{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"company":{"role-vendor":{"_type":"localeString","en":"Vendor","ru":"Производитель"},"role-supplier":{"ru":"Поставщик","_type":"localeString","en":"Supplier"},"products-popover":{"_type":"localeString","en":"Products","de":"die produkte","ru":"Продукты"},"introduction-popover":{"en":"introduction","ru":"внедрения","_type":"localeString"},"partners-popover":{"en":"partners","ru":"партнеры","_type":"localeString"},"update-profile-button":{"_type":"localeString","en":"Update profile","ru":"Обновить профиль"},"read-more-button":{"en":"Show more","ru":"Показать ещё","_type":"localeString"},"hide-button":{"_type":"localeString","en":"Hide","ru":"Скрыть"},"user-implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"categories":{"_type":"localeString","en":"Categories","ru":"Компетенции"},"description":{"_type":"localeString","en":"Description","ru":"Описание"},"role-user":{"_type":"localeString","en":"User","ru":"Пользователь"},"partnership-vendors":{"ru":"Партнерство с производителями","_type":"localeString","en":"Partnership with vendors"},"partnership-suppliers":{"ru":"Партнерство с поставщиками","_type":"localeString","en":"Partnership with suppliers"},"reference-bonus":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus 4 reference"},"partner-status":{"en":"Partner status","ru":"Статус партнёра","_type":"localeString"},"country":{"ru":"Страна","_type":"localeString","en":"Country"},"partner-types":{"ru":"Типы партнеров","_type":"localeString","en":"Partner types"},"branch-popover":{"ru":"область деятельности","_type":"localeString","en":"branch"},"employees-popover":{"ru":"количество сотрудников","_type":"localeString","en":"number of employees"},"partnership-programme":{"_type":"localeString","en":"Partnership program","ru":"Партнерская программа"},"partner-discounts":{"ru":"Партнерские скидки","_type":"localeString","en":"Partner discounts"},"registered-discounts":{"_type":"localeString","en":"Additional benefits for registering a deal","ru":"Дополнительные преимущества за регистрацию сделки"},"additional-advantages":{"en":"Additional Benefits","ru":"Дополнительные преимущества","_type":"localeString"},"additional-requirements":{"ru":"Требования к уровню партнера","_type":"localeString","en":"Partner level requirements"},"certifications":{"ru":"Сертификация технических специалистов","_type":"localeString","en":"Certification of technical specialists"},"sales-plan":{"en":"Annual Sales Plan","ru":"Годовой план продаж","_type":"localeString"},"partners-vendors":{"_type":"localeString","en":"Partners-vendors","ru":"Партнеры-производители"},"partners-suppliers":{"_type":"localeString","en":"Partners-suppliers","ru":"Партнеры-поставщики"},"all-countries":{"ru":"Все страны","_type":"localeString","en":"All countries"},"supplied-products":{"ru":"Поставляемые продукты","_type":"localeString","en":"Supplied products"},"vendored-products":{"en":"Produced products","ru":"Производимые продукты","_type":"localeString"},"vendor-implementations":{"ru":"Производимые внедрения","_type":"localeString","en":"Produced deployments"},"supplier-implementations":{"en":"Supplied deployments","ru":"Поставляемые внедрения","_type":"localeString"},"show-all":{"_type":"localeString","en":"Show all","ru":"Показать все"},"not-yet-converted":{"ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later."},"schedule-event":{"ru":"Pасписание событий","_type":"localeString","en":"Events schedule"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"register":{"ru":"Регистрация ","_type":"localeString","en":"Register"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"auth-message":{"ru":"Для просмотра ивентов компании авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString","en":"To view company events please log in or register on the sit."},"company-presentation":{"en":"Company presentation","ru":"Презентация компании","_type":"localeString"}},"header":{"help":{"_type":"localeString","en":"Help","de":"Hilfe","ru":"Помощь"},"how":{"de":"Wie funktioniert es","ru":"Как это работает","_type":"localeString","en":"How does it works"},"login":{"de":"Einloggen","ru":"Вход","_type":"localeString","en":"Log in"},"logout":{"ru":"Выйти","_type":"localeString","en":"Sign out"},"faq":{"ru":"FAQ","_type":"localeString","en":"FAQ","de":"FAQ"},"references":{"ru":"Мои запросы","_type":"localeString","en":"Requests","de":"References"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find-it-product":{"en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта","_type":"localeString"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"_type":"localeString","en":"Comparison Matrix","ru":"Матрица сравнения"},"roi-calculators":{"en":"ROI calculators","ru":"ROI калькуляторы","_type":"localeString"},"b4r":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference"},"business-booster":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"catalogs":{"_type":"localeString","en":"Catalogs","ru":"Каталоги"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"companies":{"_type":"localeString","en":"Companies","ru":"Компании"},"categories":{"_type":"localeString","en":"Categories","ru":"Категории"},"for-suppliers":{"_type":"localeString","en":"For suppliers","ru":"Поставщикам"},"blog":{"_type":"localeString","en":"Blog","ru":"Блог"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"en":"My account","ru":"Мой кабинет","_type":"localeString"},"register":{"_type":"localeString","en":"Register","ru":"Зарегистрироваться"},"comparison-deletion":{"en":"Deletion","ru":"Удаление","_type":"localeString"},"comparison-confirm":{"en":"Are you sure you want to delete","ru":"Подтвердите удаление","_type":"localeString"},"search-placeholder":{"en":"Enter your search term","ru":"Введите поисковый запрос","_type":"localeString"},"my-profile":{"en":"My profile","ru":"Мои данные","_type":"localeString"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"en":"Roi4Presenter","_type":"localeString"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"en":"Find IT product","_type":"localeString"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"en":"Create an avatar for the event","_type":"localeString"},"catalogs_new":{"en":"Products","_type":"localeString"},"b4reference":{"en":"Bonus4Reference","_type":"localeString"},"it_our_it_catalogs":{"en":"Our IT Catalogs","_type":"localeString"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"en":"Learn implementation reviews","_type":"localeString"},"it_companies":{"en":"Find vendor and company-supplier","_type":"localeString"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"en":"Our Products","_type":"localeString"},"it_it_catalogs":{"_type":"localeString","en":"IT catalogs"}},"footer":{"copyright":{"de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString","en":"All rights reserved"},"company":{"en":"My Company","de":"Über die Firma","ru":"О компании","_type":"localeString"},"about":{"_type":"localeString","en":"About us","de":"Über uns","ru":"О нас"},"infocenter":{"ru":"Инфоцентр","_type":"localeString","en":"Infocenter","de":"Infocenter"},"tariffs":{"_type":"localeString","en":"Subscriptions","de":"Tarife","ru":"Тарифы"},"contact":{"en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами","_type":"localeString"},"marketplace":{"de":"Marketplace","ru":"Marketplace","_type":"localeString","en":"Marketplace"},"products":{"en":"Products","de":"Produkte","ru":"Продукты","_type":"localeString"},"compare":{"de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare"},"calculate":{"en":"Calculate the cost","de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString"},"get_bonus":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference","de":"Holen Sie sich einen Rabatt"},"salestools":{"ru":"Salestools","_type":"localeString","en":"Salestools","de":"Salestools"},"automatization":{"_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов"},"roi_calcs":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators","de":"ROI-Rechner"},"matrix":{"de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString","en":"Comparison matrix"},"b4r":{"_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference","ru":"Rebate 4 Reference"},"our_social":{"de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети","_type":"localeString","en":"Our social networks"},"subscribe":{"ru":"Подпишитесь на рассылку","_type":"localeString","en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an"},"subscribe_info":{"_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews","ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта"},"policy":{"ru":"Политика конфиденциальности","_type":"localeString","en":"Privacy Policy"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find":{"en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта","_type":"localeString"},"quote":{"_type":"localeString","en":"Price calculator","ru":"Калькулятор цены"},"boosting":{"_type":"localeString","en":"Business boosting","ru":"Развитие бизнеса"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"_type":"localeString","en":"blog","ru":"блог"},"pay4content":{"ru":"платим за контент","_type":"localeString","en":"we pay for content"},"categories":{"en":"categories","ru":"категории","_type":"localeString"},"showForm":{"ru":"Показать форму","_type":"localeString","en":"Show form"},"subscribe__title":{"ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!"