{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"company":{"role-vendor":{"en":"Vendor","ru":"Производитель","_type":"localeString"},"role-supplier":{"ru":"Поставщик","_type":"localeString","en":"Supplier"},"products-popover":{"_type":"localeString","en":"Products","de":"die produkte","ru":"Продукты"},"introduction-popover":{"en":"introduction","ru":"внедрения","_type":"localeString"},"partners-popover":{"ru":"партнеры","_type":"localeString","en":"partners"},"update-profile-button":{"en":"Update profile","ru":"Обновить профиль","_type":"localeString"},"read-more-button":{"ru":"Показать ещё","_type":"localeString","en":"Show more"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"user-implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"categories":{"en":"Categories","ru":"Компетенции","_type":"localeString"},"description":{"ru":"Описание","_type":"localeString","en":"Description"},"role-user":{"ru":"Пользователь","_type":"localeString","en":"User"},"partnership-vendors":{"ru":"Партнерство с производителями","_type":"localeString","en":"Partnership with vendors"},"partnership-suppliers":{"en":"Partnership with suppliers","ru":"Партнерство с поставщиками","_type":"localeString"},"reference-bonus":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus 4 reference"},"partner-status":{"_type":"localeString","en":"Partner status","ru":"Статус партнёра"},"country":{"en":"Country","ru":"Страна","_type":"localeString"},"partner-types":{"_type":"localeString","en":"Partner types","ru":"Типы партнеров"},"branch-popover":{"ru":"область деятельности","_type":"localeString","en":"branch"},"employees-popover":{"ru":"количество сотрудников","_type":"localeString","en":"number of employees"},"partnership-programme":{"ru":"Партнерская программа","_type":"localeString","en":"Partnership program"},"partner-discounts":{"ru":"Партнерские скидки","_type":"localeString","en":"Partner discounts"},"registered-discounts":{"ru":"Дополнительные преимущества за регистрацию сделки","_type":"localeString","en":"Additional benefits for registering a deal"},"additional-advantages":{"ru":"Дополнительные преимущества","_type":"localeString","en":"Additional Benefits"},"additional-requirements":{"_type":"localeString","en":"Partner level requirements","ru":"Требования к уровню партнера"},"certifications":{"en":"Certification of technical specialists","ru":"Сертификация технических специалистов","_type":"localeString"},"sales-plan":{"_type":"localeString","en":"Annual Sales Plan","ru":"Годовой план продаж"},"partners-vendors":{"en":"Partners-vendors","ru":"Партнеры-производители","_type":"localeString"},"partners-suppliers":{"en":"Partners-suppliers","ru":"Партнеры-поставщики","_type":"localeString"},"all-countries":{"ru":"Все страны","_type":"localeString","en":"All countries"},"supplied-products":{"ru":"Поставляемые продукты","_type":"localeString","en":"Supplied products"},"vendored-products":{"ru":"Производимые продукты","_type":"localeString","en":"Produced products"},"vendor-implementations":{"en":"Produced deployments","ru":"Производимые внедрения","_type":"localeString"},"supplier-implementations":{"ru":"Поставляемые внедрения","_type":"localeString","en":"Supplied deployments"},"show-all":{"_type":"localeString","en":"Show all","ru":"Показать все"},"not-yet-converted":{"en":"Data is moderated and will be published soon. Please, try again later.","ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString"},"schedule-event":{"_type":"localeString","en":"Events schedule","ru":"Pасписание событий"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"register":{"ru":"Регистрация ","_type":"localeString","en":"Register"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"auth-message":{"en":"To view company events please log in or register on the sit.","ru":"Для просмотра ивентов компании авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString"},"company-presentation":{"ru":"Презентация компании","_type":"localeString","en":"Company presentation"}},"header":{"help":{"en":"Help","de":"Hilfe","ru":"Помощь","_type":"localeString"},"how":{"ru":"Как это работает","_type":"localeString","en":"How does it works","de":"Wie funktioniert es"},"login":{"de":"Einloggen","ru":"Вход","_type":"localeString","en":"Log in"},"logout":{"ru":"Выйти","_type":"localeString","en":"Sign out"},"faq":{"ru":"FAQ","_type":"localeString","en":"FAQ","de":"FAQ"},"references":{"_type":"localeString","en":"Requests","de":"References","ru":"Мои запросы"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find-it-product":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"en":"Comparison Matrix","ru":"Матрица сравнения","_type":"localeString"},"roi-calculators":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"b4r":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference"},"business-booster":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"catalogs":{"ru":"Каталоги","_type":"localeString","en":"Catalogs"},"products":{"_type":"localeString","en":"Products","ru":"Продукты"},"implementations":{"en":"Deployments","ru":"Внедрения","_type":"localeString"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"for-suppliers":{"ru":"Поставщикам","_type":"localeString","en":"For suppliers"},"blog":{"_type":"localeString","en":"Blog","ru":"Блог"},"agreements":{"_type":"localeString","en":"Deals","ru":"Сделки"},"my-account":{"_type":"localeString","en":"My account","ru":"Мой кабинет"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"comparison-deletion":{"ru":"Удаление","_type":"localeString","en":"Deletion"},"comparison-confirm":{"ru":"Подтвердите удаление","_type":"localeString","en":"Are you sure you want to delete"},"search-placeholder":{"ru":"Введите поисковый запрос","_type":"localeString","en":"Enter your search term"},"my-profile":{"ru":"Мои данные","_type":"localeString","en":"My profile"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"_type":"localeString","en":"Find IT product"},"sub_b4reference":{"en":"Get reference from user","_type":"localeString"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"_type":"localeString","en":"Create an avatar for the event"},"catalogs_new":{"_type":"localeString","en":"Products"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"en":"Our IT Catalogs","_type":"localeString"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"en":"Explore IT products by category","_type":"localeString"},"it_our_products":{"_type":"localeString","en":"Our Products"},"it_it_catalogs":{"_type":"localeString","en":"IT catalogs"}},"footer":{"copyright":{"en":"All rights reserved","de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString"},"company":{"ru":"О компании","_type":"localeString","en":"My Company","de":"Über die Firma"},"about":{"en":"About us","de":"Über uns","ru":"О нас","_type":"localeString"},"infocenter":{"_type":"localeString","en":"Infocenter","de":"Infocenter","ru":"Инфоцентр"},"tariffs":{"ru":"Тарифы","_type":"localeString","en":"Subscriptions","de":"Tarife"},"contact":{"_type":"localeString","en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами"},"marketplace":{"de":"Marketplace","ru":"Marketplace","_type":"localeString","en":"Marketplace"},"products":{"en":"Products","de":"Produkte","ru":"Продукты","_type":"localeString"},"compare":{"ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare","de":"Wähle und vergleiche"},"calculate":{"en":"Calculate the cost","de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString"},"get_bonus":{"en":"Bonus for reference","de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс","_type":"localeString"},"salestools":{"de":"Salestools","ru":"Salestools","_type":"localeString","en":"Salestools"},"automatization":{"de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов","_type":"localeString","en":"Settlement Automation"},"roi_calcs":{"_type":"localeString","en":"ROI calculators","de":"ROI-Rechner","ru":"ROI калькуляторы"},"matrix":{"en":"Comparison matrix","de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString"},"b4r":{"ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference","de":"Rebate 4 Reference"},"our_social":{"ru":"Наши социальные сети","_type":"localeString","en":"Our social networks","de":"Unsere sozialen Netzwerke"},"subscribe":{"_type":"localeString","en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку"},"subscribe_info":{"_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews","ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта"},"policy":{"ru":"Политика конфиденциальности","_type":"localeString","en":"Privacy Policy"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find":{"_type":"localeString","en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта"},"quote":{"_type":"localeString","en":"Price calculator","ru":"Калькулятор цены"},"boosting":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"ru":"блог","_type":"localeString","en":"blog"},"pay4content":{"ru":"платим за контент","_type":"localeString","en":"we pay for content"},"categories":{"_type":"localeString","en":"categories","ru":"категории"},"showForm":{"_type":"localeString","en":"Show form","ru":"Показать форму"},"subscribe__title":{"_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!","ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!"},"subscribe__email-label":{"ru":"Email","_type":"localeString","en":"Email"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"ru":"Это поле обязательное","_type":"localeString","en":"This field is required"},"subscribe__notify-label":{"ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString","en":"Yes, please, notify me about news, events and propositions"},"subscribe__agree-label":{"_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data","ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*"},"subscribe__submit-label":{"_type":"localeString","en":"Subscribe","ru":"Подписаться"},"subscribe__email-message":{"ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString","en":"Please, enter the valid email"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"en":"Last, first name","ru":"Имя Фамилия","_type":"localeString"},"subscribe__success":{"_type":"localeString","en":"You are successfully subscribed! Check you mailbox.","ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик."},"subscribe__error":{"en":"Subscription is unsuccessful. Please, try again later.","ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString"},"roi4presenter":{"de":"roi4presenter","ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"en":"Home","ru":"Главная","_type":"localeString"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"en":"Products","ru":"Продукты","_type":"localeString"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"registration":{"en":"Registration","ru":"Регистрация","_type":"localeString"},"b2b-platform":{"_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers","ru":"Портал для покупателей, поставщиков и производителей ИТ"}},"comment-form":{"title":{"_type":"localeString","en":"Leave comment","ru":"Оставить комментарий"},"firstname":{"en":"First name","ru":"Имя","_type":"localeString"},"lastname":{"_type":"localeString","en":"Last name","ru":"Фамилия"},"company":{"en":"Company name","ru":"Компания","_type":"localeString"},"position":{"_type":"localeString","en":"Position","ru":"Должность"},"actual-cost":{"ru":"Фактическая стоимость","_type":"localeString","en":"Actual cost"},"received-roi":{"en":"Received ROI","ru":"Полученный ROI","_type":"localeString"},"saving-type":{"ru":"Тип экономии","_type":"localeString","en":"Saving type"},"comment":{"ru":"Комментарий","_type":"localeString","en":"Comment"},"your-rate":{"_type":"localeString","en":"Your rate","ru":"Ваша оценка"},"i-agree":{"ru":"Я согласен","_type":"localeString","en":"I agree"},"terms-of-use":{"en":"With user agreement and privacy policy","ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"en":"{NAME} is required filed","ru":"{NAME} - это обязательное поле","_type":"localeString"}},"maintenance":{"title":{"ru":"На сайте проводятся технические работы","_type":"localeString","en":"Site under maintenance"},"message":{"_type":"localeString","en":"Thank you for your understanding","ru":"Спасибо за ваше понимание"}}},"translationsStatus":{"company":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"company":{"translatable_meta":[{"name":"title","translations":{"ru":"Компания","_type":"localeString","en":"Company"}},{"name":"description","translations":{"ru":"Описание компании","_type":"localeString","en":"Company description"}},{"name":"keywords","translations":{"en":"Company keywords","ru":"Ключевые слова для компании","_type":"localeString"}}],"title":{"ru":"ROI4CIO: Компания","_type":"localeString","en":"ROI4CIO: Company"},"meta":[{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"},{"content":"website","name":"og:type"}]}},"pageMetaDataStatus":{"company":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{"autodesk":{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[{"id":3,"type":"vendor"}],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":["vendor"],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[{"id":493,"title":"Autodesk BIM solutions (Revit) to design a hub for innovation in Africa","description":"SHoP Architects uses Autodesk BIM solutions to design a hub for innovation in Africa.\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold; \">LOCATION</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">New York, NY</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold; \">SOFTWARE</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Autodesk® Building Design Suite Ultimate</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Autodesk® Revit® Architecture</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Autodesk® Revit® Structure</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Autodesk® 3ds Max® Design</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Autodesk® Ecotect® Analysis</span>\r\n<span style=\"font-weight: bold; \">Project Summary</span>\r\nNew York-based SHoP Architects has made a name for itself—and its designs—since its founding in 1996. Winner of numerous awards, including the 2009 National Design Award for Architecture from the National Design Museum, the firm seeks to design buildings that are exciting, evocative, and highly functional. A longtime user of Building Information Modeling (BIM), SHoP explores its ideas in 3D with the BIM solutions in the Autodesk®\r\n<span style=\"font-weight: bold; \">Building Design Suite Ultimate edition.</span>\r\nThe Botswana Innovation Hub provides an excellent example of both SHoP’s approach to design and the use of BIM to further innovative projects. Located in Gabarone, Botswana, the Botswana Innovation Hub will serve as a 350,000-square-foot office and research center. “The Hub is part of the government of Botswana’s effort to support that nation’s increasingly diverse economy,” says William Sharples, a principal with SHoP. “The building is designed to attract the attention of potential tenants and provide the things innovators need from office and research spaces. Using Autodesk BIM solutions, we were able to explore ideas in the form of 3D models with the client and engineers. BIM helped us use the power of visualization to bridge time and distance.”\r\n<span style=\"font-weight: bold; \">The Challenge</span>\r\nA landlocked country in southern Africa, Botswana gained its independence in 1966. Over the country’s short history, it has gone from being one of the poorest countries in the world to one of the most prosperous countries in sub-Saharan Africa, with diamond and other mineral mining helping to drive the economy. Not wanting to rely solely on those industries for growth, Botswana is encouraging entrepreneurship in other sectors such as technology, green industry, and pharmaceutical research.\r\nTo help support the country’s growth goals, the Botswana Innovation Hub will offer the most upto-date facilities for research and technology work. Because Botswana’s leaders felt the Hub needed an exceptional design to help attract attention and symbolize the country’s commitment to innovation, they decided to hold an international contest to choose the project architect competitively.\r\n<span style=\"font-style: italic; \">“This is a significant investment for the people of Botswana,” says David Tsheboeng, executive director of property development for the Botswana Innovation Hub. “Our leaders wanted to see the best ideas from the world’s architects, but we were not just looking for a striking design. The selection criteria also included sustainability and the use of the latest architectural tools.”</span>\r\n<span style=\"font-weight: bold;\">The Solution</span>\r\nThe contest entry from SHoP stood out for a number of reasons. Designed to blend in with its surroundings, the building model’s organic forms evoked dune and delta landscapes, which are culturally and environmentally important in Botswana. SHoP’s entry also included a number of sustainability options—such as a living roof and shaded courtyards—that harmonized well with the overall goals of the building. SHoP created 3D renderings of its design concepts to help communicate their design ideas using Autodesk® 3ds Max® Design software, which is part of the Autodesk® Building Design Suite Ultimate. Kevin Fennell, project manager for SHoP, explains, “It’s quite typical to include 3D renderings in proposals, of course. But 3ds Max Design made it easier to incorporate details of the surrounding areas into ours. Being able to visualize the design helped the client to see how lightly the design touched the ground and how organically it engages with the landscape.”\r\n<span style=\"font-style: italic;\">“We were honored that Botswana’s leaders chose us to design the Botswana Innovation Hub,” says Sharples. “We relied on BIM and the software in the Building Design Suite to help us model our ideas. Autodesk® Revit® software was our primary design tool. It helped us explore ideas and engage with the design team—and the architectural community in Botswana—in ways that advanced the vision of the project.”</span>\r\n<span style=\"font-weight: bold;\">Sharing the Benefits of BIM</span>\r\nEarly in the project, SHoP hosted a meeting with client representatives in New York, and showed them some Revit models with various options.\r\nBy reviewing the model in 3D, the client was able to see the intent of the design more clearly and provide feedback more quickly. The clients were able to better visualize not just how the building would look, but also how the design team from SHoP envisioned many of the materials coming together.\r\n“Our clients were clear from the beginning that they wanted us to use the latest design tools, but they did not have much firsthand experience with BIM,” says Fennell. “After seeing what BIM can do, our clients suggested we introduce BIM to architects in Botswana. When it came time to select a local architect to help with the detailed design, we got them started with BIM with Revit.\r\nWe also demonstrated our BIM-based workflow at a meeting of Botswana’s architects’ association.” Fast Changes—More Insight Several team members from SHoP went to Africa to meet with the local structural engineer, who was using Autodesk® Revit® Structure software, on the project. During the meeting, the structural engineers suggested some spacing changes in the parking structure that they believed could reduce the amount of structural steel required.\r\n<span style=\"font-style: italic;\">“Looking at the structural model, we saw that their changes would work, and at the end of the day in Africa, we asked our New York office to apply the changes to our Revit model,” reports Steven Garcia, Revit model manager for SHoP.</span>\r\n<span style=\"font-style: italic;\">“You can modify a model-based design very quickly. The changes were ready when we met with the client the next morning. We even knew that the changes could reduce the structural cost by as much as 5 percent.”</span>\r\n<span style=\"font-weight: bold;\">Designing for Sustainability</span>\r\nThe midday sun in Botswana is brutal, and shade provides a welcome respite—even for buildings. SHoP designed the Botswana Innovation Hub with ample overhangs to help shade the building’s many windows. While designing in Autodesk Revit, the team was able to conduct preliminary shading studies as they designed. They then used Autodesk® Ecotect® Analysis software to perform additional analyses, exploring how the shading and building mass affected thermal load. <span style=\"font-style: italic;\">“Shading is one of the most important sustainability features a building can have,” says Fennell. “Being able to design for sustainability before bringing in a sustainability consultant saves tremendous time. We understood more clearly how the overhangs would perform early in the process. Now, we are using Revit to help us understand the best materials to use for the panels.”</span>\r\n<span style=\"font-weight: bold;\">The Result</span>\r\nAs the Botswana Innovation Hub project advances towards the construction phase, Sharples reflects on the role BIM played on the project—and will continue to play. He says, “SHoP has always embraced 3D design, and BIM takes 3D to the next level. On the Hub, BIM is helping everyone on the project understand the design and contribute more easily.”