t confined to coders or development teams. Professionals such as scientists, device fabricators, and hardware makers also create software code even though they are not primarily software developers. Nor is it confined to traditional information technology industries such as software or semiconductor businesses. In fact, according to the Brookings Institute, those businesses “account for less than half of the companies performing software development.”\r\nAn important distinction is custom software development as opposed to commercial software development. Custom software development is the process of designing, creating, deploying and maintaining software for a specific set of users, functions or organizations. In contrast, commercial off-the-shelf software (COTS) is designed for a broad set of requirements, allowing it to be packaged and commercially marketed and distributed.\r\n<span style=\"font-weight: bold;\">Steps in the software development process</span>\r\nDeveloping software typically involves the following steps:\r\n<ul><li><span style=\"font-weight: bold;\">Selecting a methodology</span> to establish a framework in which the steps of software development are applied. It describes an overall work process or roadmap for the project. Methodologies can include Agile development, DevOps, Rapid Application Development (RAD), Scaled Agile Framework (SAFe), Waterfall and others.</li><li><span style=\"font-weight: bold;\">Gathering requirements</span> to understand and document what is required by users and other stakeholders.</li><li><span style=\"font-weight: bold;\">Choosing or building architecture</span> as the underlying structure within which the software will operate.</li><li><span style=\"font-weight: bold;\">Developing a design</span> around solutions to the problems presented by requirements, often involving process models and storyboards.</li><li><span style=\"font-weight: bold;\">Constructing code</span> in the appropriate programming language. Involves peer and team review to eliminate problems early and produce quality software faster.</li><li><span style=\"font-weight: bold;\">Testing</span> with pre-planned scenarios as part of software design and coding — and conducting performance testing to simulate load testing on the application.</li><li><span style=\"font-weight: bold;\">Managing configuration and defects</span> to understand all the software artifacts (requirements, design, code, test) and build distinct versions of the software. Establish quality assurance priorities and release criteria to address and track defects.</li><li><span style=\"font-weight: bold;\">Deploying</span> the software for use and responding to and resolving user problems.</li><li><span style=\"font-weight: bold;\">Migrating data</span> to the new or updated software from existing applications or data sources if necessary.</li><li><span style=\"font-weight: bold;\">Managing and measuring the project</span> to maintain quality and delivery over the application lifecycle, and to evaluate the development process with models such as the Capability Maturity Model (CMM).</li></ul>\r\nThe steps of the software development process fit into application lifecycle management.\r\n<ul><li>Requirements analysis and specification</li><li>Design and development</li><li>Testing</li><li>Deployment</li><li>Maintenance and support</li></ul>\r\nSoftware development process steps can be grouped into the phases of the lifecycle, but the importance of the lifecycle is that it recycles to enable continuous improvement. For example, user issues that surface in the maintenance and support phase can become requirements at the beginning of the next cycle.\r\n<span style=\"font-weight: bold;\">Why is software development important?</span>\r\nSoftware development is important because it helps businesses differentiate themselves and be more competitive. It can improve customer experiences, bring more innovative, feature-rich products to market faster, and make operations more efficient, safe and productive.\r\nSoftware development is also important because it is pervasive.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Software_Development.png","alias":"software-development"}},"branches":"Information Technology","companySizes":"101 to 500 Employees","companyUrl":"https://www.ampex.com/","countryCodes":["JPN","USA"],"certifications":[],"isSeller":true,"isSupplier":true,"isVendor":true,"presenterCodeLng":"","seo":{"title":"Ampex","keywords":"","description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:title":"Ampex","og:description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:image":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png"},"eventUrl":"","vendorPartners":[],"supplierPartners":[],"vendoredProducts":[{"id":3253,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/AMPEX.png","logo":true,"scheme":false,"title":"Ampex TuffServ","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"ampex-tuffserv","companyTitle":"Ampex","companyTypes":["supplier","vendor"],"companyId":5126,"companyAlias":"ampex","description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performance needs of the marketplace, Ampex provides its customers with product solutions for their most demanding applications across the entire pricing spectrum - TuffServ 282, TuffServ 480GE, TuffServ 480v2, TuffServ 540, TuffServ 640, TuffServ 641, TuffServ® 481, TuffServ® TS 485. \r\nTuffServ®Series.\r\nEmploying a common architecture found throughout the TuffServ offerings all products advance performance and scalability to an entirely new level. With blazing read/write speeds of up 1GB/sec, 12.8TB of removable solid-statememory, and dual 10Gbit optical Ethernet ports, TuffServ offers unparalleled performance for a wide variety of airborne and mobile applications.\r\nThey addresses key issues encountered when attempting to take products designed for data center use into aerospace environments: cooling, removable storage and the management of internal cables in high-vibration environments.7","shortDescription":"The TuffServ is series of servers designed to perform in extreme airborne, ground, and space environments and offers the fastest ruggedized Network File Servers on the market. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Ampex TuffServ","keywords":"","description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc","og:title":"Ampex TuffServ","og:description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc","og:image":"https://old.roi4cio.com/fileadmin/user_upload/AMPEX.png"},"eventUrl":"","translationId":3253,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"suppliedProducts":[{"id":3253,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/AMPEX.png","logo":true,"scheme":false,"title":"Ampex TuffServ","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"ampex-tuffserv","companyTitle":"Ampex","companyTypes":["supplier","vendor"],"companyId":5126,"companyAlias":"ampex","description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performance needs of the marketplace, Ampex provides its customers with product solutions for their most demanding applications across the entire pricing spectrum - TuffServ 282, TuffServ 480GE, TuffServ 480v2, TuffServ 540, TuffServ 640, TuffServ 641, TuffServ® 481, TuffServ® TS 485. \r\nTuffServ®Series.\r\nEmploying a common architecture found throughout the TuffServ offerings all products advance performance and scalability to an entirely new level. With blazing read/write speeds of up 1GB/sec, 12.8TB of removable solid-statememory, and dual 10Gbit optical Ethernet ports, TuffServ offers unparalleled performance for a wide variety of airborne and mobile applications.\r\nThey addresses key issues encountered when attempting to take products designed for data center use into aerospace environments: cooling, removable storage and the management of internal cables in high-vibration environments.7","shortDescription":"The TuffServ is series of servers designed to perform in extreme airborne, ground, and space environments and offers the fastest ruggedized Network File Servers on the market. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Ampex TuffServ","keywords":"","description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc","og:title":"Ampex TuffServ","og:description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc","og:image":"https://old.roi4cio.com/fileadmin/user_upload/AMPEX.png"},"eventUrl":"","translationId":3253,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"partnershipProgramme":null}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}