},"subscribe__email-label":{"en":"Email","ru":"Email","_type":"localeString"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"en":"This field is required","ru":"Это поле обязательное","_type":"localeString"},"subscribe__notify-label":{"_type":"localeString","en":"Yes, please, notify me about news, events and propositions","ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях"},"subscribe__agree-label":{"ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data"},"subscribe__submit-label":{"ru":"Подписаться","_type":"localeString","en":"Subscribe"},"subscribe__email-message":{"ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString","en":"Please, enter the valid email"},"subscribe__email-placeholder":{"_type":"localeString","en":"username@gmail.com","ru":"username@gmail.com"},"subscribe__name-placeholder":{"en":"Last, first name","ru":"Имя Фамилия","_type":"localeString"},"subscribe__success":{"ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString","en":"You are successfully subscribed! Check you mailbox."},"subscribe__error":{"ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString","en":"Subscription is unsuccessful. Please, try again later."},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter","de":"roi4presenter","ru":"roi4presenter"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"en":"Pitch Avatar","_type":"localeString"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"en":"Home","ru":"Главная","_type":"localeString"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"registration":{"ru":"Регистрация","_type":"localeString","en":"Registration"},"b2b-platform":{"_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers","ru":"Портал для покупателей, поставщиков и производителей ИТ"}},"comment-form":{"title":{"ru":"Оставить комментарий","_type":"localeString","en":"Leave comment"},"firstname":{"_type":"localeString","en":"First name","ru":"Имя"},"lastname":{"ru":"Фамилия","_type":"localeString","en":"Last name"},"company":{"ru":"Компания","_type":"localeString","en":"Company name"},"position":{"ru":"Должность","_type":"localeString","en":"Position"},"actual-cost":{"ru":"Фактическая стоимость","_type":"localeString","en":"Actual cost"},"received-roi":{"_type":"localeString","en":"Received ROI","ru":"Полученный ROI"},"saving-type":{"_type":"localeString","en":"Saving type","ru":"Тип экономии"},"comment":{"ru":"Комментарий","_type":"localeString","en":"Comment"},"your-rate":{"ru":"Ваша оценка","_type":"localeString","en":"Your rate"},"i-agree":{"en":"I agree","ru":"Я согласен","_type":"localeString"},"terms-of-use":{"ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString","en":"With user agreement and privacy policy"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"ru":"{NAME} - это обязательное поле","_type":"localeString","en":"{NAME} is required filed"}},"maintenance":{"title":{"_type":"localeString","en":"Site under maintenance","ru":"На сайте проводятся технические работы"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}}},"translationsStatus":{"company":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"company":{"translatable_meta":[{"translations":{"en":"Company","ru":"Компания","_type":"localeString"},"name":"title"},{"name":"description","translations":{"ru":"Описание компании","_type":"localeString","en":"Company description"}},{"name":"keywords","translations":{"ru":"Ключевые слова для компании","_type":"localeString","en":"Company keywords"}}],"title":{"en":"ROI4CIO: Company","ru":"ROI4CIO: Компания","_type":"localeString"},"meta":[{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"},{"content":"website","name":"og:type"}]}},"pageMetaDataStatus":{"company":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{"software-diversified-services":{"id":6758,"title":"Software Diversified Services","logoURL":"https://old.roi4cio.com/uploads/roi/company/SDS-logo.png","alias":"software-diversified-services","address":"","roles":[{"id":2,"type":"supplier"},{"id":3,"type":"vendor"}],"description":" Founded in 1982, <span style=\"font-weight: bold;\">Software Diversified Services</span> delivers comprehensive, affordable mainframe and distributed software with a focus on cybersecurity and compliance. Hundreds of organizations worldwide, including many Fortune 500 companies, rely on <span style=\"font-weight: bold;\">SDS </span>software. <span style=\"font-weight: bold;\">SDS </span>expert development and award-winning technical support teams are based in Minneapolis, MN. <br /><br />Because <span style=\"font-weight: bold;\">SDS </span>products have proven robust, intuitive, and affordable, they are used today in many of the world’s largest z/OS environments. With an impressive suite of mainframe security software, <span style=\"font-weight: bold;\">SDS </span>has been recognized as a cybersecurity trendsetter and company to watch.<br /><br />Dedicated to enhanced product development and support, <span style=\"font-weight: bold;\">SDS </span>stays current with IBM z/OS software releases and ahead of customers in testing <span style=\"font-weight: bold;\">SDS </span>software on the latest operating system releases. <br /><br />Source: https://www.linkedin.com/company/software-diversified-services/about/","companyTypes":["supplier","vendor"],"products":{},"vendoredProductsCount":2,"suppliedProductsCount":2,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{"24":{"id":24,"title":"DLP - Data Leak Prevention","description":"Data leak prevention (DLP) is a suite of technologies aimed at stemming the loss of sensitive information that occurs in enterprises across the globe. By focusing on the location, classification and monitoring of information at rest, in use and in motion, this solution can go far in helping an enterprise get a handle on what information it has, and in stopping the numerous leaks of information that occur each day. DLP is not a plug-and-play solution. The successful implementation of this technology requires significant preparation and diligent ongoing maintenance. Enterprises seeking to integrate and implement DLP should be prepared for a significant effort that, if done correctly, can greatly reduce risk to the organization. Those implementing the solution must take a strategic approach that addresses risks, impacts and mitigation steps, along with appropriate governance and assurance measures.","materialsDescription":" <span style=\"font-weight: bold;\">How to protect the company from internal threats associated with leakage of confidential information?</span>\r\nIn order to protect against any threat, you must first realize its presence. Unfortunately, not always the management of companies is able to do this if it comes to information security threats. The key to successfully protecting against information leaks and other threats lies in the skillful use of both organizational and technical means of monitoring personnel actions.\r\n<span style=\"font-weight: bold;\">How should the personnel management system in the company be organized to minimize the risks of leakage of confidential information?</span>\r\nA company must have a special employee responsible for information security, and a large department must have a department directly reporting to the head of the company.\r\n<span style=\"font-weight: bold;\">Which industry representatives are most likely to encounter confidential information leaks?</span>\r\nMore than others, representatives of such industries as industry, energy, and retail trade suffer from leaks. Other industries traditionally exposed to leakage risks — banking, insurance, IT — are usually better at protecting themselves from information risks, and for this reason they are less likely to fall into similar situations.