\r\n<span style=\"font-style: italic;\">The clients in Botswana also recognize the contribution made by Autodesk BIM solutions. “We appreciate the visualizations SHoP is providing on the project,” says Tsheboeng. “Being able to share 3D models of the building with leaders in Botswana has helped keep enthusiasm high for the project. However, the value is not just about seeing what the building may look like. We are impressed by how much intelligence about the project SHoP can glean from the models. For instance, they can tell us how design choices might affect the amount of materials required to complete the project. So, we know more, sooner, about how choices may impact the final result.”</span>","alias":"autodesk-bim-solutions-revit-to-design-a-hub-for-innovation-in-africa","roi":0,"seo":{"title":"Autodesk BIM solutions (Revit) to design a hub for innovation in Africa","keywords":"design, with, Botswana, SHoP, project, Autodesk®, from, Design","description":"SHoP Architects uses Autodesk BIM solutions to design a hub for innovation in Africa.\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold; \">LOCATION</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Ver","og:title":"Autodesk BIM solutions (Revit) to design a hub for innovation in Africa","og:description":"SHoP Architects uses Autodesk BIM solutions to design a hub for innovation in Africa.\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold; \">LOCATION</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Ver"},"deal_info":"","user":{"id":4258,"title":"SHoP Architects","logoURL":"https://old.roi4cio.com/uploads/roi/company/SHoP_Architects.png","alias":"shop-architects","address":"","roles":[],"description":"SHoP Architects was founded twenty years ago to harness the power of diverse expertise in the design of buildings and environments that improve the quality of public life. Our inclusive, open-minded process allows us to effectively address a broad range of issues in our work: from novel programmatic concepts, to next-generation fabrication and delivery techniques, to beautifully crafted spaces that precisely suit their functions. Years ago we set out to prove that intelligent, evocative architecture can be made with real-world constraints. Today, our interdisciplinary staff of 180 is implementing that idea at critical sites around the world. We are proud that our studio has been recognized with awards such as Fast Company’s “Most Innovative Architecture Firm in the World” in 2014, and the Smithsonian/Cooper Hewitt’s “National Design Award for Architecture” in 2009.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.shoparc.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"SHoP Architects","keywords":"that, Architecture, SHoP, Architects, with, critical, idea, sites","description":"SHoP Architects was founded twenty years ago to harness the power of diverse expertise in the design of buildings and environments that improve the quality of public life. Our inclusive, open-minded process allows us to effectively address a broad range of iss","og:title":"SHoP Architects","og:description":"SHoP Architects was founded twenty years ago to harness the power of diverse expertise in the design of buildings and environments that improve the quality of public life. Our inclusive, open-minded process allows us to effectively address a broad range of iss","og:image":"https://old.roi4cio.com/uploads/roi/company/SHoP_Architects.png"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[{"id":1414,"logo":false,"scheme":false,"title":"Autodesk Revit","vendorVerified":0,"rating":"3.70","implementationsCount":2,"suppliersCount":0,"alias":"autodesk-revit","companyTypes":[],"description":"<p><span style=\"font-weight: bold;\">What does Revit do?</span> Revit is software for BIM. Its powerful tools let you use the intelligent model-based process to plan, design, construct, and manage buildings and infrastructure. Revit supports a multidiscipline design process for collaborative design.</p>\r\n<ul>\r\n<li>Design. Model building components, analyze and simulate systems and structures, and iterate designs. Generate documentation from Revit models.</li>\r\n<li>Collaborate. Multiple project contributors can access centrally shared models. This results in better coordination, which helps reduce clashes and rework.</li>\r\n<li>Visualize. Communicate design intent more effectively to project owners and team members by using models to create high-impact 3D visuals.</li>\r\n</ul>\r\n<p><span style=\"font-weight: bold;\">One multidiscipline BIM platform</span> Revit has features for all disciplines involved in a building project. When architects, engineers, and construction professionals work on one unified platform, the risk of data translation errors can be reduced and the design process can be more predictable. <span style=\"font-weight: bold;\">Interoperability</span> Revit helps you work with members of an extended project team. It imports, exports, and links your data with commonly used formats, including IFC, DWG™ and DGN. <span style=\"font-weight: bold;\">Tools created expressly for your discipline</span> Whether you’re an architect; a mechanical, electrical, or plumbing (MEP) engineer; a structural engineer; or a construction professional, Revit offers BIM features specifically designed for you. <span style=\"font-weight: bold;\">For architects</span> Use Revit to take an idea from conceptual design to construction documentation within a single software environment. Optimize building performance and create stunning visualizations. <span style=\"font-weight: bold;\">For structural engineers</span> Use tools specific to structural design to create intelligent structure models in coordination with other building components. Evaluate how well they conform to building and safety regulations. <span style=\"font-weight: bold;\">For MEP engineers</span> Design MEP building systems with greater accuracy and in better coordination with architectural and structural components, using the coordinated and consistent information inherent in the intelligent model. <span style=\"font-weight: bold;\">For construction professionals</span> Evaluate constructability and design intent before construction begins. Gain a better understanding of the means, methods, and materials, and how they all come together. <span style=\"font-weight: bold;\">Connect teams with Collaboration for Revit</span> Extend Revit worksharing to project teams in almost any location with this service, which lets multiple users co-author Revit models in the cloud. Increase communication, centralize efforts of distributed teams, and let entire teams take part in the BIM process. <span style=\"font-weight: bold;\">Better team communication</span> Use real-time chat within project models. Know who’s working in the model and what they’re doing. <span style=\"font-weight: bold;\">Extended team integration</span> Subscribe to Collaboration for Revit and receive a subscription to BIM 360 Team, an integrated, cloud-based web service that provides centralized team access to project data. <span style=\"font-weight: bold;\">Access more projects</span> Extend your reach and participate in projects or joint venture partnerships, wherever they’re located. <span style=\"font-weight: bold;\">Better allocate team talents and resources</span> Assign the best team members with the strongest skill sets. Let designers work on multiple projects based in different locations at the same time. <span style=\"font-weight: bold;\">Minimize in-person meetings or co-location of teams</span> Help lower travel expenses and support greater work-life balance for team members. Visualization and rendering. Show how your product will look with visualization and rendering tools.</p>","shortDescription":"Revit® software for BIM (Building Information Modeling) includes features for architectural design, MEP and structural engineering, and construction.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Revit","keywords":"","description":"<p><span style=\"font-weight: bold;\">What does Revit do?</span> Revit is software for BIM. Its powerful tools let you use the intelligent model-based process to plan, design, construct, and manage buildings and infrastructure. Revit supports a multidiscipline d","og:title":"Autodesk Revit","og:description":"<p><span style=\"font-weight: bold;\">What does Revit do?</span> Revit is software for BIM. Its powerful tools let you use the intelligent model-based process to plan, design, construct, and manage buildings and infrastructure. Revit supports a multidiscipline d"},"eventUrl":"","translationId":1414,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":4,"title":"Reduce Costs"},{"id":5,"title":"Enhance Staff Productivity"},{"id":6,"title":"Ensure Security and Business Continuity"},{"id":7,"title":"Improve Customer Service"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":180,"title":"Inability to forecast execution timelines"},{"id":375,"title":"No support for mobile and remote users"},{"id":377,"title":"Separate communications channels"},{"id":398,"title":"Poor communication and coordination among staff"},{"id":399,"title":"No e-document flow"},{"id":400,"title":"High costs"}]}},"categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://damassets.autodesk.net/content/dam/autodesk/www/products/autodesk-revit-family/docs/pdf/shop-architects-customer-story-en.pdf","title":"Web-site of vendor"}},"comments":[],"referencesCount":0},{"id":568,"title":"Autodesk Fusion 360 for Groovemade Design Company","description":"In Portland, Oregon, the team at Grovemade has spent the past seven years perfecting designs for phone cases and desk objects like keyboard trays, pencil cups, and monitor stands. The woodwork that has become their trademark is finicky, difficult, and endlessly detailed.\r\nDuring the design process, the Grovemade team typically goes back and forth between CAD and physical models. That process starts with sketches, cardboard models, and mockups made from blocks of foam or wood, then iterates back into the software as they add details.\r\nThe team loves how Fusion 360 combines CAD with CAM. That seamless integration makes it incredibly easy — and fast — to make changes in the design and then machine another prototype immediately using their in-house CNC equipment.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“We need to be able to make changes quickly and try it again,” the owner Tomita explains. He adds that they routinely go from CAD to CAM to machining to holding it in their hands all in the same day — “which is absolutely incredible.”</span></span>\r\nGrovemade used to work with a combination of different 3D design and CNC packages, <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Tomita says, “but the software was so time-consuming that we wouldn’t do [prototyping] a lot of times.”</span></span> Fusion 360 gave them an all-in-one application that, besides being far less expensive, allowed them to avoid that friction and go straight to machining anytime they want. And because it’s all integrated, they don’t have to worry about migrating design changes across multiple pieces of software.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“If we change one thing, we don’t have to redo it on the other,” Tomita says. “It’s pretty massive.”</span></span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">All in all, he adds, Fusion 360 “fits right in with the scale of our business”.</span></span>","alias":"autodesk-fusion-360-for-groovemade-design-company","roi":0,"seo":{"title":"Autodesk Fusion 360 for Groovemade Design Company","keywords":"","description":"In Portland, Oregon, the team at Grovemade has spent the past seven years perfecting designs for phone cases and desk objects like keyboard trays, pencil cups, and monitor stands. The woodwork that has become their trademark is finicky, difficult, and endlessl","og:title":"Autodesk Fusion 360 for Groovemade Design Company","og:description":"In Portland, Oregon, the team at Grovemade has spent the past seven years perfecting designs for phone cases and desk objects like keyboard trays, pencil cups, and monitor stands. The woodwork that has become their trademark is finicky, difficult, and endlessl"},"deal_info":"","user":{"id":4466,"title":"Groovemade (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/Grovemade__logo_.jpg","alias":"groovemade-user","address":"","roles":[],"description":" Grovemade is a design & manufacturing company based in Portland, Oregon. Since 2009, small team has been designing and building innovative products for your work, home, and life. We believe design inspires what you do. We’re independent and vertically integrated, from design to manufacturing, allowing us to make things that couldn’t exist otherwise. We value the fulfillment from good work well done, and the happiness of our people and our customers, the heart behind what we produce. A small and passionate team can make incredible products.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://grovemade.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Groovemade (User)","keywords":"","description":" Grovemade is a design & manufacturing company based in Portland, Oregon. Since 2009, small team has been designing and building innovative products for your work, home, and life. We believe design inspires what you do. We’re independent and vertically int","og:title":"Groovemade (User)","og:description":" Grovemade is a design & manufacturing company based in Portland, Oregon. Since 2009, small team has been designing and building innovative products for your work, home, and life. We believe design inspires what you do. We’re independent and vertically int","og:image":"https://old.roi4cio.com/uploads/roi/company/Grovemade__logo_.jpg"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[{"id":1012,"logo":false,"scheme":false,"title":"Autodesk Fusion 360","vendorVerified":0,"rating":"3.00","implementationsCount":6,"suppliersCount":0,"alias":"autodesk-fusion-360","companyTypes":[],"description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Quickly iterate on design ideas with sculpting tools to explore form and modeling tools to create finishing features.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Engineer & simulate </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Test fit and motion, perform simulations, create assemblies, make photorealistic renderings and animations.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> CAM </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Create toolpaths to machine your components or use the 3D printing workflow to create a prototype.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> Collaborate & manage </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Bring design teams together in a hybrid environment that harnesses the power of the cloud when necessary and uses local resources when it makes sense.</span></p>","shortDescription":"Fusion 360TM is the first 3D CAD, CAM, and CAE tool of its kind. It connects your entire product development process in a single cloud-based platform that works on both Mac and PC.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Fusion 360","keywords":"create, design, when, tools, prototype, Collaborate, manage, teams","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:title":"Autodesk Fusion 360","og:description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style"},"eventUrl":"","translationId":1012,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":10,"title":"Ensure Compliance"},{"id":252,"title":"Increase Customer Base"},{"id":307,"title":"Enhance Competitive Ability"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":400,"title":"High costs"},{"id":401,"title":"No control over implementation"}]}},"categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/grovemade-takes-woodworking-design-another-level-entirely/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0},{"id":574,"title":"Autodesk Fusion 360 for IT-company Scriba","description":"The iterative design approach followed by the Scriba team has dovetailed with their use of Fusion 360. It started when Craig (the owner) discovered an early version of the software a few years ago, and continued over time as the fledgling company received technical support — and encouragement — from Autodesk staff in San Francisco.\r\nNow the larger team counts on Fusion 360’s collaboration features to maintain the master model of the product and coordinate inputs received from team members and outside experts spread across Ireland and beyond. The software has also enabled the team to test out alternative components before completing final designs. This has extended to such fine details as identifying and visualizing overhangs and areas of low draft angles needing special attention, as well as simulating applied loads to identify high-stress areas where the product’s bendability called for precise changes in the geometry of the materials.\r\nIntegrated cloud rendering has given Scriba’s designers the ability to validate many aesthetic design changes rapidly, which was particularly important when they were finalizing the material finishes on the product. They also used Fusion 360 to prepare drawings for tooling that they then shared with their fabrication partners.","alias":"autodesk-fusion-360-for-it-company-scriba","roi":0,"seo":{"title":"Autodesk Fusion 360 for IT-company Scriba","keywords":"","description":"The iterative design approach followed by the Scriba team has dovetailed with their use of Fusion 360. It started when Craig (the owner) discovered an early version of the software a few years ago, and continued over time as the fledgling company received tech","og:title":"Autodesk Fusion 360 for IT-company Scriba","og:description":"The iterative design approach followed by the Scriba team has dovetailed with their use of Fusion 360. It started when Craig (the owner) discovered an early version of the software a few years ago, and continued over time as the fledgling company received tech"},"deal_info":"","user":{"id":4469,"title":"Scriba (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/scriba__logo_.jpg","alias":"scriba-user","address":"","roles":[],"description":"For 32 years, Scriba's portfolio of offerings has covered all IT needs, both hardware-based and at a very high level of service, whether through cloud solutions or total or partial outsourcing systems. With its seven regional agencies, Scriba is your local partner. The innovation of our offers, whether in industrialized mode or in total customization, ensures solutions that meet your needs, in the simplification of the use of your information system. With our trained and certified teams, you are guaranteed to be accompanied from the identification of a need or a problem to the implementation of the solution, and throughout the life cycle of these products.\r\nSource: https://www.linkedin.com/company/scriba/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.getscriba.com/index.html","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Scriba (User)","keywords":"","description":"For 32 years, Scriba's portfolio of offerings has covered all IT needs, both hardware-based and at a very high level of service, whether through cloud solutions or total or partial outsourcing systems. With its seven regional agencies, Scriba is your local par","og:title":"Scriba (User)","og:description":"For 32 years, Scriba's portfolio of offerings has covered all IT needs, both hardware-based and at a very high level of service, whether through cloud solutions or total or partial outsourcing systems. With its seven regional agencies, Scriba is your local par","og:image":"https://old.roi4cio.com/uploads/roi/company/scriba__logo_.jpg"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[{"id":1012,"logo":false,"scheme":false,"title":"Autodesk Fusion 360","vendorVerified":0,"rating":"3.00","implementationsCount":6,"suppliersCount":0,"alias":"autodesk-fusion-360","companyTypes":[],"description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Quickly iterate on design ideas with sculpting tools to explore form and modeling tools to create finishing features.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Engineer & simulate </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Test fit and motion, perform simulations, create assemblies, make photorealistic renderings and animations.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> CAM </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Create toolpaths to machine your components or use the 3D printing workflow to create a prototype.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> Collaborate & manage </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Bring design teams together in a hybrid environment that harnesses the power of the cloud when necessary and uses local resources when it makes sense.</span></p>","shortDescription":"Fusion 360TM is the first 3D CAD, CAM, and CAE tool of its kind. It connects your entire product development process in a single cloud-based platform that works on both Mac and PC.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Fusion 360","keywords":"create, design, when, tools, prototype, Collaborate, manage, teams","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:title":"Autodesk Fusion 360","og:description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style"},"eventUrl":"","translationId":1012,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":10,"title":"Ensure Compliance"},{"id":307,"title":"Enhance Competitive Ability"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":400,"title":"High costs"},{"id":401,"title":"No control over implementation"}]}},"categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/scriba-aims-reinvent-stylus-designers/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0},{"id":572,"title":"Autodesk Fusion 360 for motorcycle parts manufacturer MJK Performance","description":"Up in Alberta, Canada, motorcycle designer Dale Yamada and machinist Phil Butterworth are taking aftermarket parts for Harley-Davidsons to a new level. After they noticed that <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“there’s nothing cool on the market,”</span></span> Butterworth says, their MJK Performance machine shop began making “cool, weird, technical, mechanical-looking parts” for Harley enthusiasts.\r\n<span style=\"font-weight: bold;\">Using Fusion 360 for CAD and CAM</span>\r\nWhen Butterworth lies in bed and has more ideas pop into his head, he gets back up and works on designs. This is made much easier because he and Yamada use Fusion 360 on their computers both at home and in the shop, so the designs can be shared instantly.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It so easy, so user friendly,” Butterworth says, describing Fusion 360 as “hands-down” better than other CAD and CAM programs he’s used over the years. “The design side is so easy, and then to have the CAM side right there—and 5-axis.” The last part is especially important to him, given that 5-axis milling software alone can cost tens of thousands of dollars. “If we had to do this any other way,” he adds, “we just couldn’t afford it.”</span></span>\r\nThe two partners iterate quickly through designs, and Butterworth says he often likes using the branch feature to make five or six designs to try out different concepts before weeding them down. He also relies heavily on the rendering features, which makes it easy for him to<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> “see exactly what something will look like before it’s made.”</span></span>\r\nIn the bigger picture, the software “definitely speeds up the process on our end” by saving them many hours across the steps of design, rendering, and machining. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“I can have something from design stage to off the machine in one hour, if I’m working hard,” Butterworth says. “Having everything in one software is perfect.”</span></span>","alias":"autodesk-fusion-360-for-motorcycle-parts-manufacturer-mjk-performance","roi":0,"seo":{"title":"Autodesk Fusion 360 for motorcycle parts manufacturer MJK Performance","keywords":"","description":"Up in Alberta, Canada, motorcycle designer Dale Yamada and machinist Phil Butterworth are taking aftermarket parts for Harley-Davidsons to a new level. After they noticed that <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“there’s nothing ","og:title":"Autodesk Fusion 360 for motorcycle parts manufacturer MJK Performance","og:description":"Up in Alberta, Canada, motorcycle designer Dale Yamada and machinist Phil Butterworth are taking aftermarket parts for Harley-Davidsons to a new level. After they noticed that <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“there’s nothing "},"deal_info":"","user":{"id":4468,"title":"MJK Performance (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/MJK_Performance__logo_.png","alias":"mjk-performance-user","address":"","roles":[],"description":" MJK Performance is located in Calgary, Alberta. It is a family owned business which is operated by us, Dale Yamada and Michelle Martin. We started the company (Mad Jap Kustoms Inc which is doing business as MJK Performance) in 2007 and have been in our current location since 2012. We rebranded our company Mad Jap Kustoms Inc in February 2017 to MJK Performance as we felt it better represented the direction the company was going in designing and CNC machining a new product line of Performance Bagger parts.\r\nWe pride ourselves on exceptional customer service and believe our customers deserve the highest quality and craftsmanship in everything we do.\r\nWe are excited to offer our new line up of high quality, precision CNC machined motorcycle parts to our customers.\r\nSource: http://www.mjkperformance.com/service/about/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.mjkperformance.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"MJK Performance (User)","keywords":"","description":" MJK Performance is located in Calgary, Alberta. It is a family owned business which is operated by us, Dale Yamada and Michelle Martin. We started the company (Mad Jap Kustoms Inc which is doing business as MJK Performance) in 2007 and have been in our curren","og:title":"MJK Performance (User)","og:description":" MJK Performance is located in Calgary, Alberta. It is a family owned business which is operated by us, Dale Yamada and Michelle Martin. We started the company (Mad Jap Kustoms Inc which is doing business as MJK Performance) in 2007 and have been in our curren","og:image":"https://old.roi4cio.com/uploads/roi/company/MJK_Performance__logo_.png"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[{"id":1012,"logo":false,"scheme":false,"title":"Autodesk Fusion 360","vendorVerified":0,"rating":"3.00","implementationsCount":6,"suppliersCount":0,"alias":"autodesk-fusion-360","companyTypes":[],"description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Quickly iterate on design ideas with sculpting tools to explore form and modeling tools to create finishing features.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Engineer & simulate </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Test fit and motion, perform simulations, create assemblies, make photorealistic renderings and animations.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> CAM </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Create toolpaths to machine your components or use the 3D printing workflow to create a prototype.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> Collaborate & manage </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Bring design teams together in a hybrid environment that harnesses the power of the cloud when necessary and uses local resources when it makes sense.</span></p>","shortDescription":"Fusion 360TM is the first 3D CAD, CAM, and CAE tool of its kind. It connects your entire product development process in a single cloud-based platform that works on both Mac and PC.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Fusion 360","keywords":"create, design, when, tools, prototype, Collaborate, manage, teams","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:title":"Autodesk Fusion 360","og:description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style"},"eventUrl":"","translationId":1012,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":10,"title":"Ensure Compliance"},{"id":307,"title":"Enhance Competitive Ability"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":400,"title":"High costs"},{"id":401,"title":"No control over implementation"}]}},"categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/mjk-performance-motorcycle-parts/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0},{"id":563,"title":"Autodesk Fusion 360 for Orange County Choppers","description":"Orange County Choppers (OCC), the focus of Discovery Channel’s long-running American Chopper, is known for its Easy Rider-style motorcycles — complete with loud V-twin gas engines. The design emerged from the mind of OCC designer Jason Pohl as he riffed on the concept of “fusion” as part of OCC’s collaboration with the Autodesk Fusion 360 team.\r\nOCC has been making motorcycles since 1999, when company founder Paul Teutul Sr. started building custom bikes in the basement of his house. He started it for fun, but soon his unique designs attracted lots of attention. Discovery Channel took notice, and Teutul built a fabrication shop attached to his iron and steel business in upstate New York to keep up with demand.\r\nPohl first encountered OCC in 2004, not long after he had graduated from art school in his native Illinois. Paul was creating animations for a video game that featured OCC bikes. Teutul liked his work, and figured that the kind of 3D modeling used in the game could be translated into designs for real motorcycles.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“I’m way more of an artist than I am a geek,” Paul says, but even when he was in school he knew that he needed to learn software for the sake of his career. “I wanted to be a designer,” he says, “so I forcedmyself, kicking and screaming, to learn how to use the computer to my advantage.”</span></span>\r\nEarlier Paul met a member of the Autodesk staff who encouraged him to try Fusion 360 for a design.<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> “I was a SolidWorks guy,” he admits. “I was terrified to switch. It’s like jumping into the deep end of the pool.”</span></span> <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Once he started using it, though, he thought “Wow, this is incredible. It is really a magic show.”</span></span> In comparison to everything he had used before, it was “cleaner” and “snappier.” <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">As he puts it, “You don’t really wait on anything — it just happens.”</span></span>\r\nHe uses the example of designing the new bike’s headlight assembly using T-splines in Fusion 360.<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> In SolidWorks, he says, “I would probably need a solid day just to get the lofts going and the surfaces going.”</span></span> The process would have involved using three different features in SolidWorks to rotate, move, and scale the surface model, then laboriously exporting everything into Mastercam to prepare the design for manufacture.\r\nWith T-splines, by contrast, you just click and drag to alter position, shape, or size. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It’s like a digital version of clay,” Paul says.</span></span> <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">He laughs when he adds, “except when you’re pushing it around it doesn’t leave thumbprints.”</span></span>\r\nPaul has found that the integrated CAM is much easier in Fusion 360. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“I use it every day now,” he says. “It’s a game changer for me. I just have more power to take a concept, model it up, and then take it to a CNC machine.”</span></span> He and the OCC machinist have also used Fusion 360 to export DXF files for use on their water jet machine to make some of the metal parts.\r\nThe very first thing Paul tackled in Fusion 360 was the entire body assembly for the electric bike. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">He laughs at his own ambition when he adds, “I didn’t start off and make a kickstand, know what I mean?”</span></span>\r\nWanting to create a bike that would be totally different, he lit upon the idea of making the new design a true “fusion” in every sense. Unlike the long-forked choppers OCC usually makes, this bike is an urban“hopper” — lightweight and with lots of ground clearance. Using an electric motor allowed Paul to eliminate the exhaust system and V-twin engine of other OCC designs, which “opened up a whole new world of possibilities.\r\nIn line with the “fusion” idea, the bike incorporates components inspired by other types of vehicles: the aluminum front end of a sport bike, the gas shocks of a snowmobile, and the rear sprocket of a motocross racer, along with high-durability plastic elements and a few key parts in titanium.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It was something new, fresh for us to do,” Pohl says, adding that every part of the new design came out of Fusion 360.</span></span>\r\nGiven the success of the project, Teutul wants the team to use Fusion 360 to design a new line of aftermarket parts for Harleys. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Pohl describes Fusion 360 as “a new weapon in my arsenal here.”</span></span>","alias":"autodesk-fusion-360-for-orange-county-choppers","roi":0,"seo":{"title":"Autodesk Fusion 360 for Orange County Choppers","keywords":"","description":"Orange County Choppers (OCC), the focus of Discovery Channel’s long-running American Chopper, is known for its Easy Rider-style motorcycles — complete with loud V-twin gas engines. The design emerged from the mind of OCC designer Jason Pohl as he riffed on the","og:title":"Autodesk Fusion 360 for Orange County Choppers","og:description":"Orange County Choppers (OCC), the focus of Discovery Channel’s long-running American Chopper, is known for its Easy Rider-style motorcycles — complete with loud V-twin gas engines. The design emerged from the mind of OCC designer Jason Pohl as he riffed on the"},"deal_info":"","user":{"id":4464,"title":"Orange County Choppers (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/Orange_County_Choppers__logo_.png","alias":"orange-county-choppers-user","address":"","roles":[],"description":" Orange County Choppers (OCC) is a world famous custom motorcycle manufacturer founded in 1999 by Paul Teutul Sr. At our facility based in Newburgh, NY, Paul Sr. and his team of custom fabricators design, engineer and manufacture unique choppers. Orange County Choppers has been the center of the hit TV reality series “American Chopper”. American Chopper debuted in September 2002 on the Discovery Channel. We continue to entertain millions of people worldwide on a weekly basis. OCC bikes are customized and built around a theme or, increasingly, for a broad spectrum of motorcycle enthusiasts around the world.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://orangecountychoppers.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Orange County Choppers (User)","keywords":"","description":" Orange County Choppers (OCC) is a world famous custom motorcycle manufacturer founded in 1999 by Paul Teutul Sr. At our facility based in Newburgh, NY, Paul Sr. and his team of custom fabricators design, engineer and manufacture unique choppers. Orange County","og:title":"Orange County Choppers (User)","og:description":" Orange County Choppers (OCC) is a world famous custom motorcycle manufacturer founded in 1999 by Paul Teutul Sr. At our facility based in Newburgh, NY, Paul Sr. and his team of custom fabricators design, engineer and manufacture unique choppers. Orange County","og:image":"https://old.roi4cio.com/uploads/roi/company/Orange_County_Choppers__logo_.png"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[{"id":1012,"logo":false,"scheme":false,"title":"Autodesk Fusion 360","vendorVerified":0,"rating":"3.00","implementationsCount":6,"suppliersCount":0,"alias":"autodesk-fusion-360","companyTypes":[],"description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Quickly iterate on design ideas with sculpting tools to explore form and modeling tools to create finishing features.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Engineer & simulate </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Test fit and motion, perform simulations, create assemblies, make photorealistic renderings and animations.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> CAM </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Create toolpaths to machine your components or use the 3D printing workflow to create a prototype.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> Collaborate & manage </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Bring design teams together in a hybrid environment that harnesses the power of the cloud when necessary and uses local resources when it makes sense.</span></p>","shortDescription":"Fusion 360TM is the first 3D CAD, CAM, and CAE tool of its kind. It connects your entire product development process in a single cloud-based platform that works on both Mac and PC.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Fusion 360","keywords":"create, design, when, tools, prototype, Collaborate, manage, teams","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:title":"Autodesk Fusion 360","og:description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style"},"eventUrl":"","translationId":1012,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":10,"title":"Ensure Compliance"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":346,"title":"Shortage of inhouse IT resources"}]}},"categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/orange-county-choppers-electric-bike-fusion-360/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0},{"id":566,"title":"Autodesk Fusion 360 for Oru Kayak Company","description":"Here’s the problem: You want to hit the water in a kayak — but where are you going to store the thing when you’re not using it? And how are you going to transport such a long boat from home to the water?\r\nOru Kayak has solved that challenge with a line of tough, cleverly designed boats that fold up into a package the size of a small suitcase — one you can stow in the trunk of your car or sling over your shoulder. It’s all part of their vision “to make paddling more convenient, fun, and freeing for everyone.” Their focus has shifted from early-stage design toward the specific challenges of engineering and manufacturing. The point is to optimize both the user experience and the efficiency of production.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It starts with design philosophy,” Willis says. “You have to be willing to make guesses, not get too attached to ideas, and change on a dime based on user feedback.”</span></span>\r\nFusion 360 has been integral to streamlining that process. “We began by using Fusion 360 to roughly model the kayak and parts, to visualize how pieces came together,” the company adds, “but we were still using CNC and other technologies to make the parts. Now, we’re revising many of thekayak parts with new injection molds” using Fusion 360.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“We are making the individual parts more efficient to manufacture, stronger, and more consistent with the overall aesthetic of the product — fluid, clean, and simple,”Willis says. “For combining these elements, it’s been crucial to have software that’s rigorous but allows for flexible and intuitive sculpting in three dimensions.”</span></span>\r\nThe level of detail required can seem exhausting, but the company believes the payoff is worth it.","alias":"autodesk-fusion-360-for-oru-kayak-company","roi":0,"seo":{"title":"Autodesk Fusion 360 for Oru Kayak Company","keywords":"","description":"Here’s the problem: You want to hit the water in a kayak — but where are you going to store the thing when you’re not using it? And how are you going to transport such a long boat from home to the water?\r\nOru Kayak has solved that challenge with a line of toug","og:title":"Autodesk Fusion 360 for Oru Kayak Company","og:description":"Here’s the problem: You want to hit the water in a kayak — but where are you going to store the thing when you’re not using it? And how are you going to transport such a long boat from home to the water?\r\nOru Kayak has solved that challenge with a line of toug"},"deal_info":"","user":{"id":4465,"title":"Oru Kayak (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/Oru_Kayak__logo_.png","alias":"oru-kayak-user","address":"","roles":[],"description":" Oru Kayak is a San Francisco based startup that manufactures high-performance, folding kayaks.\r\nAn award-winning company on a mission to make the outdoors more accessible by designing a series of origami folding kayaks that transform from a portable box, into a sleek lightweight, and high-performance watercraft. folding kayaks inspired by origami has won multiple designs and industry awards including ISPO's Product of the Year and Gold winner of Edison awards — it’s even in the San Francisco Museum of Modern Art.\r\nOru Kayak is a team of makers, designers, business strategists, and outdoors lovers.\r\nSource: https://www.linkedin.com/company/oru-kayak/?originalSubdomain=en","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.orukayak.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Oru Kayak (User)","keywords":"","description":" Oru Kayak is a San Francisco based startup that manufactures high-performance, folding kayaks.\r\nAn award-winning company on a mission to make the outdoors more accessible by designing a series of origami folding kayaks that transform from a portable box, into","og:title":"Oru Kayak (User)","og:description":" Oru Kayak is a San Francisco based startup that manufactures high-performance, folding kayaks.\r\nAn award-winning company on a mission to make the outdoors more accessible by designing a series of origami folding kayaks that transform from a portable box, into","og:image":"https://old.roi4cio.com/uploads/roi/company/Oru_Kayak__logo_.png"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[{"id":1012,"logo":false,"scheme":false,"title":"Autodesk Fusion 360","vendorVerified":0,"rating":"3.00","implementationsCount":6,"suppliersCount":0,"alias":"autodesk-fusion-360","companyTypes":[],"description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Quickly iterate on design ideas with sculpting tools to explore form and modeling tools to create finishing features.