\r\n<span style=\"font-weight: bold;\">What should be adequate measures to protect against leakage of information for an average company?</span>\r\nFor each organization, the question of protection measures should be worked out depending on the specifics of its work, but developing information security policies, instructing employees, delineating access to confidential data and implementing a DLP system are necessary conditions for successful leak protection for any organization. Among all the technical means to prevent information leaks, the DLP system is the most effective today, although its choice must be taken very carefully to get the desired result. So, it should control all possible channels of data leakage, support automatic detection of confidential information in outgoing traffic, maintain control of work laptops that temporarily find themselves outside the corporate network...\r\n<span style=\"font-weight: bold;\">Is it possible to give protection against information leaks to outsourcing?</span>\r\nFor a small company, this may make sense because it reduces costs. However, it is necessary to carefully select the service provider, preferably before receiving recommendations from its current customers.\r\n<span style=\"font-weight: bold;\">What data channels need to be monitored to prevent leakage of confidential information?</span>\r\nAll channels used by employees of the organization - e-mail, Skype, HTTP World Wide Web protocol ... It is also necessary to monitor the information recorded on external storage media and sent to print, plus periodically check the workstation or laptop of the user for files that are there saying should not.\r\n<span style=\"font-weight: bold;\">What to do when the leak has already happened?</span>\r\nFirst of all, you need to notify those who might suffer - silence will cost your reputation much more. Secondly, you need to find the source and prevent further leakage. Next, you need to assess where the information could go, and try to somehow agree that it does not spread further. In general, of course, it is easier to prevent the leakage of confidential information than to disentangle its consequences.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Leak_Prevention.png","alias":"dlp-data-leak-prevention"},"43":{"id":43,"title":"Data Encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png","alias":"data-encryption"},"45":{"id":45,"title":"SIEM - Security Information and Event Management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png","alias":"siem-security-information-and-event-management"},"467":{"id":467,"title":"Network Forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png","alias":"network-forensics"},"840":{"id":840,"title":"ICS/SCADA Cyber Security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png","alias":"icsscada-cyber-security"},"848":{"id":848,"title":"Multi-factor authentication","description":" Multi-factor authentication (MFA) is an authentication method in which a computer user is granted access only after successfully presenting two or more pieces of evidence (or factors) to an authentication mechanism: knowledge (something the user and only the user knows), possession (something the user and only the user has), and inherence (something the user and only the user is).\r\nTwo-factor authentication (also known as 2FA) is a type, or subset, of multi-factor authentication. It is a method of confirming users' claimed identities by using a combination of two different factors: 1) something they know, 2) something they have, or 3) something they are.\r\nA good example of two-factor authentication is the withdrawing of money from an ATM; only the correct combination of a bank card (something the user possesses) and a PIN (something the user knows) allows the transaction to be carried out.\r\nTwo other examples are to supplement a user-controlled password with a one-time password (OTP) or code generated or received by an authenticator (e.g. a security token or smartphone) that only the user possesses.\r\nTwo-step verification or two-step authentication is a method of confirming a user's claimed identity by utilizing something they know (password) and a second factor other than something they have or something they are. An example of a second step is the user repeating back something that was sent to them through an out-of-band mechanism. Or, the second step might be a six digit number generated by an app that is common to the user and the authentication system.","materialsDescription":" <span style=\"font-weight: bold;\">What is MFA?</span>\r\nMulti-factor authentication (MFA) combines two or more independent authentication factors. For example, suppose your website required your clients to enter something only they would know upon login (password), something they have (like a one-time smartphone authentication token provided by special software), and a biometric identifier (like a thumbprint). It is pretty hard for a mortgage cyber-attacker to have all three of those items, especially the biometric identifier.\r\n<span style=\"font-weight: bold;\">Why do I need MFA? What are the benefits?</span>\r\nPasswords are becoming increasingly easy to compromise. They can be stolen, “phished”, guessed, and hacked. New technology and hacking techniques combined with the limited pool of passwords most people use for multiple accounts increases vulnerability.\r\n<span style=\"font-weight: bold;\">How does MFA work?</span>\r\nMulti-factor authentication throws a few roadblocks in the hacker's pathway. Location factors are one way for a security system to identify a person's identity. For example, work schedules and location can determine whether a user is who he says he is. Time is another example of a security layer. If a person uses his phone at a job in the US, it is physically impossible for him to use it again from Europe 15 minutes later. These are especially helpful in online bank fraud and, by extension, mortgage company fraud.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Multi-factor_authentication.png","alias":"multi-factor-authentication"},"850":{"id":850,"title":"Mobile Data Protection (BYOD)","description":"The first and best defense in securing BYODs begins with the same requirements you apply to devices that are already on your network. These security measures include enforcing strong passcodes on all devices, antivirus protection and data loss prevention (DLP), full-disk encryption for disk, removable media and cloud storage, mobile device management (MDM) to wipe sensitive data when devices are lost or stolen, and application control.\r\nYou should always extend encryption to both data in transit and data at rest. Protecting your devices with strong passwords means you make it incredibly difficult for someone to break in and steal data. But if somehow your device-level password is compromised, encrypting the data stored on the device provides a second level of security a hacker must get through in order to steal your data.\r\nYou should encourage users to think of the extra layers of security as helpful tools that give them the ability to use their own devices within the workplace. By password protecting devices, a user acknowledges accountability and responsibility for protecting their data.\r\nIn addition to applying passcodes and antivirus prevention to your devices, you should apply a custom level of application control to BYODs. If applications are available to employees on the internal network, they should be able to access them offsite through a VPN or email software.\r\nA successful BYOD program allows your users to be productive outside of their scheduled work hours while also giving them the flexibility to do the things they like to do when they’re not working—like update their status or enjoy playing an interactive game.\r\nWhatever decision you make for your BYOD policy, be sure that it’s enforceable and enables IT to deploy software remotely.","materialsDescription":" <span style=\"font-weight: bold;\">How can I control apps on BYOD devices?</span>\r\nThe best way IT can control apps on BYOD devices is to have an acceptable use policy in place. Since BYOD adoption has picked up, IT pros have less control over the apps employees use. A policy that lays out expectations and consequences for users can improve the success of your BYOD initiative. Mobile device management (MDM) systems also offer application controls through their blacklisting and whitelisting features. In addition, those with auto-quarantine or remote wipe capabilities also help in the event that a user installs non-compliant apps on his or her device.