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Engineer & simulate </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Test fit and motion, perform simulations, create assemblies, make photorealistic renderings and animations.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> CAM </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Create toolpaths to machine your components or use the 3D printing workflow to create a prototype.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> Collaborate & manage </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Bring design teams together in a hybrid environment that harnesses the power of the cloud when necessary and uses local resources when it makes sense.</span></p>","shortDescription":"Fusion 360TM is the first 3D CAD, CAM, and CAE tool of its kind. It connects your entire product development process in a single cloud-based platform that works on both Mac and PC.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Fusion 360","keywords":"create, design, when, tools, prototype, Collaborate, manage, teams","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:title":"Autodesk Fusion 360","og:description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style"},"eventUrl":"","translationId":1012,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":10,"title":"Ensure Compliance"},{"id":252,"title":"Increase Customer Base"},{"id":307,"title":"Enhance Competitive Ability"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"},{"id":400,"title":"High costs"},{"id":401,"title":"No control over implementation"}]}},"categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/oru-kayak-design-get-people-paddling/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0},{"id":570,"title":"Autodesk Fusion 360 for putter manufacturer SandFlo Golf","description":"In the town of Trollhättan in southwestern Sweden, engineer Johan Sandflo spends his days managing his precision machining business. At night, he perfects designs for SandFlo Golf‘s custom putters. He’s come to rely on Fusion 360 to help him follow both of those passions.\r\nSandflo started using Fusion 360 in the shop late in 2014 after he stumbled across it on YouTube. Once he downloaded a trial version, it didn’t take him long to get hooked, especially considering the responsiveness of the Autodesk team and user community online. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“I tried it for a few weeks,” he says, “and haven’t looked back.”</span></span>\r\nIn the job shop, CAM reigns supreme, especially for setting toolpaths. Sandflo particularly likes Fusion 360’s “awesome” adaptive clearing functionality for roughing out machined parts. In the past he’s used about ten different CAM applications, most recently a combination of Mastercam and OneCNC, but found that none of them worked as well: <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“Nothing compares to Fusion 360 for the kind of jobs that I do.”</span></span>\r\nWhen getting started with Fusion 360, Sandflo explains,<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> “I went down the CAM side first,then kind of discovered the CAD side.”</span></span> The CAD features make it simple for him to streamline his machining work, for example by taking a customer drawing and turning it into a proper CAD model.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Sandflo says he believes that “I have an advantage over other companies my size when I use Fusion 360.”</span></span> In part that comes from the software’s functionality and cloud-based approach. But he also says that the thinking and interactions around the software are a refreshing departure from the rigid enterprise model that typically prevails.<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\"> “It’s a modern take on it,” he says. “It’s not like anything else in the industry.”</span></span>\r\nAnd then there are the costs. Not only is Fusion 360 much cheaper than comparable programs, but you don’t have to pay extra for training. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“It’s amazingly affordable,” Sandflo says, adding, “Why would you use something that’s ten or twenty times more expensive?</span></span> I can invest that money elsewhere to make the business grow.”\r\nEven better, the software has allowed Sandflo to extend his passion for golf. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">It makes him happy “to get a few hours in with friends, have a good laugh,” he says.</span></span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“Being a golf nerd,” he adds, “it’s always fun [tinkering] with equipment.” He began to look online for clubs that were “exotic, more personalized,” and then realized he could make his own. As he puts it, “I have the knowledge to do something like this myself. I have the machines. Why not start modeling something, see what happens?”</span></span>\r\nBefore he discovered Fusion 360, it was slow going. He didn’t have enough CAD skills to do what he wanted to, and found the combination of SolidWorks and Mastercam unwieldy. Then everything changed. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“When I found Fusion 360, that was the turning point,” he says.</span></span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“To make the changes — the small iterations, the small tweaks — it is so easy,” he adds. Fusion 360’s cloud-based approach is especially useful for him because it lets him squeeze in design work whenever he has time. “For me as a small business owner,” he says, “the ability to work at home at night when the kids are asleep is second to none. It’s so easy and convenient, and you have all the files available at a mouse click. . . . When I get to work the next day, it’s all done. So I can keep the machines turning.”</span></span>\r\nUsing Fusion 360, he’s able to share putter designs with customers via a simple URL. Even if they’ve never used the software, it’s easy for the customer to view and rotate a 3D model of the latest design in any browser. <span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">“My customers have enjoyed that very much,” he says.</span></span>","alias":"autodesk-fusion-360-for-putter-manufacturer-sandflo-golf","roi":0,"seo":{"title":"Autodesk Fusion 360 for putter manufacturer SandFlo Golf","keywords":"","description":"In the town of Trollhättan in southwestern Sweden, engineer Johan Sandflo spends his days managing his precision machining business. At night, he perfects designs for SandFlo Golf‘s custom putters. He’s come to rely on Fusion 360 to help him follow both of tho","og:title":"Autodesk Fusion 360 for putter manufacturer SandFlo Golf","og:description":"In the town of Trollhättan in southwestern Sweden, engineer Johan Sandflo spends his days managing his precision machining business. At night, he perfects designs for SandFlo Golf‘s custom putters. He’s come to rely on Fusion 360 to help him follow both of tho"},"deal_info":"","user":{"id":4467,"title":"SandFlo Golf (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/SandFlo_Golf__logo_.png","alias":"sandflo-golf-user","address":"","roles":[],"description":" Our profession is our passion and we love what we do. In 2014 an idea was born to tailor premium putters of thehighest quality and precision to golf enthusiast; and Sandflo Golf Co. saw first light. Today we can proudly say that we are the only company in Sweden who manufacture custom-made putters that meet customer wishes and requirements.\r\nIn close dialogue with the customer, the process can be monitored from sketch to finished product. Each putter is unique and the client has the opportunity to select materials, design, weight distribution and pattern. Some customers have a clear picture of what design and engraving their putter should have. The result is a unique putter that is fully designed according to the customer’s wishes. Once the design is in place, a 3D sketch is made, which is then sent to the customer for a final assessment and the production can start.\r\nSource: http://www.sandflogolf.com/en/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.sandflogolf.com/en/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"SandFlo Golf (User)","keywords":"","description":" Our profession is our passion and we love what we do. In 2014 an idea was born to tailor premium putters of thehighest quality and precision to golf enthusiast; and Sandflo Golf Co. saw first light. Today we can proudly say that we are the only company in Swe","og:title":"SandFlo Golf (User)","og:description":" Our profession is our passion and we love what we do. In 2014 an idea was born to tailor premium putters of thehighest quality and precision to golf enthusiast; and Sandflo Golf Co. saw first light. Today we can proudly say that we are the only company in Swe","og:image":"https://old.roi4cio.com/uploads/roi/company/SandFlo_Golf__logo_.png"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[{"id":1012,"logo":false,"scheme":false,"title":"Autodesk Fusion 360","vendorVerified":0,"rating":"3.00","implementationsCount":6,"suppliersCount":0,"alias":"autodesk-fusion-360","companyTypes":[],"description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Quickly iterate on design ideas with sculpting tools to explore form and modeling tools to create finishing features.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Engineer & simulate </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Test fit and motion, perform simulations, create assemblies, make photorealistic renderings and animations.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> CAM </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Create toolpaths to machine your components or use the 3D printing workflow to create a prototype.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> Collaborate & manage </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Bring design teams together in a hybrid environment that harnesses the power of the cloud when necessary and uses local resources when it makes sense.</span></p>","shortDescription":"Fusion 360TM is the first 3D CAD, CAM, and CAE tool of its kind. It connects your entire product development process in a single cloud-based platform that works on both Mac and PC.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Fusion 360","keywords":"create, design, when, tools, prototype, Collaborate, manage, teams","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:title":"Autodesk Fusion 360","og:description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style"},"eventUrl":"","translationId":1012,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":10,"title":"Ensure Compliance"},{"id":307,"title":"Enhance Competitive Ability"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":400,"title":"High costs"},{"id":401,"title":"No control over implementation"}]}},"categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.autodesk.com/products/fusion-360/blog/johan-sandflo-unites-loves-golf-machining-using-fusion-360/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0},{"id":492,"title":"Autodesk® Revit®, AutoCAD® for the largest skyscraper in China","description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Project summary</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">A striking new addition to the Shanghai skyline is currently rising in the heart of the city’s financial district. The super high-rise Shanghai Tower will soon stand as the world’s second tallest building, and adjacent to two other iconic structures, the Jin Mao Tower and the Shanghai World Financial Center. The 121-story transparent glass tower will twist and taper as it rises, conveying a unique feeling of movement and growth, while reflecting the reemergence of Shanghai’s economic and</span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">cultural influences amid the rise of an increasingly modern China. The massive mixed-use facility will include commercial and retail space; entertainment and cultural venues; a conference center; a luxury hotel; and public gardens, all evoking the sense of a self-contained city within Shanghai.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Once complete, the 632-meter Shanghai Tower will be the largest skyscraper in China as well as one of the most sustainable. The towering skyscraper comprises nine cylindrical buildings stacked on top of one another, all enclosed by a circular inner curtain wall and a triangular facade enveloping the entire structure. Each vertical neighborhood has its own atrium, featuring a public sky garden, together with cafes, restaurants, and retail space. The double-skinned facade creates a thermal buffer zone to minimize heat gain, and the spiraling nature of the outer facade maximizes daylighting and views while reducing wind loads and conserving construction materials. To save energy, the facility includes its own wind farm and geothermal system. In addition, rainwater recovery and gray water recycling systems reduce water usage. The owner and design team are targeting a LEED® Gold rating and a China 3 Star rating, ambitious goals for a project the size of the Shanghai Tower.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">The challenge</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">The sheer size of the Shanghai Tower presents complex design and construction management challenges. “The Shanghai Tower is a massive project with over 575,000 square meters of building space,” says Jianping Gu, director and general manager for Shanghai Tower Construction & Development Co., Ltd., the tower’s owner/ developer. “We knew that if we tried to work in a traditional way, using traditional tools and delivery systems, it would be extremely difficult to carry out this project successfully.”</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Reducing building materials by 32 percent.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\"><br /></span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">The project involves the collaboration of a global team, including:</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">• Shanghai Tower Construction & Development— owner/developer</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">• Gensler—design architect</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">• Architectural Design and Research Institute of Tongji University—local design institute</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">• Thornton Tomasetti—structural engineer</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">• Cosentini Associates—MEP engineer</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">• Shanghai Construction Group—general contractor</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">• Shanghai Installation Engineering—mechanical and electrical general contractor</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">• Shanghai Xiandai Engineering Consultants— design management consultant</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">• Autodesk Consulting—BIM strategy, training, and implementation consultant</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">“Because Shanghai Tower is such a complex building, it could not be represented accurately with typical software or design methods,” says Jiliang Chen, deputy chief architect and deputy director of the project operations department at the Architectural Design and Research Institute of Tongji University. “One of the most challenging issues is the coordination of the extended design team,” adds Yi Zhu, senior principal and general manager at Thornton Tomasetti.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">The solution</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">To help meet the ambitious goals set for the building, the Shanghai Tower owner required the implementation of a Building Information Modeling (BIM) process using Autodesk BIM solutions for the design and construction of the Shanghai Tower. The project team relies on a combination of Autodesk® Revit® Architecture, Autodesk® Revit® Structure, and Autodesk® Revit® MEP software for the tower’s design and documentation. The team is also using Autodesk® Navisworks® Manage software for coordination and collaboration, Autodesk® Ecotect® Analysis software for sustainable design analysis, and traditional AutoCAD® software for drawing production. “From a property owner’s perspective, BIM provides an excellent tool for the design, construction, management, and investment control of the entire project,” says Gu.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Transforming work processes</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Early on, the owner engaged Autodesk Consulting to provide BIM strategy and implementation consulting services, as well as application training. Autodesk Consulting began its effort by helping the owner develop a BIM strategy and deployment plan for the project, and retooling design and construction workflows to support BIM-based processes. The team created detailed plans for project collaboration and document management, as well as defining the BIM deliverables for the entire project lifecycle.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Autodesk Consulting also helped the owner implement an on-site BIM application environment for a local project team of over 50 members, including owner personnel and key project participants from the extended global project team. In addition, Autodesk Consulting provided software training and ongoing technical and BIM coaching support.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">“By combining Autodesk’s BIM technology and the deep expertise of Autodesk Consulting, we have been able to successfully transition to BIM much faster. As a result, this project has set new standards for the information management of construction projects in China,” says Gu.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Integrating the design</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">The extended architectural and structural teams—with designers in offices around the world—shared their design models, enabling them to collaborate and contribute insights about the design in the context of the project.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">In the construction phase, the local project team, working from temporary offices near the construction site, routinely shared its models for project coordination and collaboration. This communication of design data resulted in a natural coordination of the project as it unfolded. In addition, the team used both Revit and Navisworks Manage software for formal clash detection.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">“We used Revit Architecture software to design and model the tower and then shared those models with our mechanical, electrical, and structural consultants,” explains Michael Peng, associate senior designer at Gensler. “Autodesk Revit provided a common platform for our design partners, giving the team a more accurate representation and deeper understanding of the project,” adds Jun Xia, principal and regional design director at Gensler. “BIM accelerated our whole design process, enabling our engineers to access design data and geometric sizes directly from the building models, and to use that</span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">information for calculation and analysis,” says Zhu.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \"><br /></span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Improving design communication</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">The tower’s iconic twisting shape and dualskinned facade were extremely difficult to convey using traditional 2D approaches, making modelbased design vital for the project’s success. “BIM helped us visualize the tower in 3D and analyze the design for improved decision making,” says Xia. “For example, we used the Revit design model with the reflection analysis features of Ecotect software to analyze the glare from the tower throughout the city. This helped the design team optimize the outer curtain wall—even down to the position and angle of individual pieces of glass—to minimize</span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">light pollution.”</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-style: italic;\">“During design, BIM was indispensable for coordinating the major design disciplines and producing construction documentation,” reports Chen. Model-based visualizations will also aid in the construction process. “By visualizing a 3D virtual building, we can better monitor construction and gauge our progress against the schedule,” says Xiaoming Yu, deputy chief engineer and design supervision department manager for Shanghai Installation Engineering.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-style: italic;\">“In fact, we require BIM deliverables from all the subcontractors and equipment suppliers. And during construction, it will be much easier for the workers to understand construction drawings that contain a combination of traditional views such as plans and sections, as well as 3D views and visualizations of complicated areas.”