\r\n<span style=\"font-weight: bold;\">How can my organization create a BYOD policy?</span>\r\nEvery organization’s BYOD policy is a little different because policies are most effective when they’re organization-specific. The most important thing you can do is create a policy as soon as you decide to allow users to bring their own devices to work. The basic points of good BYOD programs address the same things: how users should protect devices, what they can and can’t access and what will happen if and when they leave the company.\r\nA strong BYOD policy should also consider device selection, reimbursement, MDM, device security and mobile application security. Also think about how you’ll enforce BYOD policy once it’s in place.\r\n<span style=\"font-weight: bold;\">What mobile app delivery options does my department have?</span>\r\nThere are four good mobile app delivery approaches, but each has pitfalls.\r\nEnterprise app stores give IT licensing and compliance control and let users download pre-approved mobile applications, but they require a lot of maintenance and resources. Web apps are compatible with different devices and don’t need a distribution system, but without an Internet connection, they aren’t practical. Cloud file-sharing services are good for app delivery since most employees are already familiar with services such as Dropbox. If you chose the cloud option, you’ll have to use or develop cloud-based mobile apps or pay for cloud storage services. And mobile desktop virtualization lets users connect to a PC environment and stores all sensitive data on servers instead of devices. But for desktop virtualization on mobile devices to work, users need a reasonably large screen and a reliable Internet connection.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_BYOD.png","alias":"mobile-data-protection-byod"},"852":{"id":852,"title":"Network security","description":" Network security consists of the policies and practices adopted to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs; conducting transactions and communications among businesses, government agencies and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: it secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.\r\nNetwork security starts with authentication, commonly with a username and a password. Since this requires just one detail authenticating the user name — i.e., the password—this is sometimes termed one-factor authentication. With two-factor authentication, something the user 'has' is also used (e.g., a security token or 'dongle', an ATM card, or a mobile phone); and with three-factor authentication, something the user 'is' is also used (e.g., a fingerprint or retinal scan).\r\nOnce authenticated, a firewall enforces access policies such as what services are allowed to be accessed by the network users. Though effective to prevent unauthorized access, this component may fail to check potentially harmful content such as computer worms or Trojans being transmitted over the network. Anti-virus software or an intrusion prevention system (IPS) help detect and inhibit the action of such malware. An anomaly-based intrusion detection system may also monitor the network like wireshark traffic and may be logged for audit purposes and for later high-level analysis. Newer systems combining unsupervised machine learning with full network traffic analysis can detect active network attackers from malicious insiders or targeted external attackers that have compromised a user machine or account.\r\nCommunication between two hosts using a network may be encrypted to maintain privacy.\r\nHoneypots, essentially decoy network-accessible resources, may be deployed in a network as surveillance and early-warning tools, as the honeypots are not normally accessed for legitimate purposes. Techniques used by the attackers that attempt to compromise these decoy resources are studied during and after an attack to keep an eye on new exploitation techniques. Such analysis may be used to further tighten security of the actual network being protected by the honeypot. A honeypot can also direct an attacker's attention away from legitimate servers. A honeypot encourages attackers to spend their time and energy on the decoy server while distracting their attention from the data on the real server. Similar to a honeypot, a honeynet is a network set up with intentional vulnerabilities. Its purpose is also to invite attacks so that the attacker's methods can be studied and that information can be used to increase network security. A honeynet typically contains one or more honeypots.","materialsDescription":" <span style=\"font-weight: bold;\">What is Network Security?</span>\r\nNetwork security is any action an organization takes to prevent malicious use or accidental damage to the network’s private data, its users, or their devices. The goal of network security is to keep the network running and safe for all legitimate users.\r\nBecause there are so many ways that a network can be vulnerable, network security involves a broad range of practices. These include:\r\n<ul><li><span style=\"font-weight: bold;\">Deploying active devices:</span> Using software to block malicious programs from entering, or running within, the network. Blocking users from sending or receiving suspicious-looking emails. Blocking unauthorized use of the network. Also, stopping the network's users accessing websites that are known to be dangerous.</li><li><span style=\"font-weight: bold;\">Deploying passive devices:</span> For instance, using devices and software that report unauthorized intrusions into the network, or suspicious activity by authorized users.</li><li><span style=\"font-weight: bold;\">Using preventative devices:</span> Devices that help identify potential security holes, so that network staff can fix them.</li><li><span style=\"font-weight: bold;\">Ensuring users follow safe practices:</span> Even if the software and hardware are set up to be secure, the actions of users can create security holes. Network security staff is responsible for educating members of the organization about how they can stay safe from potential threats.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is Network Security Important?</span>\r\nUnless it’s properly secured, any network is vulnerable to malicious use and accidental damage. Hackers, disgruntled employees, or poor security practices within the organization can leave private data exposed, including trade secrets and customers’ private details.\r\nLosing confidential research, for example, can potentially cost an organization millions of dollars by taking away competitive advantages it paid to gain. While hackers stealing customers’ details and selling them to be used in fraud, it creates negative publicity and public mistrust of the organization.\r\nThe majority of common attacks against networks are designed to gain access to information, by spying on the communications and data of users, rather than to damage the network itself.\r\nBut attackers can do more than steal data. They may be able to damage users’ devices or manipulate systems to gain physical access to facilities. This leaves the organization’s property and members at risk of harm.\r\nCompetent network security procedures keep data secure and block vulnerable systems from outside interference. This allows the network’s users to remain safe and focus on achieving the organization’s goals.\r\n<span style=\"font-weight: bold;\">Why Do I Need Formal Education to Run a Computer Network?</span>\r\nEven the initial setup of security systems can be difficult for those unfamiliar with the field. A comprehensive security system is made of many pieces, each of which needs specialized knowledge.\r\nBeyond setup, each aspect of security is constantly evolving. New technology creates new opportunities for accidental security leaks, while hackers take advantage of holes in security to do damage as soon as they find them. Whoever is in charge of the network’s security needs to be able to understand the technical news and changes as they happen, so they can implement safety strategies right away.\r\nProperly securing your network using the latest information on vulnerabilities helps minimize the risk that attacks will succeed. Security Week reported that 44% of breaches in 2014 came from exploits that were 2-4 years old.\r\nUnfortunately, many of the technical aspects of network security are beyond those who make hiring decisions. So, the best way an organization can be sure that their network security personnel are able to properly manage the threats is to hire staff with the appropriate qualifications.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_security.png","alias":"network-security"},"856":{"id":856,"title":"Secure Communications","description":" <span style=\"font-weight: bold;\">Secure communication</span> is when two entities are communicating and do not want a third party to listen in. For that, they need to communicate in a way not susceptible to eavesdropping or interception. Secure communication includes means by which people can share information with varying degrees of certainty that third parties cannot intercept what was said. Other than spoken face-to-face communication with no possible eavesdropper, it is probably safe to say that no communication is guaranteed secure in this sense, although practical obstacles such as legislation, resources, technical issues (interception and encryption), and the sheer volume of communication serve to limit surveillance.\r\nWith many communications taking place over long distances and mediated by technology, and increasing awareness of the importance of interception issues, technology, and its compromise are at the heart of this debate.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Encryption</span></span> is a method in which data is rendered hard to read by an unauthorized party. Since encryption methods are created to extremely hard to break, many communication methods either use deliberately weaker encryption than possible or have backdoors inserted to permit rapid decryption. In some cases, government authorities have required backdoors to be installed in secret. Many methods of encryption are also subject to "man in the middle" attack whereby a third party who can 'see' the establishment of the secure communication is made privy to the encryption method, this would apply for example to the interception of computer use at an ISP. Provided it is correctly programmed, sufficiently powerful, and the keys not intercepted, encryption would usually be considered secure.\r\nEncryption can be implemented in a way that requires the use of encryption, i.e. if encrypted communication is impossible then no traffic is sent, or opportunistically. Opportunistic encryption is a lower security method to generally increase the percentage of generic traffic which is encrypted. This is analogous to beginning every conversation with "Do you speak Navajo?" If the response is affirmative, then the conversation proceeds in Navajo, otherwise, it uses the common language of the two speakers. This method does not generally provide authentication or anonymity but it does protect the content of the conversation from eavesdropping.\r\nAn Information-theoretic security technique known as physical layer encryption ensures that a wireless communication link is provably secure with communications and coding techniques.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Steganography</span></span> ("hidden writing") is also the means by which data can be hidden within other more innocuous data. Thus a watermark proving ownership embedded in the data of a picture, in such a way it is hard to find or remove unless you know how to find it. Or, for communication, the hiding of important data (such as a telephone number) in apparently innocuous data (an MP3 music file). An advantage of steganography is plausible deniability, that is unless one can prove the data is there (which is usually not easy), it is deniable that the file contains any.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Identity-based networks</span></span> are one of the tools to obtain security. Unwanted or malicious behavior is possible on the web since the internet is inherently anonymous. True identity-based networks replace the ability to remain anonymous and are inherently more trustworthy since the identity of the sender and recipient are known. (The telephone system is an example of an identity-based network.)\r\nRecently, <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">anonymous networking</span></span> also has been used to secure communications. In principle, a large number of users running the same system can have communications routed between them in such a way that it is very hard to detect what the complete message is, which user sent it, and where it is ultimately coming from or going to. Examples are Crowds, Tor, I2P, Mixminion, various anonymous P2P networks, and others.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Anonymous communication devices</span></span> are also one of the tools to obtain security. In theory, an unknown device would not be noticed, since so many other devices are in use. This is not altogether the case in reality, due to the presence of systems such as Carnivore and Echelon, which can monitor communications over entire networks and the fact that the far end may be monitored as before. Examples include payphones, Internet cafes, etc.\r\nPrograms offering more security are <span style=\"font-weight: bold;\">secure instant messaging, VoIP, secure email, IRC and webchat,</span> and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What are the types of security?</span>\r\nSecurity can be broadly categorized under the following headings, with examples:\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">1. Hiding the content or nature of a communication</span></span>\r\n<ul><li><span style=\"font-style: italic; \">Code</span> – a rule to convert a piece of information (for example, a letter, word, phrase, or gesture) into another form or representation (one sign into another sign), not necessarily of the same type. In communications and information processing, encoding is the process by which information from a source is converted into symbols to be communicated. Decoding is the reverse process, converting these code symbols back into information understandable by a receiver. One reason for coding is to enable communication in places where ordinary spoken or written language is difficult or impossible. For example, semaphore, where the configuration of flags held by a signaler or the arms of a semaphore tower encodes parts of the message, typically individual letters, and numbers. Another person standing a great distance away can interpret the flags and reproduce the words sent.</li><li><span style=\"font-style: italic; \">Encryption</span></li><li><span style=\"font-style: italic; \">Steganography</span></li><li><span style=\"font-style: italic; \">Identity-Based</span></li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">2. Hiding the parties to a communication – preventing identification, promoting anonymity</span></span>\r\n<ul><li>"Crowds" and similar anonymous group structures – it is difficult to identify who said what when it comes from a "crowd"</li><li>Anonymous communication devices – unregistered cellphones, Internet cafes</li><li>Anonymous proxies</li><li>Hard to trace routing methods – through unauthorized third-party systems, or relays</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">3. Hiding the fact that communication takes place</span></span>\r\n<ul><li>"Security by obscurity" – similar to a needle in a haystack</li><li>Random traffic – creating random data flow to make the presence of genuine communication harder to detect and traffic analysis less reliable</li></ul>\r\nEach of the three is important, and depending on the circumstances any of these may be critical. For example, if a communication is not readily identifiable, then it is unlikely to attract attention for identification of parties, and the mere fact communication has taken place (regardless of content) is often enough by itself to establish an evidential link in legal prosecutions. It is also important with computers, to be sure where the security is applied, and what is covered.\r\n<span style=\"font-weight: bold; \">What are the methods used to "break" security?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Bugging</span></span>\r\nThe placing covertly of monitoring and/or transmission devices either within the communication device, or in the premises concerned.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Computers (general)</span></span>\r\nAny security obtained from a computer is limited by the many ways it can be compromised – by hacking, keystroke logging, backdoors, or even in extreme cases by monitoring the tiny electrical signals given off by keyboard or monitors to reconstruct what is typed or seen (TEMPEST, which is quite complex).