</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Enhancing coordination</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">The project team used the Revit platform for early coordination of the major design disciplines. In the construction phase, the team is combining the Revit design models and the fabrication models in Navisworks for whole project coordination.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-style: italic;\">“As construction proceeds, BIM is helping us coordinate the subcontractors’ fabrication models, leading to a better quality design and the avoidance of rework costs,” says Chen.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-style: italic;\">“For example, the tower’s basement has already been built, and comprises five stories and 170,000 square meters of space,” says Gu. “During design development, we found only seven clashes. During construction, there were no clashes at all. It would be very difficult if not impossible to get results like that without BIM.”</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Conserving more energy</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">A central and attractive feature of the tower’s design is its transparent skin, which creates ventilated atriums that naturally conserve energy by moderating the atrium’s air temperature.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">“Green building and sustainable design were a common goal for the designers, as well as the property owner,” says Xia. “Model-based design was essential, as many aspects of our performance-based design were realized through simulations and analyses,” adds Peng. For example, during the design phase the project team used the Revit Architecture model for whole-building energy analysis, giving the designers quantitative feedback on building energy performance. “We shared this information with our owners and consultants to better inform our design decisions and trade-offs,” says Peng.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Saving building materials</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">The building shape itself will produce the largest energy savings in the form of an efficient, costeffective structural frame. “Using Revit Structure, we produced more than 20 design options before settling on a structural system of super-columns, with outrigger trusses supported by an inner concrete tower,” says Zhu.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">The team kept iterating the design, including the rotation angle of the building’s cam-shaped outer skin, to analyze the structure’s resistance to wind and seismic loads. The result was well worth the effort. Gensler estimates that the building uses 32 percent less material than a conventional tower—saving material costs as well as the energy required to manufacture more steel and concrete.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Extending the value of BIM for building lifecycle management.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Improving construction efficiency</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Both the tower’s owner and its construction partners are requiring BIM models from all the project’s subcontractors to aid in construction coordination, planning, and digital fabrication.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">As an additional service, Autodesk Consulting also developed BIM submittal requirements for the owne —including the level of model detail required for coordination and construction planning—which were incorporated into requests for proposals for the Shanghai Tower.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">“By repurposing the design team’s digital building models for fabrication, and in turn using the subcontractors’ fabrication models for coordination, we are improving construction efficiency and reducing on-site rework and materials waste,” says Yu. “All the materials we use on-site are semifinished and ready for installation. The fabrication has already been done in the factories, which greatly improves our efficiency.”</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \"><br /></span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Extending BIM to lifecycle management</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">Even after construction is complete, BIM will still play a vital role for the Shanghai Tower. Shanghai Tower Construction & Development plans on using BIM for the facility’s ongoing operations and maintenance, as well as for emergency and property management. At the onset of its engagement, Autodesk Consulting created plans that detailed the as-built information and models that the owner will require for the tower’s lifecycle management. “We plan to extend the value of BIM to help our facility management staff plan efficiently and manage the building scientifically,” reports Gu.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">The result</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">With approximately 48 floors of the building’s core completed in 2011, the Shanghai Tower is on schedule for occupancy in 2014. “BIM helped our team produce a high-quality project and avoid many on-site changes, which would waste time, materials, and manpower,” says Gu. “Autodesk BIM solutions enable the different design disciplines to work together in a seamless fashion on a single information platform—boosting work efficiency, reducing errors, and improving both project and building performance.”</span>","alias":"autodeskr-revitr-autocadr-for-the-largest-skyscraper-in-china","roi":0,"seo":{"title":"Autodesk® Revit®, AutoCAD® for the largest skyscraper in China Shanghai Tower","keywords":"Autodesk Revit, AutoCAD, Shanghai Tower, Autodesk Navisworks Manage, Autodesk Ecotect Analysis, AutoCAD, users, case study, implementation","description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Project summary</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">A striking new addition to the Shanghai skyl","og:title":"Autodesk® Revit®, AutoCAD® for the largest skyscraper in China Shanghai Tower","og:description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; font-weight: bold;\">Project summary</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">A striking new addition to the Shanghai skyl"},"deal_info":"","user":{"id":4257,"title":"Shanghai Tower Construction Development Co., Ltd.","logoURL":"https://old.roi4cio.com/uploads/roi/company/Shanghai_Tower_Construction_Development_Co.__Ltd..jpg","alias":"shanghai-tower-construction-development-co-ltd","address":"","roles":[],"description":"Shanghai Tower Construction and Development Co., Ltd. was set up on December 5, 2007. The Shanghai Tower Construction & Development Co., Ltd., represents an equity partnership between Shanghai Municipal Investment(Group)Corporation, Luijiazui Finance & Trade Zone Development Co., Ltd., and Shanghai Construction Group. The three shareholders jointly provide fund for the development, construction and operation of Shanghai Tower. With a registered capital of 8.6 billion yuan (US$ 1250 million), the three shareholders have equity ratios of 51 percent, 45 percent and 4 percent, respectively. Shanghai Tower aims to become a landmark building, powered by the funding, technology and experience of its shareholders. The tower is fully conversant with market demand, and completes the functional allocation of a high-rise, making it a respectable, green, vertical city. The staff pursues the “highest, noblest and most exquisite” design and development objectives for Shanghai Tower with the corporation spirit of “passion, harmony, innovation, and practicality”.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.shanghaitower.com.cn/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Shanghai Tower Construction Development Co., Ltd.","keywords":"Shanghai, Tower, Construction, Development, percent, shareholders, development, with","description":"Shanghai Tower Construction and Development Co., Ltd. was set up on December 5, 2007. The Shanghai Tower Construction & Development Co., Ltd., represents an equity partnership between Shanghai Municipal Investment(Group)Corporation, Luijiazui Finance &","og:title":"Shanghai Tower Construction Development Co., Ltd.","og:description":"Shanghai Tower Construction and Development Co., Ltd. was set up on December 5, 2007. The Shanghai Tower Construction & Development Co., Ltd., represents an equity partnership between Shanghai Municipal Investment(Group)Corporation, Luijiazui Finance &","og:image":"https://old.roi4cio.com/uploads/roi/company/Shanghai_Tower_Construction_Development_Co.__Ltd..jpg"},"eventUrl":""},"supplier":{"id":8760,"title":"Hidden supplier","logoURL":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg","alias":"skrytyi-postavshchik","address":"","roles":[],"description":" Supplier Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":76,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden supplier","keywords":"","description":" Supplier Information is confidential ","og:title":"Hidden supplier","og:description":" Supplier Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/znachok_postavshchik.jpg"},"eventUrl":""},"vendors":[{"id":180,"title":"Autodesk","logoURL":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg","alias":"autodesk","address":"","roles":[],"description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a gallery of its customers' work in its San Francisco building. The company has offices worldwide, with U.S. locations in Northern California, Oregon, Colorado, Texas and in New England in New Hampshire and Massachusetts, and Canada locations in Ontario, Quebec, and Alberta.","companyTypes":[],"products":{},"vendoredProductsCount":15,"suppliedProductsCount":15,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{},"companyUrl":"www.autodesk.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":""}],"products":[{"id":1411,"logo":false,"scheme":false,"title":"Autodesk AutoCAD","vendorVerified":0,"rating":"3.40","implementationsCount":1,"suppliersCount":0,"alias":"autodesk-autocad","companyTypes":[],"description":"Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. Since 2010, AutoCAD was released as a mobile- and web app as well, marketed as AutoCAD 360. Auto CAD and AutoCAD LT are available for English, German, French, Italian, Spanish, Korean, Chinese Simplified, Chinese Traditional, Brazilian Portuguese, Russian, Czech, Polish and Hungarian, Albanian (also through additional language packs). The extent of localization varies from full translation of the product to documentation only. The AutoCAD command set is localized as a part of the software localization. Source: https://en.wikipedia.org/wiki/AutoCAD","shortDescription":"AutoCAD is a commercial computer-aided design (CAD) and drafting software application. It is used across a wide range of industries, by architects, project managers, engineers and graphic designers.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk AutoCAD","keywords":"AutoCAD, localization, Autodesk, released, Chinese, marketed, Hungarian, Albanian","description":"Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. Since 2010, AutoCAD was released as a mobile- and web app as well, marketed as AutoCAD 360. Auto CAD ","og:title":"Autodesk AutoCAD","og:description":"Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. Since 2010, AutoCAD was released as a mobile- and web app as well, marketed as AutoCAD 360. Auto CAD "},"eventUrl":"","translationId":1411,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1414,"logo":false,"scheme":false,"title":"Autodesk Revit","vendorVerified":0,"rating":"3.70","implementationsCount":2,"suppliersCount":0,"alias":"autodesk-revit","companyTypes":[],"description":"<p><span style=\"font-weight: bold;\">What does Revit do?</span> Revit is software for BIM. Its powerful tools let you use the intelligent model-based process to plan, design, construct, and manage buildings and infrastructure. Revit supports a multidiscipline design process for collaborative design.</p>\r\n<ul>\r\n<li>Design. Model building components, analyze and simulate systems and structures, and iterate designs. Generate documentation from Revit models.</li>\r\n<li>Collaborate. Multiple project contributors can access centrally shared models. This results in better coordination, which helps reduce clashes and rework.</li>\r\n<li>Visualize. Communicate design intent more effectively to project owners and team members by using models to create high-impact 3D visuals.</li>\r\n</ul>\r\n<p><span style=\"font-weight: bold;\">One multidiscipline BIM platform</span> Revit has features for all disciplines involved in a building project. When architects, engineers, and construction professionals work on one unified platform, the risk of data translation errors can be reduced and the design process can be more predictable. <span style=\"font-weight: bold;\">Interoperability</span> Revit helps you work with members of an extended project team. It imports, exports, and links your data with commonly used formats, including IFC, DWG™ and DGN. <span style=\"font-weight: bold;\">Tools created expressly for your discipline</span> Whether you’re an architect; a mechanical, electrical, or plumbing (MEP) engineer; a structural engineer; or a construction professional, Revit offers BIM features specifically designed for you. <span style=\"font-weight: bold;\">For architects</span> Use Revit to take an idea from conceptual design to construction documentation within a single software environment. Optimize building performance and create stunning visualizations. <span style=\"font-weight: bold;\">For structural engineers</span> Use tools specific to structural design to create intelligent structure models in coordination with other building components. Evaluate how well they conform to building and safety regulations. <span style=\"font-weight: bold;\">For MEP engineers</span> Design MEP building systems with greater accuracy and in better coordination with architectural and structural components, using the coordinated and consistent information inherent in the intelligent model. <span style=\"font-weight: bold;\">For construction professionals</span> Evaluate constructability and design intent before construction begins. Gain a better understanding of the means, methods, and materials, and how they all come together. <span style=\"font-weight: bold;\">Connect teams with Collaboration for Revit</span> Extend Revit worksharing to project teams in almost any location with this service, which lets multiple users co-author Revit models in the cloud. Increase communication, centralize efforts of distributed teams, and let entire teams take part in the BIM process. <span style=\"font-weight: bold;\">Better team communication</span> Use real-time chat within project models. Know who’s working in the model and what they’re doing. <span style=\"font-weight: bold;\">Extended team integration</span> Subscribe to Collaboration for Revit and receive a subscription to BIM 360 Team, an integrated, cloud-based web service that provides centralized team access to project data. <span style=\"font-weight: bold;\">Access more projects</span> Extend your reach and participate in projects or joint venture partnerships, wherever they’re located. <span style=\"font-weight: bold;\">Better allocate team talents and resources</span> Assign the best team members with the strongest skill sets. Let designers work on multiple projects based in different locations at the same time. <span style=\"font-weight: bold;\">Minimize in-person meetings or co-location of teams</span> Help lower travel expenses and support greater work-life balance for team members. Visualization and rendering. Show how your product will look with visualization and rendering tools.</p>","shortDescription":"Revit® software for BIM (Building Information Modeling) includes features for architectural design, MEP and structural engineering, and construction.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Revit","keywords":"","description":"<p><span style=\"font-weight: bold;\">What does Revit do?</span> Revit is software for BIM. Its powerful tools let you use the intelligent model-based process to plan, design, construct, and manage buildings and infrastructure. Revit supports a multidiscipline d","og:title":"Autodesk Revit","og:description":"<p><span style=\"font-weight: bold;\">What does Revit do?</span> Revit is software for BIM. Its powerful tools let you use the intelligent model-based process to plan, design, construct, and manage buildings and infrastructure. Revit supports a multidiscipline d"},"eventUrl":"","translationId":1414,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":4,"title":"Reduce Costs"},{"id":5,"title":"Enhance Staff Productivity"},{"id":6,"title":"Ensure Security and Business Continuity"},{"id":7,"title":"Improve Customer Service"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":376,"title":"Unstructured data"},{"id":377,"title":"Separate communications channels"},{"id":398,"title":"Poor communication and coordination among staff"},{"id":399,"title":"No e-document flow"},{"id":400,"title":"High costs"}]}},"categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"},{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://damassets.autodesk.net/content/dam/autodesk/www/products/autodesk-revit-family/docs/pdf/shanghai_tower_story_usletter_template_FY14.pdf","title":"Web-site of vendor"}},"comments":[],"referencesCount":0}],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":8,"vendorPartnersCount":0,"supplierPartnersCount":33,"b4r":0,"categories":{"58":{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png","alias":"cad-for-mechanical-engineering-computer-aided-design"},"60":{"id":60,"title":"GIS - Geographic information system","description":"<span style=\"font-weight: bold; \">A geographic information system (GIS)</span> is a framework for gathering, managing, and analyzing data. Rooted in the science of geography, GIS integrates many types of data. It analyzes spatial location and organizes layers of information into visualizations using maps and 3D scenes. With this unique capability, GIS reveals deeper insights into data, such as patterns, relationships, and situations — helping users make smarter decisions.\r\n <span style=\"font-weight: bold; \">GIS applications</span> are tools that allow users to create interactive queries (user-created searches), analyze spatial information, edit data in maps, and present the results of all these operations. GIS (more commonly GIScience) sometimes refers to geographic information science (GIScience), the science underlying geographic concepts, applications, and systems. Since the mid-1980s, geographic information systems have become valuable tool used to support a variety of city and regional planning functions.\r\nGIS can refer to a number of different technologies, processes, techniques and methods. It is attached to many operations and has many applications related to engineering, planning, management, transport/logistics, insurance, telecommunications, and business. For that reason, GIS and location intelligence applications can be the foundation for many location-enabled services that rely on analysis and visualization.\r\nGIS can relate unrelated information by using location as the key index variable. Locations or extents in the Earth space–time may be recorded as dates/times of occurrence, and x, y, and z coordinates representing, longitude, latitude, and elevation, respectively. All Earth-based spatial–temporal location and extent references should be relatable to one another and ultimately to a "real" physical location or extent. This key characteristic of GIS has begun to open new avenues of scientific inquiry.\r\nGeographic Information Systems are powerful decision-making tools for any business or industry since it allows the analyzation of environmental, demographic, and topographic data. Data intelligence compiled from gis software applications help companies and various industries, and consumers, make informed decisions.\r\n<span style=\"font-weight: bold; \">Mapping.</span> GIS can be used to provide a visual interpretation of data. Google Maps is an excellent example of a web-based GIS mapping solution that people use for everyday navigation purposes.\r\n<span style=\"font-weight: bold; \">Telecom and Network Services.</span> Organizations can incorporate geographic data into their complex network design, optimization, planning, and maintenance activities. This data enhances telecom processes through better customer-relationship management and location services.\r\n<span style=\"font-weight: bold; \">Environmental Impact Analysis.</span> Data gathered via GIS program is vital for conserving natural resources and protecting the environment. Impact statements assess the magnitude of human impact on the environment, which GIS integration helps indicate.\r\n <span style=\"font-weight: bold; \">Agricultural Applications.</span> Geo informatic system data helps create more efficient farming techniques, alongside analyzing soil data in an advanced fashion. This can increase food production in different parts of the world.\r\n<span style=\"font-weight: bold; \">Navigation. </span>Web-based navigation maps use geo info systemsdata to provide the public with useful information. Web maps are regularly updated per GIS information and are used consistently in everyday life.\r\n<span style=\"font-weight: bold; \">Banking.