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Laser audio surveillance</span></span>\r\nSounds, including speech, inside rooms, can be sensed by bouncing a laser beam off a window of the room where a conversation is held and detecting and decoding the vibrations in the glass caused by the sound waves.\r\n<span style=\"font-weight: bold; \">What are the systems offering partial security?</span>\r\n<span style=\"font-weight: bold; \">Anonymous cellphones.</span> Cellphones can easily be obtained, but are also easily traced and "tapped". There is no (or only limited) encryption, the phones are traceable – often even when switched off – since the phone and SIM card broadcast their International Mobile Subscriber Identity (IMSI). It is possible for a cellphone company to turn on some cellphones when the user is unaware and use the microphone to listen in on you, and according to James Atkinson, a counter-surveillance specialist cited in the same source, "Security-conscious corporate executives routinely remove the batteries from their cell phones" since many phones' software can be used "as-is", or modified, to enable transmission without user awareness and the user can be located within a small distance using signal triangulation and now using built-in GPS features for newer models. Transceivers may also be defeated by jamming or Faraday cage.\r\nSome cellphones (Apple's iPhone, Google's Android) track and store users' position information so that movements for months or years can be determined by examining the phone.\r\n<span style=\"font-weight: bold; \">Landlines.</span> Analog landlines are not encrypted, it lends itself to being easily tapped. Such tapping requires physical access to the line which can be easily obtained from a number of places, e.g. the phone location, distribution points, cabinets and the exchange itself. Tapping a landline in this way can enable an attacker to make calls that appear to originate from the tapped line.\r\n<span style=\"font-weight: bold;\">Anonymous Internet.</span> Using a third-party system of any kind (payphone, Internet cafe) is often quite secure, however, if that system is used to access known locations (a known email account or 3rd party) then it may be tapped at the far end, or noted, and this will remove any security benefit obtained. Some countries also impose mandatory registration of Internet cafe users.\r\nAnonymous proxies are another common type of protection, which allows one to access the net via a third party (often in a different country) and make tracing difficult. Note that there is seldom any guarantee that the plaintext is not tappable, nor that the proxy does not keep its own records of users or entire dialogs. As a result, anonymous proxies are a generally useful tool but may not be as secure as other systems whose security can be better assured. Their most common use is to prevent a record of the originating IP, or address, being left on the target site's own records. Typical anonymous proxies are found at both regular websites such as Anonymizer.com and spynot.com, and on proxy sites which maintain up to date lists of large numbers of temporary proxies in operation.\r\nA recent development on this theme arises when wireless Internet connections ("Wi-Fi") are left in their unsecured state. The effect of this is that any person in range of the base unit can piggyback the connection – that is, use it without the owner being aware. Since many connections are left open in this manner, situations where piggybacking might arise (willful or unaware) have successfully led to a defense in some cases, since it makes it difficult to prove the owner of the connection was the downloader or had knowledge of the use to which unknown others might be putting their connection. An example of this was the Tammie Marson case, where neighbors and anyone else might have been the culprit in the sharing of copyright files. Conversely, in other cases, people deliberately seek out businesses and households with unsecured connections, for illicit and anonymous Internet usage, or simply to obtain free bandwidth.\r\n<span style=\"font-weight: bold;\">Programs offering more security.</span>\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Secure instant messaging</span></span> – Some instant messaging clients use end-to-end encryption with forwarding secrecy to secure all instant messages to other users of the same software. Some instant messaging clients also offer end-to-end encrypted file transfer support and group messaging.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">VoIP</span></span> – Some VoIP clients implement ZRTP and SRTP encryption for calls.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Secure email</span></span> – some email networks are designed to provide encrypted and/or anonymous communication. They authenticate and encrypt on the users own computer, to prevent transmission of plain text, and mask the sender and recipient. Mixminion and I2P-Bote provide a higher level of anonymity by using a network of anonymizing intermediaries, similar to how Tor works, but at a higher latency.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">IRC and webchat</span></span> – Some IRC clients and systems use client-to-server encryption such as SSL/TLS. This is not standardized.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/diseno-plano-de-icon.png","alias":"secure-communications"}},"branches":"Information Technology","companySizes":"101 to 500 Employees","companyUrl":"https://www.sdsusa.com/","countryCodes":[],"certifications":[],"isSeller":true,"isSupplier":true,"isVendor":true,"presenterCodeLng":"","seo":{"title":"Software Diversified Services","keywords":"","description":" Founded in 1982, <span style=\"font-weight: bold;\">Software Diversified Services</span> delivers comprehensive, affordable mainframe and distributed software with a focus on cybersecurity and compliance. Hundreds of organizations worldwide, including many Fort","og:title":"Software Diversified Services","og:description":" Founded in 1982, <span style=\"font-weight: bold;\">Software Diversified Services</span> delivers comprehensive, affordable mainframe and distributed software with a focus on cybersecurity and compliance. Hundreds of organizations worldwide, including many Fort","og:image":"https://old.roi4cio.com/uploads/roi/company/SDS-logo.png"},"eventUrl":"","vendorPartners":[],"supplierPartners":[],"vendoredProducts":[{"id":4361,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SDS-logo.png","logo":true,"scheme":false,"title":"VitalSigns SIEM Agent for z/OS | VSA","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"vitalsigns-siem-agent-dlja-zos-vsa","companyTitle":"Software Diversified Services","companyTypes":["supplier","vendor"],"companyId":6758,"companyAlias":"software-diversified-services","description":"Recent headlines prove that any business can be hacked. To minimize the risk of a system breach, it's imperative to find security issues now, not hours later after batch jobs are run.\r\n <span style=\"font-weight: bold;\">VitalSigns SIEM Agent for z/OS (VSA)</span> brings the mainframe into the center of your enterprise security infrastructure – in real time.\r\nIt quickly and easily separates critical incidents from everyday events so they can be tracked from all corners of the business\r\nVSA integrates with standard z/OS security facilities such as RACF, ACF2, and Top Secret to gather detailed information about mainframe security events from all z/OS systems and LPARs in your network.VSA acquires messages in real time from the z/OS system console and SMF (system management facility). \r\n<span style=\"font-weight: bold;\">Using powerful, field-level SMF filters, the agent determines which SMF events are critical.</span> The agent reformats the data as syslog, CEF, or LEEF events and forwards them to one or two enterprise SIEMs such as Splunk, LogRhythm, QRadar, AlienVault, ArcSight, and many others.The SIEM interprets the data, then delivers it to the people and systems responsible for enterprise security. Your security team has a central, end-to-end view of all the events they need to recognize. \r\nVSA can warn about threats before they become headlines. Simplified Compliance and Auditing Enterprise-wide monitoring of security events is critical, not only for tracking malicious activity, but also to attain today's demanding compliance standards. \r\nAdministrators can define specific items for extra levels of monitoring or auditing: files that contain credit information, for example, or health care details. Mainframe teams can rely on VSA to filter and format the right data to comply with strict audit policies.