</span> Banking has evolved to become market-driven, and a bank’s success depends mainly on its ability to provide customer-driven services. GIS data plays an essential role in planning, organizing, and decision making in the banking industry.\r\n<span style=\"font-weight: bold; \">Planning and Community Development. </span>GIS data helps us understand and meet global challenges. As GIS technology rapidly advances, there are various innovative applications in the planning sector. GIS tools can be used to integrate geographic intelligence into planning processes, and have the potential to change how we think and behave.","materialsDescription":"<h1 class=\"align-center\">How does GIS work? </h1>\r\nGIS technology applies geographic science with tools for understanding and collaboration. It helps people reach a common goal: to gain actionable intelligence from all types of data.\r\n<ul><li><span style=\"font-weight: bold; \">Maps: </span>maps are the geographic container for the data layers and analytics you want to work with. GIS maps are easily shared and embedded in apps, and accessible by virtually everyone, everywhere.<span style=\"font-weight: bold; \"><br /></span></li><li><span style=\"font-weight: bold; \">Data:</span> GIS integrates many different kinds of data layers using spatial location. Most data has a geographic component. GIS data includes imagery, features, and basemaps linked to spreadsheets and tables.</li><li><span style=\"font-weight: bold; \">Analysis:</span> spatial analysis lets you evaluate suitability and capability, estimate and predict, interpret and understand, and much more, lending new perspectives to your insight and decision-making.</li><li><span style=\"font-weight: bold; \">Apps:</span> apps provide focused user experiences for getting work done and bringing GIS to life for everyone. GIS apps work virtually everywhere: on your mobile phones, tablets, in web browsers, and on desktops.</li></ul>\r\n<h1 class=\"align-center\">What are the benefits benefits of Geographic Information Systems?</h1>\r\nMany different types of information can be compared and contrasted using GIS. The geo information services can include data about people, such as population, income, or education level. It can include information about the landscape, such as the location of streams, different kinds of vegetation, and different kinds of soil. It can include information about the sites of factories, farms, and schools, or storm drains, roads, and electric power lines.\r\nWith GIS technology, people can compare the locations of different things in order to discover how they relate to each other. For example, using GIS, a single map could include sites that produce pollution, such as factories, and sites that are sensitive to pollution, such as wetlands and rivers. Such a map would help people determine where water supplies are most at risk.\r\n<h1 class=\"align-center\">What is GIS Mapping Software?</h1>\r\nGeographic information software lets you produce maps and other graphic displays of geographic information for analysis and presentation. With these capabilities a GIS is a valuable tool to visualize spatial data or to build decision support systems for use in your organization.\r\nA GIS stores data on geographical features and their characteristics. The features are typically classified as points, lines, or areas, or as raster images. On a map city data could be stored as points, road data could be stored as lines, and boundaries could be stored as areas, while aerial photos or scanned maps could be stored as raster images.\r\n<h1 class=\"align-center\">Application of Geographic Information Systems</h1>\r\nGIS can be used as tool in both problem solving and decision making processes, as well as for visualization of data in a spatial environment. Geospatial data can be analyzed to determine (1) the location of features and relationships to other features, (2) where the most and/or least of some feature exists, (3) the density of features in a given space, (4) what is happening inside an area of interest , (5) what is happening nearby some feature or phenomenon, and (6) and how a specific area has changed over time (and in what way).\r\n\r\n\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/GIS_-_Geographic_information_system.png","alias":"gis-geographic-information-system"}},"branches":"Information Technology","companySizes":"More than 2000 Employees","companyUrl":"www.autodesk.com","countryCodes":["UKR"],"certifications":[{"id":283,"company_id":180,"title":"Autodesk Certified User","type":"technical"},{"id":284,"company_id":180,"title":"Autodesk Certified Professional","type":"technical"}],"isSeller":true,"isSupplier":false,"isVendor":true,"presenterCodeLng":"","seo":{"title":"Autodesk","keywords":"Autodesk, California, software, locations, with, worldwide, building, company","description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:title":"Autodesk","og:description":"Autodesk, Inc. is an American multinational software corporation that makes software for the architecture, engineering, construction, manufacturing, media, and entertainment industries. Autodesk is headquartered in San Rafael, California, and features a galler","og:image":"https://old.roi4cio.com/uploads/roi/company/autodesk_logo.jpeg"},"eventUrl":"","vendorPartners":[],"supplierPartners":[{"supplier":"Yursoft","partnershipLevel":"Silver","countries":"","partnersType":""},{"supplier":"Best IT","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"I.T.Pro","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"Arcada","partnershipLevel":"Silver","countries":"","partnersType":""},{"supplier":"Ar-Cadia","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"Wise IT","partnershipLevel":"Silver","countries":"","partnersType":""},{"supplier":"Softlist","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"Universal Business Systems Establishment (UBS Est)","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"Life2Win","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"FORTIS GROUP","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"MUK (supplier)","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"","partnershipLevel":"Silver","countries":"","partnersType":""},{"supplier":"","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"M:PORTAL Central Asia","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"IFS","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"MONT","partnershipLevel":"Distributor","countries":"Republic of Kazakhstan, Russian Federation","partnersType":""},{"supplier":"","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"AZEL Systems","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"INFARS-Kazakhstan","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"DreamTech","partnershipLevel":"Silver","countries":"","partnersType":""},{"supplier":"Danfil Technologies","partnershipLevel":"Silver","countries":"","partnersType":""},{"supplier":"BITCOM SOFTware","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"","partnershipLevel":"Bronze","countries":"","partnersType":""},{"supplier":"GRAITEC","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"Orange County Choppers (User)","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"Oru Kayak (User)","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"Groovemade (User)","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"SandFlo Golf (User)","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"MJK Performance (User)","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"Scriba (User)","partnershipLevel":"","countries":"","partnersType":""},{"supplier":"WorkCast","partnershipLevel":"","countries":"","partnersType":""}],"vendoredProducts":[{"id":106,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg","logo":true,"scheme":false,"title":"AutoCAD Architecture","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autocad-architecture","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"AutoCAD Architecture (abbreviated as ACA) is a version of Autodesk's flagship product, AutoCAD, with tools and functions specially suited to architectural work.\r\n\r\nArchitectural objects have a relationship to one another and interact with each other intelligently. For example, a window has a relationship to the wall that contains it. If you move or delete the wall, the window reacts accordingly. Objects can be represented in both 2D and 3D.\r\n\r\nIn addition, intelligent architectural objects maintain dynamic links with construction documents and specifications, resulting in more accurate project deliverables. When someone deletes or modifies a door, for example, the door schedule can be automatically updated. Spaces and areas update automatically when certain elements are changed, calculations such as square footage are always up to date.\r\n\r\nAutoCAD Architecture uses the DWG file format but an object enabler is needed to access, display, and manipulate object data in applications different from AutoCAD Architecture.\r\n\r\nAutoCAD Architecture was formerly known as AutoCAD Architectural Desktop (often abbreviated ADT) but Autodesk changed its name for the 2008 edition. The change was made to better match the names of Autodesk's other discipline-specific packages, such as AutoCAD Electrical and AutoCAD Mechanical.","shortDescription":"AutoCAD Architecture software is AutoCAD software for architects. Architectural drafting and documentation is more efficient with the software’s intuitive environment and tools built specifically for architects.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"AutoCAD Architecture","keywords":"AutoCAD, Architecture, with, Autodesk, relationship, other, example, such","description":"AutoCAD Architecture (abbreviated as ACA) is a version of Autodesk's flagship product, AutoCAD, with tools and functions specially suited to architectural work.\r\n\r\nArchitectural objects have a relationship to one another and interact with each other intelligen","og:title":"AutoCAD Architecture","og:description":"AutoCAD Architecture (abbreviated as ACA) is a version of Autodesk's flagship product, AutoCAD, with tools and functions specially suited to architectural work.\r\n\r\nArchitectural objects have a relationship to one another and interact with each other intelligen","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg"},"eventUrl":"","translationId":106,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1642,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg","logo":true,"scheme":false,"title":"Autodesk 3ds Max","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-3ds-max","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"It has modeling capabilities and a flexible plugin architecture and can be used on the Microsoft Windows platform. It is frequently used by video game developers, many TV commercial studios and architectural visualization studios. It is also used for movie effects and movie pre-visualization. For its modeling and animation tools, the latest version of 3ds Max also features shaders (such as ambient occlusion and subsurface scattering), dynamic simulation, particle systems, radiosity, normal map creation and rendering, global illumination, a customizable user interface, new icons, and its own scripting language. <span style=\"font-weight: bold;\">Features:</span>\r\n<ul> <li>MAXScript: built-in scripting language that can be used to automate repetitive tasks, combine existing functionality in new ways, develop new tools and user interfaces, and much more</li> <li>Character Studio helps users to animate virtual characters</li> <li>Scene Explorer, a tool that provides a hierarchical view of scene data and analysis, facilitates working with more complex scenes. Scene Explorer has the ability to sort, filter, and search a scene by any object type or property (including metadata)</li> <li>DWG import</li> <li>Texture assignment/editing: creative texture and planar mapping, including tiling, mirroring, decals, angle, rotate, blur, UV stretching, and relaxation; Remove Distortion; Preserve UV; and UV template image export</li> <li>General keyframing: set key and auto key — offer support for different keyframing workflows</li> <li>Constrained animation: objects can be animated along curves with controls for alignment, banking, velocity, smoothness, and looping, and along surfaces with controls for alignment. Weight path-controlled animation between multiple curves, and animate the weight. Objects can be constrained to animate with other objects in many ways — including look at, orientation in different coordinate spaces, and linking at different points in time</li> <li>Skinning</li> <li>Skeletons and inverse kinematics (IK)</li> <li>Integrated Cloth solver</li> <li>Integration with Autodesk Vault</li> <li>Max Creation Graph</li> </ul>","shortDescription":"Autodesk 3ds Max, formerly 3D Studio and 3D Studio Max, is a professional 3D computer graphics program for making 3D animations, models, games and images.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk 3ds Max","keywords":"with, used, including, animation, different, animate, language, that","description":"It has modeling capabilities and a flexible plugin architecture and can be used on the Microsoft Windows platform. It is frequently used by video game developers, many TV commercial studios and architectural visualization studios. It is also used for movie eff","og:title":"Autodesk 3ds Max","og:description":"It has modeling capabilities and a flexible plugin architecture and can be used on the Microsoft Windows platform. It is frequently used by video game developers, many TV commercial studios and architectural visualization studios. It is also used for movie eff","og:image":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg"},"eventUrl":"","translationId":1642,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1423,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg","logo":true,"scheme":false,"title":"Autodesk AutoCAD Mechanical","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-autocad-mechanical","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"\r\n<ul> <li>Layer management. Isolate and restore layer groups and specify linetypes and lineweights.<span style=\"background-color: #ffffff;\">Create, delete, and rename layers and layer definitions, change their properties, or add layer descriptions</span></li> <li>Hidden lines. The AutoCAD Mechanical toolset automatically creates hidden lines when you specify which objects overlap the others. Update geometry automatically when changes occur. Minimize manual redraws.</li> <li>700,000+ standard parts and features. Produce accurate drawings with standard components.</li> <li>Machinery generators and calculators</li> <li> When you need to capture more complex engineering in a drawing, machinery generators can expedite the process. Efficiently analyze designs, including shaft, spring, belt, chain, and cam generators.</li> <li>Document 3D CAD models. Use the AutoCAD Mechanical toolset to detail native Inventor part and assembly models.</li> <li>Reusable mechanical drawing detailing tools. Use intelligent drafting tools made for mechanical design.</li> <li>Custom content library and publishing. The Content Manager lets you add a part or feature to a content library</li> <li>Command preview and contextual menus. Preview fillet, chamfer, and offset commands.</li> <li>AutoCAD mobile app. Take the power of AutoCAD wherever you go.</li> <li>Smart mechanical engineering dimensions. Create dimensions using abbreviated dialog boxes.</li> <li>Support for international drafting standards. Deliver standards-based design documentation.</li> <li>Associative balloons and bills of materials. Create automated part lists and BOMs.</li> </ul>","shortDescription":"AutoCAD Mechanical - Design faster with an industry-specific toolset for mechanical engineering including 700,000+ intelligent parts and features.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk AutoCAD Mechanical","keywords":"","description":"\r\n<ul> <li>Layer management. Isolate and restore layer groups and specify linetypes and lineweights.<span style=\"background-color: #ffffff;\">Create, delete, and rename layers and layer definitions, change their properties, or add layer descriptions</span></li>","og:title":"Autodesk AutoCAD Mechanical","og:description":"\r\n<ul> <li>Layer management. Isolate and restore layer groups and specify linetypes and lineweights.<span style=\"background-color: #ffffff;\">Create, delete, and rename layers and layer definitions, change their properties, or add layer descriptions</span></li>","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg"},"eventUrl":"","translationId":1423,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":15,"title":"CAD for mechanical engineering - Computer-Aided Design"}],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1424,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Inventor_Professional.png","logo":true,"scheme":false,"title":"Autodesk Inventor Professional","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-inventor-professional","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"Mechanical design and 3D CAD software Use Inventor® 3D CAD modeling software for product and mechanical design. Learn about the Inventor modeling, design, simulation, and rendering features. <span style=\"font-weight: bold;\">Product design and modeling</span>\r\n<ul>\r\n<li>Shape Generator. Create and evaluate high-performing design options in minutes.</li>\r\n<li>Parametric modeling. Create parameters as you sketch and dynamically size 3D objects. Focus on your design, not the interface.</li>\r\n<li>Assembly modeling. Put your model together in fewer steps.</li>\r\n<li>Drawing creation. Quickly create clear, accurate, detailed drawings. </li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Collaboration and design automation</span>\r\n<ul>\r\n<li>3D PDF export. Create 3D documentation rich in visual and product information that anyone can view.</li>\r\n<li>Work with non-native data. Maintain an associative link to non-native CAD data.</li>\r\n<li>Automated frame design. Quickly design and test structural frames.</li>\r\n<li>Electromechanical design. Link your Inventor and AutoCAD Electrical data.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Modeling</span>\r\n<ul>\r\n<li>Flexible modeling. Use the right modeling tool for every job with parametric, freeform, and direct modeling tools.</li>\r\n<li>Direct modeling. Use easy push/pull controls to move, rotate, resize, or scale features from imported geometries.</li>\r\n<li>Freeform modeling. Freely sculpt the shape of your design by moving points, edges, and faces.</li>\r\n<li>Mechanical concept and layout design. Open DWG™ files directly inside Inventor as the basis for your 3D model.</li>\r\n<li>Plastic parts design. Design and analyze plastic parts with purpose-built tools in Inventor.</li>\r\n<li>Sheet metal design. Design complex sheet metal products that conform to your company’s standards.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Automation</span>\r\n<ul>\r\n<li>Automated product configuration. Easily set up and deploy complex product configurations.</li>\r\n<li>Part and assembly design automation. Create reusable, configurable parts, product features, or assemblies by defining variable parameters.</li>\r\n<li>Component generators and calculators. Use built-in calculators to inform the design of common joints such as welds, clamps, and press fits.</li>\r\n<li>Automated tube and pipe design. Use a combination of automated tools and full-control design functions in Inventor to build tube and pipe runs.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Interoperability</span>\r\n<ul>\r\n<li>Cloud-based 3D design reviews. Share lightweight versions of your 3D designs in the cloud.</li>\r\n<li>Printed circuit board interoperability. Integrate your electronics and mechanical designs into a single, complete definition of your product.</li>\r\n<li>BIM interoperability. Access tools specifically created to help prepare your 3D models for use in BIM systems.</li>\r\n<li>Data management. Robust search function makes it easy to find files and quickly copy design files. Connects to Vault (included in Product Design & Manufacturing Collection).</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Simulation and visualization</span>\r\n<ul>\r\n<li>Exploded views and animations. Use exploded views and animations of complex assemblies in product documentation, manuals, and assembly instructions.</li>\r\n<li>Dynamic simulation. Apply forces to evaluate the motion, speed, and acceleration of your design.</li>\r\n<li>Stress analysis. Run quick checks on parts or perform in-depth analysis of the entire product at any stage.</li>\r\n</ul>\r\n","shortDescription":"Inventor Professional 3D CAD software offers an easy-to-use set of tools for 3D mechanical design, documentation, and product simulation.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Inventor Professional","keywords":"","description":"Mechanical design and 3D CAD software Use Inventor® 3D CAD modeling software for product and mechanical design. Learn about the Inventor modeling, design, simulation, and rendering features. <span style=\"font-weight: bold;\">Product design and modeling</spa","og:title":"Autodesk Inventor Professional","og:description":"Mechanical design and 3D CAD software Use Inventor® 3D CAD modeling software for product and mechanical design. Learn about the Inventor modeling, design, simulation, and rendering features. <span style=\"font-weight: bold;\">Product design and modeling</spa","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Inventor_Professional.png"},"eventUrl":"","translationId":1424,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":15,"title":"CAD for mechanical engineering - Computer-Aided Design"}],"testingArea":"","categories":[{"id":532,"title":"Software","alias":"software","description":" Computer software, or simply software, is a collection of data or computer instructions that tell the computer how to work. This is in contrast to physical hardware, from which the system is built and actually performs the work. In computer science and software engineering, computer software is all information processed by computer systems, programs, and data. Computer software includes computer programs, libraries and related non-executable data, such as online documentation or digital media. Computer hardware and software require each other and neither can be realistically used on its own.\r\nAt the lowest programming level, executable code consists of machine language instructions supported by an individual processor — typically a central processing unit (CPU) or a graphics processing unit (GPU). A machine language consists of groups of binary values signifying processor instructions that change the state of the computer from its preceding state. For example, an instruction may change the value stored in a particular storage location in the computer—an effect that is not directly observable to the user. An instruction may also invoke one of many input or output operations, for example displaying some text on a computer screen; causing state changes that should be visible to the user. The processor executes the instructions in the order they are provided, unless it is instructed to "jump" to a different instruction, or is interrupted by the operating system. As of 2015, most personal computers, smartphone devices, and servers have processors with multiple execution units or multiple processors performing computation together, and computing has become a much more concurrent activity than in the past.\r\nThe majority of software is written in high-level programming languages. They are easier and more efficient for programmers because they are closer to natural languages than machine languages. High-level languages are translated into machine language using a compiler or an interpreter or a combination of the two. Software may also be written in a low-level assembly language, which has strong correspondence to the computer's machine language instructions and is translated into machine language using an assembler.","materialsDescription":" <span style=\"font-weight: bold; \">What is software?</span>\r\nSometimes abbreviated as SW and S/W, software is a collection of instructions that enable the user to interact with a computer, its hardware, or perform tasks. Without software, most computers would be useless. For example, without your Internet browser software, you could not surf the Internet or read this page. Without an operating system, the browser could not run on your computer. The picture shows a Microsoft Excel box, an example of a spreadsheet software program.\r\n<span style=\"font-weight: bold; \">How do you get software?</span>\r\nSoftware can be purchased at a retail computer store or online and come in a box containing all the disks (floppy diskette, CD, DVD, or Blu-ray), manuals, warranty, and other documentation.\r\nSoftware can also be downloaded to a computer over the Internet. Once downloaded, setup files are run to start the installation process on your computer.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Free software</span></span>\r\nThere are also a lot of free software programs available that are separated into different categories.\r\n<ul><li>Shareware or trial software is software that gives you a few days to try the software before you have to buy the program. After the trial time expires, you'll be asked to enter a code or register the product before you can continue to use it.</li><li>Freeware is completely free software that never requires payment, as long as it is not modified.</li><li>Open-source software is similar to freeware. Not only is the program given away free, but the source code used to make the program is also, allowing anyone to modify the program or view how it was created.</li></ul>\r\n<span style=\"font-weight: bold; \">How do you use computer software?</span>\r\nOnce the software is installed on the computer hard drive, the program can be used anytime by finding the program on the computer. On a Windows computer, a program icon is added to the Start menu or Start screen, depending on your version of Windows.\r\n<span style=\"font-weight: bold;\">How to maintain software?</span>\r\nAfter the software is installed on your computer, it may need to be updated to fix any found errors. Updating a program can be done using software patches. Once updates are installed, any problems that may have been experienced in the program will no longer occur.\r\n<span style=\"font-weight: bold;\">How is software created and how does it work?</span>\r\nA computer programmer (or several computer programmers) writes the instructions using a programming language, defining how the software should operate on structured data. The program may then be interpreted or compiled into machine code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Software.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1429,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg","logo":true,"scheme":false,"title":"Product Design & Manufacturing Collection IC","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"product-design-manufacturing-collection-ic","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">From Inventor, to HSM, to Fusion 360, this myriad of MFG software allows you or your company to complete product lifecycles with ease, at an affordable and attainable price.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \"></span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">If you work within the Aerospace, Automotive, Industrial machinery, Manufacturing Product design or any other related industries you will know that developing top performing products and parts has always been a detailed, engineering-intensive and all-round tough job. With all the different materials and composites available, knowing how each one will behave/work, whilst ensuring your products perform as expected and within warranty requirements requires expert knowledge, endless working hours and a first class toolset.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\"><br /></span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">Thankfully, the Autodesk Product Design & Manufacturing Collection enables you to shorten product development lifecycle’s and cut design and production costs using powerful simulation tools and digital prototyping workflows. This ultimate end-to-end product development set of tools, enables you to design, test, manage and manufacture your products with precision.</span>","shortDescription":"The Autodesk Product Design & Manufacturing Collection contains a complete set of first-class software applications for both the Manufacturing and Engineering Industries.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":16,"sellingCount":2,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Product Design & Manufacturing Collection IC","keywords":"product, design, your, Product, Manufacturing, products, Design, will","description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">From Inventor, to HSM, to Fusion 360, this myriad of MFG software allows you or your company to complete product lifecycles with ease, at an affordable and attainable price.","og:title":"Product Design & Manufacturing Collection IC","og:description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">From Inventor, to HSM, to Fusion 360, this myriad of MFG software allows you or your company to complete product lifecycles with ease, at an affordable and attainable price.","og:image":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg"},"eventUrl":"","translationId":1523,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1431,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Navisworks.png","logo":true,"scheme":false,"title":"Autodesk Navisworks","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-navisworks","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<span style=\"font-weight: bold;\">Features</span>\r\nGain more control over construction projects\r\nNavisworks® tools enable greater coordination, construction simulation, and whole-project analysis for integrated project review. Some Navisworks products include advanced simulation and validation tools.\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Coordination</span>\r\n Deeper integration between Navisworks and BIM 360 Glue provides cloud connectivity to Navisworks users\r\n<span style=\"font-weight: bold;\">BIM 360 Glue integration</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Share data and workflows with BIM 360 projects.</li></ul>\r\n<span style=\"font-weight: bold;\">BIM coordination with AutoCAD</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Open Navisworks files within AutoCAD</li></ul>\r\n<span style=\"font-weight: bold;\"> Clash detection in Navisworks</span>\r\n\r\n<ul><li>Clash detection and interference checking</li><li>MANAGE</li><li>View clashes in context to help find and resolve conflicts.</li></ul>\r\n<span style=\"font-weight: bold;\">BIM 360 shared views</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Create views and share using either Navisworks or BIM 360 Glue.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\"> Cloud service</span>\r\n<span style=\"font-weight: bold;\">Clash and interference management</span>\r\n<ul><li>MANAGE</li><li>Communicate issues more clearly to the project team.</li></ul>\r\n<span style=\"font-weight: bold;\">Dedicated clash detection tool</span>\r\n<ul><li>MANAGE</li><li>Detect, identify, and manage clashes more effectively.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Model review</span>\r\n<span style=\"font-weight: bold;\">Model file and data aggregation</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Combine design and construction data in one model.</li></ul>\r\n<span style=\"font-weight: bold;\">Object animation and model simulation</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Animate and interact with models.</li></ul>\r\n<span style=\"font-weight: bold;\">Interoperability enhancements</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Support for many third-party applications.</li></ul>\r\n<span style=\"font-weight: bold;\">Whole-team project review</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Provide equal access to explore the whole project view</li></ul>\r\n<span style=\"font-weight: bold;\">NWD and DWF publishing</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Publish models in a distributable NWD or DWF file.</li></ul>\r\n<span style=\"font-weight: bold;\">More streamlined collaboration</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Communicate design intent more effectively and encourage teamwork.</li></ul>\r\n<span style=\"font-weight: bold;\">Measurement tools</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Face, snapping, axis locking, and quick zoom.</li></ul>\r\n<span style=\"font-weight: bold;\">Redline tool</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Gain greater clarity and control when adding redlines.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Model simulation and analysis</span>\r\n<span style=\"font-weight: bold;\">5D project scheduling includes time and cost</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Simulate 5D construction schedules and logistics.</li></ul>\r\n<span style=\"font-weight: bold;\">Photorealistic model rendering</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Develop compelling 3D animations and imagery</li></ul>\r\n<span style=\"font-weight: bold;\">Object animation and model simulation</span>\r\n\r\n<ul><li>MANAGE, SIMULATE</li><li>Animate and interact with models.</li></ul>\r\n<span style=\"font-weight: bold;\">Smoother interaction with quantification data</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Add quantification from an aggregated model.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Project viewing</span>\r\n<span style=\"font-weight: bold;\">Cloud rendering</span>\r\n<dl><ul>MANAGE, SIMULATE<br />Create renders for whole project models.</ul></dl>\r\n<span style=\"font-weight: bold;\">Real-time navigation</span>\r\n<ul><li>MANAGE, SIMULATE, FREEDOM</li><li>Explore an integrated project model as it's built.</li></ul>\r\n<span style=\"font-weight: bold;\">Autodesk rendering enhancements</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Visualization tools integrate with Autodesk products.</li></ul>\r\n<span style=\"font-weight: bold;\">Reality capture enhancements</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Work with enhanced point cloud integration.</li></ul>\r\n<span style=\"font-weight: bold;\">Supported file formats</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Supports numerous file formats and applications.</li></ul>\r\n\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Quantification</span>\r\n<span style=\"font-weight: bold;\">Integrated 2D quantification (2D sheet takeoff)</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Supports 2D and 3D project measurement.</li></ul>\r\n<span style=\"font-weight: bold;\">3D quantification (integrated model takeoff)</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Generate quantity workbooks.</li></ul>\r\n<span style=\"font-weight: bold;\">Quantification enhancements</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Get support for 2D PDF sheets.</li></ul>\r\n<span style=\"font-weight: bold;\">Quantification 2D PDF Reader</span>\r\n<ul><li>MANAGE, SIMULATE</li><li>Supports Adobe PDF files.</li></ul>","shortDescription":"Navisworks® project review software lets architecture, engineering, and construction professionals holistically review integrated models and data with stakeholders to better control project outcomes.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Navisworks","keywords":"","description":"<span style=\"font-weight: bold;\">Features</span>\r\nGain more control over construction projects\r\nNavisworks® tools enable greater coordination, construction simulation, and whole-project analysis for integrated project review. Some Navisworks products include a","og:title":"Autodesk Navisworks","og:description":"<span style=\"font-weight: bold;\">Features</span>\r\nGain more control over construction projects\r\nNavisworks® tools enable greater coordination, construction simulation, and whole-project analysis for integrated project review. Some Navisworks products include a","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Navisworks.png"},"eventUrl":"","translationId":1431,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1433,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Vault.png","logo":true,"scheme":false,"title":"Autodesk Vault","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-vault","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":" <span style=\"font-weight: bold; text-decoration-line: underline;\">Features</span>\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\"><br /></span><span style=\"font-weight: bold;\">Autodesk Vault for design & manufacturing</span>\r\nVault for design and manufacturing\r\nManage your product data and engineering processes in a single, central location.\r\n<span style=\"font-weight: bold;\">Autodesk Vault for infrastructure</span>\r\nVault for infrastructure\r\nCreate, organize, and manage your civil infrastructure deliverables more effectively in a single central location.\r\n<span style=\"font-weight: bold;\">Autodesk Vault for non-designers</span>\r\nVault for non-designers\r\nVault Office, sold separately, helps engineers and non-engineers collaborate in one central location.\r\n<span style=\"font-weight: bold;\">Shared views</span>\r\nShare 2D or 3D views of your work with others, and get comments and feedback directly inside your product.\r\n<span style=\"font-weight: bold;\">Enhanced design experience</span>\r\nNotable usability improvements within the CAD add-ins enhance the overall design experience\r\n<span style=\"font-weight: bold;\">Engineering efficiency</span>\r\nPublishing the 2D PDF during the release process supports a better downstream communication to manufacturing and keeps all teams informed.","shortDescription":"Vault data management software helps designers and engineers organize design data, manage documentation, and track revisions and other development processes.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Vault","keywords":"","description":" <span style=\"font-weight: bold; text-decoration-line: underline;\">Features</span>\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\"><br /></span><span style=\"font-weight: bold;\">Autodesk Vault for design & manufacturing</span>\r\nVault","og:title":"Autodesk Vault","og:description":" <span style=\"font-weight: bold; text-decoration-line: underline;\">Features</span>\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\"><br /></span><span style=\"font-weight: bold;\">Autodesk Vault for design & manufacturing</span>\r\nVault","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Vault.png"},"eventUrl":"","translationId":1433,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1435,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/ARCHITECTURE__ENGINEERING___CONSTRUCTION_COLLECTION.png","logo":true,"scheme":false,"title":"AUTODESK ARCHITECTURE, ENGINEERING & CONSTRUCTION COLLECTION","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-architecture-engineering-construction-collection","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<span style=\"color: #000000; font-family: Verdana, sans-serif; font-size: 12px;\"> </span>\r\n<span style=\"font-weight: bold;\">COLLECTION INCLUDES</span>\r\n\r\n<ul>\r\n<li><span style=\"font-weight: bold;\">Revit</span></li>\r\n<li><span style=\"font-weight: bold;\">AutoCAD Civil 3D</span></li>\r\n<li><span style=\"font-weight: bold;\">InfraWorks </span></li>\r\n<li><span style=\"font-weight: bold;\">AutoCAD</span></li>\r\n<li>Advance Steel </li>\r\n<li>AutoCAD Architecture</li>\r\n<li>AutoCAD Electrical</li>\r\n<li>AutoCAD Map 3D</li>\r\n<li>AutoCAD MEP</li>\r\n<li>AutoCAD Plant 3D</li>\r\n<li>AutoCAD Raster Design </li>\r\n<li>AutoCAD mobile app </li>\r\n<li>Cloud storage (25 GB)</li>\r\n<li>Dynamo Studio </li>\r\n<li>Fabrication CADmep </li>\r\n<li>FormIt Pro </li>\r\n<li>Insight </li>\r\n<li>Navisworks Manage</li>\r\n<li>ReCap Pro </li>\r\n<li>Autodesk Rendering</li>\r\n<li>Revit Live</li>\r\n<li>Robot Structural Analysis Professional </li>\r\n<li>3ds Max</li>\r\n<li>Structural Analysis for Revit</li>\r\n<li>Structural Bridge Design</li>\r\n<li>Vehicle Tracking </li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Here’s what the collection can do for you</span> <span style=\"font-weight: bold;\">Are you a building professional?</span>\r\nUse a broad portfolio of interoperable BIM (Building Information Modeling) and CAD technologies to become more productive, gain more insight into all phases of building design, and increase your ability to deliver great design.\r\n<span style=\"font-weight: bold;\">Do you work in infrastructure design?</span>\r\nUse the tools in the collection to connect vertical and horizontal BIM processes across the project lifecycle, so you can deliver more scalable, sustainable, and resilient civil infrastructure.\r\n<span style=\"font-weight: bold;\">Are you in the construction industry?</span>\r\nThe collection lets you visually explore project constructability, ultimately helping you manage your costs more effectively and better predict project outcomes.\r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">More value, more flexibility, more simplicity</span>\r\n<span style=\"font-weight: bold;\">Access to a wide selection of essential 3D design software for the work you do</span>\r\nGet the tools you need now and in the future, as the collection and your business evolves.\r\n<span style=\"font-weight: bold;\">Get interoperable tools for both CAD- and BIM-based workflows</span>\r\nConnect familiar CAD-based processes for efficient design and documentation with the power of 3D model-based design workflows.\r\n<span style=\"font-weight: bold;\">Choose the individual products that you want to use</span>\r\nDownload and install what you want, whenever you like—whether it’s for occasional use, to meet requirements of a particular project or client, or to explore new workflows.