\r\n<span style=\"font-weight: bold;\">Compliance.</span> VSA is an invaluable tool to help your business comply with FISMA, GDPR, GLBA, HIPAA, PCI, SOX, and other standards. Administrators can define specific parameters to monitor with more detail and at greater depth, and automatically send data to any enterprise SIEM.<br />icon-feature\r\n<span style=\"font-weight: bold;\">Security.</span> With VSA monitoring the mainframes, your security team has a central, enterprise-wide view of all the events they need to capture and all the security threats they need to recognize.<br />icon-feature\r\n<span style=\"font-weight: bold;\">Transparency.</span> Mainframe security no longer needs to depend on batch jobs running long after any incident. Events are tracked and uncovered in real time, from all corners of the business.\r\nThis z/OS SIEM solution is flexible enough to integrate with any distributed SIEM product and is certified for CEF and LEEF formats. \r\n<span style=\"font-weight: bold;\">VSA is a Ready for IBM Security Intelligence product. </span> In addition, VSA integrates well and provides mainframe data to these SIEM solutions: Splunk, LogRhythm NextGen SIEM, AlienVault, ArcSight, McAfee® Enterprise Security Manager, and others.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">VSA Features</span></p>\r\n<ul><li>Interfaces inrealtime with standard z/OS security products: ACF2, Top Secret, RACF, DB2, CICS, FTP, TCP/IP, and others.</li><li>Monitors z/OS, DB2, and UNIX System Services (USS).</li><li>Powerful SMF filters identify critical events. </li><li>Provides real-time alerts to one or two central SIEMs, which interpret the data and route it to the security team. </li><li>Reduces costs by filtering records and minimizing the number of events sent to the SIEM.</li><li>APIs allow for defining and filtering TSO, CICS, and batch events.</li><li>Installs easily and quickly with minimal resources and no z/OS IPLs.</li><li>Simple or complex monitoring rules are easily defined using ISPF Edit.</li><li>Uses both signature-based and anomaly-based attack detection.</li><li>Configuration can be shared by VSA agents running on different LPARs.</li><li>Small footprint in each LPAR and little CPU overhead.</li><li>CEF and LEEF certified.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Security Means Watch All the Doors</span></p>\r\n VSA software agents convert mainframe data to syslog, CEF, or LEEF events for delivery to SIEM technologies or to any other software that uses TCP/IP protocol. The enterprise SIEMs consolidate VSA information with security intelligence from other systems, such as UNIX, Windows, and Cisco. \r\nThe SIEMs can then analyze and visualize data across the spectrum.You no longer need multiple security teams to guard multiple platforms. You get total visibility into the z/OS environment, as well as distributed and open systems environments.<br /><br />","shortDescription":"Integrate mainframe security events into your existing SIEM solution. Real-Time Mainframe Security Events Delivered to Any Enterprise SIEM.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":16,"sellingCount":3,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"VitalSigns SIEM Agent for z/OS | VSA","keywords":"","description":"Recent headlines prove that any business can be hacked. To minimize the risk of a system breach, it's imperative to find security issues now, not hours later after batch jobs are run.\r\n <span style=\"font-weight: bold;\">VitalSigns SIEM Agent for z/OS (VSA)</spa","og:title":"VitalSigns SIEM Agent for z/OS | VSA","og:description":"Recent headlines prove that any business can be hacked. To minimize the risk of a system breach, it's imperative to find security issues now, not hours later after batch jobs are run.\r\n <span style=\"font-weight: bold;\">VitalSigns SIEM Agent for z/OS (VSA)</spa","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SDS-logo.png"},"eventUrl":"","translationId":4362,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6395,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Software_Diversified_Services.png","logo":true,"scheme":false,"title":"Software Diversified Services Tectia","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"software-diversified-services-tectia","companyTitle":"Software Diversified Services","companyTypes":["supplier","vendor"],"companyId":6758,"companyAlias":"software-diversified-services","description":"<b>Tectia SSH</b> is both an SSH server and client that can be used enterprise-wide for Secure Shell protocol (SSH) implementation. Many of the world’s biggest banks and organizations use Tectia SSH clients and servers throughout their infrastructures to protect data and surpass all regulatory compliance standards. The server and client can run on Linux, Unix, Windows, and z/OS mainframes. \r\n<b>Features:</b>\r\n<ul> <li>Complete data security regardless of secure connections </li> <li>PKI and smartcard authentication support </li> <li>Supports FIPS 140-2 certified cryptography </li> <li>Works on all key business platforms: Linux, Unix, Windows, z/OS </li> <li>Supports SFTP (SSH File Transfer Protocol) </li> <li>Improves IT performance across the enterprise </li> <li>Integrated with SSH key management </li> <li>Tectia SSH was created and continues to be maintained by the creators of the SSH Protocol </li> <li>Tectia SSH teams up with VitalSigns for FTP™ to offer comprehensive z/OS FTP security </li> </ul>\r\n<b>Benefits:</b>\r\n<i>Compliance</i>\r\nTectia SSH is actively being developed by the creators of SSH protocol to remain the best enterprise SSH implementation available and to stay current in the ever-changing regulatory landscape. \r\n<i>Improve performance</i>\r\nTectia SSH clients and servers offer the best SSH implementation on the market. They are constantly tested to improve overall performance for the largest organizations and data centers in the world. \r\n<i>Security</i>\r\nTectia SSH clients and servers completely secure even automated connections over an untrusted network. Effectively protecting these automated connections is imperative for business security. ","shortDescription":"Tectia SSH is an enterprise-grade SSH server and client that secures remote system administration, encrypts file transfers, and safeguards system automation.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Software Diversified Services Tectia","keywords":"","description":"<b>Tectia SSH</b> is both an SSH server and client that can be used enterprise-wide for Secure Shell protocol (SSH) implementation. Many of the world’s biggest banks and organizations use Tectia SSH clients and servers throughout their infrastructures to prote","og:title":"Software Diversified Services Tectia","og:description":"<b>Tectia SSH</b> is both an SSH server and client that can be used enterprise-wide for Secure Shell protocol (SSH) implementation. Many of the world’s biggest banks and organizations use Tectia SSH clients and servers throughout their infrastructures to prote","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Software_Diversified_Services.png"},"eventUrl":"","translationId":6395,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"suppliedProducts":[{"id":4361,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SDS-logo.png","logo":true,"scheme":false,"title":"VitalSigns SIEM Agent for z/OS | VSA","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"vitalsigns-siem-agent-dlja-zos-vsa","companyTitle":"Software Diversified Services","companyTypes":["supplier","vendor"],"companyId":6758,"companyAlias":"software-diversified-services","description":"Recent headlines prove that any business can be hacked. To minimize the risk of a system breach, it's imperative to find security issues now, not hours later after batch jobs are run.\r\n <span style=\"font-weight: bold;\">VitalSigns SIEM Agent for z/OS (VSA)</span> brings the mainframe into the center of your enterprise security infrastructure – in real time.\r\nIt quickly and easily separates critical incidents from everyday events so they can be tracked from all corners of the business\r\nVSA integrates with standard z/OS security facilities such as RACF, ACF2, and Top Secret to gather detailed information about mainframe security events from all z/OS systems and LPARs in your network.VSA acquires messages in real time from the z/OS system console and SMF (system management facility). \r\n<span style=\"font-weight: bold;\">Using powerful, field-level SMF filters, the agent determines which SMF events are critical.</span> The agent reformats the data as syslog, CEF, or LEEF events and forwards them to one or two enterprise SIEMs such as Splunk, LogRhythm, QRadar, AlienVault, ArcSight, and many others.The SIEM interprets the data, then delivers it to the people and systems responsible for enterprise security. Your security team has a central, end-to-end view of all the events they need to recognize. \r\nVSA can warn about threats before they become headlines. Simplified Compliance and Auditing Enterprise-wide monitoring of security events is critical, not only for tracking malicious activity, but also to attain today's demanding compliance standards. \r\nAdministrators can define specific items for extra levels of monitoring or auditing: files that contain credit information, for example, or health care details. Mainframe teams can rely on VSA to filter and format the right data to comply with strict audit policies.\r\n<span style=\"font-weight: bold;\">Compliance.</span> VSA is an invaluable tool to help your business comply with FISMA, GDPR, GLBA, HIPAA, PCI, SOX, and other standards. Administrators can define specific parameters to monitor with more detail and at greater depth, and automatically send data to any enterprise SIEM.<br />icon-feature\r\n<span style=\"font-weight: bold;\">Security.</span> With VSA monitoring the mainframes, your security team has a central, enterprise-wide view of all the events they need to capture and all the security threats they need to recognize.<br />icon-feature\r\n<span style=\"font-weight: bold;\">Transparency.</span> Mainframe security no longer needs to depend on batch jobs running long after any incident. Events are tracked and uncovered in real time, from all corners of the business.\r\nThis z/OS SIEM solution is flexible enough to integrate with any distributed SIEM product and is certified for CEF and LEEF formats. \r\n<span style=\"font-weight: bold;\">VSA is a Ready for IBM Security Intelligence product. </span> In addition, VSA integrates well and provides mainframe data to these SIEM solutions: Splunk, LogRhythm NextGen SIEM, AlienVault, ArcSight, McAfee® Enterprise Security Manager, and others.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">VSA Features</span></p>\r\n<ul><li>Interfaces inrealtime with standard z/OS security products: ACF2, Top Secret, RACF, DB2, CICS, FTP, TCP/IP, and others.</li><li>Monitors z/OS, DB2, and UNIX System Services (USS).</li><li>Powerful SMF filters identify critical events. </li><li>Provides real-time alerts to one or two central SIEMs, which interpret the data and route it to the security team. </li><li>Reduces costs by filtering records and minimizing the number of events sent to the SIEM.</li><li>APIs allow for defining and filtering TSO, CICS, and batch events.</li><li>Installs easily and quickly with minimal resources and no z/OS IPLs.</li><li>Simple or complex monitoring rules are easily defined using ISPF Edit.</li><li>Uses both signature-based and anomaly-based attack detection.</li><li>Configuration can be shared by VSA agents running on different LPARs.</li><li>Small footprint in each LPAR and little CPU overhead.</li><li>CEF and LEEF certified.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Security Means Watch All the Doors</span></p>\r\n VSA software agents convert mainframe data to syslog, CEF, or LEEF events for delivery to SIEM technologies or to any other software that uses TCP/IP protocol. The enterprise SIEMs consolidate VSA information with security intelligence from other systems, such as UNIX, Windows, and Cisco. \r\nThe SIEMs can then analyze and visualize data across the spectrum.You no longer need multiple security teams to guard multiple platforms. You get total visibility into the z/OS environment, as well as distributed and open systems environments.<br /><br />","shortDescription":"Integrate mainframe security events into your existing SIEM solution. Real-Time Mainframe Security Events Delivered to Any Enterprise SIEM.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":16,"sellingCount":3,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"VitalSigns SIEM Agent for z/OS | VSA","keywords":"","description":"Recent headlines prove that any business can be hacked. To minimize the risk of a system breach, it's imperative to find security issues now, not hours later after batch jobs are run.\r\n <span style=\"font-weight: bold;\">VitalSigns SIEM Agent for z/OS (VSA)</spa","og:title":"VitalSigns SIEM Agent for z/OS | VSA","og:description":"Recent headlines prove that any business can be hacked. To minimize the risk of a system breach, it's imperative to find security issues now, not hours later after batch jobs are run.\r\n <span style=\"font-weight: bold;\">VitalSigns SIEM Agent for z/OS (VSA)</spa","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SDS-logo.png"},"eventUrl":"","translationId":4362,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"},{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":6395,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Software_Diversified_Services.png","logo":true,"scheme":false,"title":"Software Diversified Services Tectia","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"software-diversified-services-tectia","companyTitle":"Software Diversified Services","companyTypes":["supplier","vendor"],"companyId":6758,"companyAlias":"software-diversified-services","description":"<b>Tectia SSH</b> is both an SSH server and client that can be used enterprise-wide for Secure Shell protocol (SSH) implementation. Many of the world’s biggest banks and organizations use Tectia SSH clients and servers throughout their infrastructures to protect data and surpass all regulatory compliance standards. The server and client can run on Linux, Unix, Windows, and z/OS mainframes. \r\n<b>Features:</b>\r\n<ul> <li>Complete data security regardless of secure connections </li> <li>PKI and smartcard authentication support </li> <li>Supports FIPS 140-2 certified cryptography </li> <li>Works on all key business platforms: Linux, Unix, Windows, z/OS </li> <li>Supports SFTP (SSH File Transfer Protocol) </li> <li>Improves IT performance across the enterprise </li> <li>Integrated with SSH key management </li> <li>Tectia SSH was created and continues to be maintained by the creators of the SSH Protocol </li> <li>Tectia SSH teams up with VitalSigns for FTP™ to offer comprehensive z/OS FTP security </li> </ul>\r\n<b>Benefits:</b>\r\n<i>Compliance</i>\r\nTectia SSH is actively being developed by the creators of SSH protocol to remain the best enterprise SSH implementation available and to stay current in the ever-changing regulatory landscape. \r\n<i>Improve performance</i>\r\nTectia SSH clients and servers offer the best SSH implementation on the market. They are constantly tested to improve overall performance for the largest organizations and data centers in the world. \r\n<i>Security</i>\r\nTectia SSH clients and servers completely secure even automated connections over an untrusted network. Effectively protecting these automated connections is imperative for business security. ","shortDescription":"Tectia SSH is an enterprise-grade SSH server and client that secures remote system administration, encrypts file transfers, and safeguards system automation.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Software Diversified Services Tectia","keywords":"","description":"<b>Tectia SSH</b> is both an SSH server and client that can be used enterprise-wide for Secure Shell protocol (SSH) implementation. Many of the world’s biggest banks and organizations use Tectia SSH clients and servers throughout their infrastructures to prote","og:title":"Software Diversified Services Tectia","og:description":"<b>Tectia SSH</b> is both an SSH server and client that can be used enterprise-wide for Secure Shell protocol (SSH) implementation. Many of the world’s biggest banks and organizations use Tectia SSH clients and servers throughout their infrastructures to prote","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Software_Diversified_Services.png"},"eventUrl":"","translationId":6395,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"partnershipProgramme":null}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}