\r\n<span style=\"font-weight: bold;\">Use mobile apps and take advantage of the power of the cloud</span>\r\nView and create rich visualizations, work in the field, and store your designs.","shortDescription":"The Architecture, Engineering & Construction Collection gives you access to Integrated BIM tools for building design, civil infrastructure, and construction","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"AUTODESK ARCHITECTURE, ENGINEERING & CONSTRUCTION COLLECTION","keywords":"","description":"<span style=\"color: #000000; font-family: Verdana, sans-serif; font-size: 12px;\"> </span>\r\n<span style=\"font-weight: bold;\">COLLECTION INCLUDES</span>\r\n\r\n<ul>\r\n<li><span style=\"font-weight: bold;\">Revit</span></li>\r\n<li><span style=\"font-weight: bold;\">Au","og:title":"AUTODESK ARCHITECTURE, ENGINEERING & CONSTRUCTION COLLECTION","og:description":"<span style=\"color: #000000; font-family: Verdana, sans-serif; font-size: 12px;\"> </span>\r\n<span style=\"font-weight: bold;\">COLLECTION INCLUDES</span>\r\n\r\n<ul>\r\n<li><span style=\"font-weight: bold;\">Revit</span></li>\r\n<li><span style=\"font-weight: bold;\">Au","og:image":"https://old.roi4cio.com/fileadmin/user_upload/ARCHITECTURE__ENGINEERING___CONSTRUCTION_COLLECTION.png"},"eventUrl":"","translationId":1435,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":17,"title":"CAD for architecture and construction - Computer-Aided Design"}],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1438,"logo":false,"scheme":false,"title":"Autodesk Infraworks","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-infraworks","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<span style=\"font-weight: bold; text-decoration-line: underline;\">Features</span> What’s new in InfraWorks New features in InfraWorks® preliminary design software help enhance detailed road design tasks, improve design decisions, and advance component-based bridge design and point cloud processing.\r\n<ul>\r\n<li>Superelevation. Calculate and apply superelevation to any component roads in your model that have curves or spiral-curve-spirals.</li>\r\n<li>Roadside grading. Vary the slopes and the materials applied to different sections of roadside grading.</li>\r\n<li>Cross-section views. Assess superelevation, road assembly, and cut-and-fill engineering details of your road design in cross-section form.</li>\r\n<li>Terrain contours. See more detail in existing and proposed ground surfaces by displaying contours and controlling the interval.</li>\r\n<li>Manage bridge components. Create and manage bridge components and content directly in InfraWorks.</li>\r\n<li>Flood simulation. Analyze flooding projects based on multiple inflow locations and water elevation changes over time.</li>\r\n<li> Calculate material quantities and export to a CSV file. Calculate earthwork quantities on multiple selected roads, station range, and area of interest parcel, right- of- way.</li>\r\n<li> Build roads with components like curbs, lanes, and shoulders</li>\r\n<li>Component roads. Design roads with curbs, lanes, and shoulders. Create parametric models in Inventor and add them to the component road design.</li>\r\n<li>Parts Editor. Create custom drainage or piping parts with Inventor and export them to the Parts Editor using a free Inventor plug-in.</li>\r\n<li>Labels for component roads. View in-canvas labels of bridge and bridge component dimensions depending on your selection and view position.</li>\r\n<li>Generate features from point clouds. Extract linear features from point clouds. Export linear features, vertical features, and ground grid to AutoCAD Civil 3D.</li>\r\n<li>Labels for bridges. View in-canvas labels of component roads depending on your selection and view position.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Model</span>\r\n<ul>\r\n<li>Model existing environment. Create a large-scale model by aggregating existing data including 2D CAD, GIS, raster, and 3D models.</li>\r\n<li>Automated data import and model creation. Create base models from GIS, Raster, DGN, and SketchUp.</li>\r\n<li>Photorealistic visual effects. Add dynamic sun and shadows, water, and clouds.</li>\r\n<li>Generate terrain from point clouds. Build data into your model terrain.</li>\r\n<li>View projects in context. View projects in context of existing conditions.</li>\r\n<li>Bridge design configurations. Copy bridge design configurations from one component to another, and from one bridge to another.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Design</span>\r\n<ul>\r\n<li>Ramps and center lane flows. Quickly create and edit ramps and center/left-turn lanes.</li>\r\n<li>Roundabout design. Easily convert an intersection into a roundabout style.</li>\r\n<li>Area of interest. Expand your designs of parcels, easements, and right-of-ways. Easily and accurately represent them in your InfraWorks model.</li>\r\n<li>Component-based bridge design. Edit bridge decks and girders independently of other bridge components.</li>\r\n<li>Smarter pavement drainage. Recognizes and responds to complex geometry.</li>\r\n<li>Import preliminary designs into AutoCAD Civil 3D. Migrate roads and pipe networks from InfraWorks to AutoCAD Civil 3D.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Analyze</span>\r\n<ul>\r\n<li>2D distance and slope. Measure the distance (horizontal and vertical) and slope between two points in a model.</li>\r\n<li>Measure distances and areas. Determine the best location for design elements.</li>\r\n<li>Dynamic site analysis. Work with different data types from many sources.</li>\r\n<li>Shadow and lighting analysis. Predict how shadows may affect project designs.</li>\r\n<li>Theme palettes. Visually classify assets according to attributes.</li>\r\n<li>Bridge line girder analysis. Perform a detailed analysis in the cloud.</li>\r\n</ul>\r\n<span style=\"font-weight: bold;\">Collaborate</span>\r\n<ul>\r\n<li>Real-time feedback. Accelerate approvals with the Design Feed feature.</li>\r\n<li>Model publishing. Publish centrally and more securely in the cloud, then engage stakeholders via web/mobile access.</li>\r\n<li>Model network storage</li>\r\n<li>iPad app</li>\r\n</ul>\r\n","shortDescription":"InfraWorks® software supports connected BIM (Building Information Modeling) processes, letting designers and civil engineers plan and design infrastructure projects in the context of the real world.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Infraworks","keywords":"","description":"<span style=\"font-weight: bold; text-decoration-line: underline;\">Features</span> What’s new in InfraWorks New features in InfraWorks® preliminary design software help enhance detailed road design tasks, improve design decisions, and advance componen","og:title":"Autodesk Infraworks","og:description":"<span style=\"font-weight: bold; text-decoration-line: underline;\">Features</span> What’s new in InfraWorks New features in InfraWorks® preliminary design software help enhance detailed road design tasks, improve design decisions, and advance componen"},"eventUrl":"","translationId":1438,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":456,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/AutoCAD_Civil_3D.png","logo":true,"scheme":false,"title":"AutoCAD Civil 3D","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autocad-civil-3d","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":" \r\nIMPROVE PROJECT DELIVERY Enhance project quality and accuracy and optimize design MAINTAIN MORE CONSISTENT DATA Automate project deliverables and reduce documentation errors. RESPOND FASTER TO PROJECT CHANGES Accelerate detailed design and help streamline time-consuming tasks. Get more out of AutoCAD Civil 3D when you connect it with other Autodesk BIM solutions.\r\n ","shortDescription":"Use AutoCAD® Civil 3D® civil engineering design and documentation software to support Building Information Modeling (BIM) workflows.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"AutoCAD Civil 3D","keywords":"project, AutoCAD, PROJECT, design, Civil, tasks, more, time-consuming","description":" \r\nIMPROVE PROJECT DELIVERY Enhance project quality and accuracy and optimize design MAINTAIN MORE CONSISTENT DATA Automate project deliverables and reduce documentation errors. RESPOND FASTER TO PROJECT CHANGES Accelerate detailed design and help streaml","og:title":"AutoCAD Civil 3D","og:description":" \r\nIMPROVE PROJECT DELIVERY Enhance project quality and accuracy and optimize design MAINTAIN MORE CONSISTENT DATA Automate project deliverables and reduce documentation errors. RESPOND FASTER TO PROJECT CHANGES Accelerate detailed design and help streaml","og:image":"https://old.roi4cio.com/fileadmin/user_upload/AutoCAD_Civil_3D.png"},"eventUrl":"","translationId":456,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":60,"title":"GIS - Geographic information system","alias":"gis-geographic-information-system","description":"<span style=\"font-weight: bold; \">A geographic information system (GIS)</span> is a framework for gathering, managing, and analyzing data. Rooted in the science of geography, GIS integrates many types of data. It analyzes spatial location and organizes layers of information into visualizations using maps and 3D scenes. With this unique capability, GIS reveals deeper insights into data, such as patterns, relationships, and situations — helping users make smarter decisions.\r\n <span style=\"font-weight: bold; \">GIS applications</span> are tools that allow users to create interactive queries (user-created searches), analyze spatial information, edit data in maps, and present the results of all these operations. GIS (more commonly GIScience) sometimes refers to geographic information science (GIScience), the science underlying geographic concepts, applications, and systems. Since the mid-1980s, geographic information systems have become valuable tool used to support a variety of city and regional planning functions.\r\nGIS can refer to a number of different technologies, processes, techniques and methods. It is attached to many operations and has many applications related to engineering, planning, management, transport/logistics, insurance, telecommunications, and business. For that reason, GIS and location intelligence applications can be the foundation for many location-enabled services that rely on analysis and visualization.\r\nGIS can relate unrelated information by using location as the key index variable. Locations or extents in the Earth space–time may be recorded as dates/times of occurrence, and x, y, and z coordinates representing, longitude, latitude, and elevation, respectively. All Earth-based spatial–temporal location and extent references should be relatable to one another and ultimately to a "real" physical location or extent. This key characteristic of GIS has begun to open new avenues of scientific inquiry.\r\nGeographic Information Systems are powerful decision-making tools for any business or industry since it allows the analyzation of environmental, demographic, and topographic data. Data intelligence compiled from gis software applications help companies and various industries, and consumers, make informed decisions.\r\n<span style=\"font-weight: bold; \">Mapping.</span> GIS can be used to provide a visual interpretation of data. Google Maps is an excellent example of a web-based GIS mapping solution that people use for everyday navigation purposes.\r\n<span style=\"font-weight: bold; \">Telecom and Network Services.</span> Organizations can incorporate geographic data into their complex network design, optimization, planning, and maintenance activities. This data enhances telecom processes through better customer-relationship management and location services.\r\n<span style=\"font-weight: bold; \">Environmental Impact Analysis.</span> Data gathered via GIS program is vital for conserving natural resources and protecting the environment. Impact statements assess the magnitude of human impact on the environment, which GIS integration helps indicate.\r\n <span style=\"font-weight: bold; \">Agricultural Applications.</span> Geo informatic system data helps create more efficient farming techniques, alongside analyzing soil data in an advanced fashion. This can increase food production in different parts of the world.\r\n<span style=\"font-weight: bold; \">Navigation. </span>Web-based navigation maps use geo info systemsdata to provide the public with useful information. Web maps are regularly updated per GIS information and are used consistently in everyday life.\r\n<span style=\"font-weight: bold; \">Banking.</span> Banking has evolved to become market-driven, and a bank’s success depends mainly on its ability to provide customer-driven services. GIS data plays an essential role in planning, organizing, and decision making in the banking industry.\r\n<span style=\"font-weight: bold; \">Planning and Community Development. </span>GIS data helps us understand and meet global challenges. As GIS technology rapidly advances, there are various innovative applications in the planning sector. GIS tools can be used to integrate geographic intelligence into planning processes, and have the potential to change how we think and behave.","materialsDescription":"<h1 class=\"align-center\">How does GIS work? </h1>\r\nGIS technology applies geographic science with tools for understanding and collaboration. It helps people reach a common goal: to gain actionable intelligence from all types of data.\r\n<ul><li><span style=\"font-weight: bold; \">Maps: </span>maps are the geographic container for the data layers and analytics you want to work with. GIS maps are easily shared and embedded in apps, and accessible by virtually everyone, everywhere.<span style=\"font-weight: bold; \"><br /></span></li><li><span style=\"font-weight: bold; \">Data:</span> GIS integrates many different kinds of data layers using spatial location. Most data has a geographic component. GIS data includes imagery, features, and basemaps linked to spreadsheets and tables.</li><li><span style=\"font-weight: bold; \">Analysis:</span> spatial analysis lets you evaluate suitability and capability, estimate and predict, interpret and understand, and much more, lending new perspectives to your insight and decision-making.</li><li><span style=\"font-weight: bold; \">Apps:</span> apps provide focused user experiences for getting work done and bringing GIS to life for everyone. GIS apps work virtually everywhere: on your mobile phones, tablets, in web browsers, and on desktops.</li></ul>\r\n<h1 class=\"align-center\">What are the benefits benefits of Geographic Information Systems?</h1>\r\nMany different types of information can be compared and contrasted using GIS. The geo information services can include data about people, such as population, income, or education level. It can include information about the landscape, such as the location of streams, different kinds of vegetation, and different kinds of soil. It can include information about the sites of factories, farms, and schools, or storm drains, roads, and electric power lines.\r\nWith GIS technology, people can compare the locations of different things in order to discover how they relate to each other. For example, using GIS, a single map could include sites that produce pollution, such as factories, and sites that are sensitive to pollution, such as wetlands and rivers. Such a map would help people determine where water supplies are most at risk.\r\n<h1 class=\"align-center\">What is GIS Mapping Software?</h1>\r\nGeographic information software lets you produce maps and other graphic displays of geographic information for analysis and presentation. With these capabilities a GIS is a valuable tool to visualize spatial data or to build decision support systems for use in your organization.\r\nA GIS stores data on geographical features and their characteristics. The features are typically classified as points, lines, or areas, or as raster images. On a map city data could be stored as points, road data could be stored as lines, and boundaries could be stored as areas, while aerial photos or scanned maps could be stored as raster images.\r\n<h1 class=\"align-center\">Application of Geographic Information Systems</h1>\r\nGIS can be used as tool in both problem solving and decision making processes, as well as for visualization of data in a spatial environment. Geospatial data can be analyzed to determine (1) the location of features and relationships to other features, (2) where the most and/or least of some feature exists, (3) the density of features in a given space, (4) what is happening inside an area of interest , (5) what is happening nearby some feature or phenomenon, and (6) and how a specific area has changed over time (and in what way).\r\n\r\n\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/GIS_-_Geographic_information_system.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":458,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg","logo":true,"scheme":false,"title":"Autodesk Subassembly Composer","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-subassembly-composer","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"The Autodesk® Subassembly Composer for Autodesk® AutoCAD® Civil 3D® provides an interface for composing and modifying complex subassemblies, without a need for programming.","shortDescription":"The Autodesk® Subassembly Composer for Autodesk® AutoCAD® Civil 3D® provides an interface for composing and modifying complex subassemblies, without a need for programming.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Subassembly Composer","keywords":"Autodesk®, Composer, Subassembly, subassemblies, modifying, complex, need, programming","description":"The Autodesk® Subassembly Composer for Autodesk® AutoCAD® Civil 3D® provides an interface for composing and modifying complex subassemblies, without a need for programming.","og:title":"Autodesk Subassembly Composer","og:description":"The Autodesk® Subassembly Composer for Autodesk® AutoCAD® Civil 3D® provides an interface for composing and modifying complex subassemblies, without a need for programming.","og:image":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg"},"eventUrl":"","translationId":458,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1494,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg","logo":true,"scheme":false,"title":"Media & Entertainment Collection IC","vendorVerified":0,"rating":"2.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":33,"alias":"media-entertainment-collection-ic","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">This collection includes Maya, 3ds Max, and a number of other Autodesk creative applications.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \"></span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">Bring your imagination to life with Maya 3D animation, modeling, simulation, and rendering software. Maya helps artists tell their story with one fast, creative toolset. Use the integrated Arnold renderer to help solve your most complex rendering problems. Quickly create complex, beautiful procedural effects with instanced objects. Make high-level animation edits with a nondestructive, clip-based, nonlinear editor.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\"><br /></span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">If you can dream it, you can build it in 3ds Max, the 3D software for modeling, animation, and rendering that allows you to create massive worlds in games and stunning scenes for design visualization. With tools to help shape and define, 3ds Max is modeling software for artists looking to create a range of environments and detailed characters. 3ds Max works with most major renderers, such as V-Ray, Iray, and mental ray, to create high-end scenes and striking visuals for design visualization and more. 3ds Max is used by top-tier animation and design firms to create imaginative characters and realistic scenes in games and architecture. For flexible interoperability, 3ds Max works with Autodesk Revit, Inventor, Fusion 360, and Stingray, as well as SketchUp, Unity, Unreal, and more.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\"><br /></span><span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px;\">Other Autodesk software components in this Collection include Motion Builder, Mudbox, Character Generator, Rendering in A360, ReCap 360 Pro, and 25GB of cloud storage.</span>","shortDescription":"The Media and Entertainment Collection lets animators, modelers, and visual effects artists access the tools they need to create compelling effects, 3D characters, and massive digital worlds","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":7,"sellingCount":16,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Media & Entertainment Collection IC","keywords":"with, create, software, animation, rendering, modeling, Autodesk, design","description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">This collection includes Maya, 3ds Max, and a number of other Autodesk creative applications.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; fon","og:title":"Media & Entertainment Collection IC","og:description":"<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; font-size: 12px; \">This collection includes Maya, 3ds Max, and a number of other Autodesk creative applications.</span>\r\n<span style=\"color: rgb(0, 0, 0); font-family: Verdana, sans-serif; fon","og:image":"https://old.roi4cio.com/fileadmin/user_upload/autodesk_logo.jpeg"},"eventUrl":"","translationId":1445,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1012,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Fusion_360.png","logo":true,"scheme":false,"title":"Autodesk Fusion 360","vendorVerified":0,"rating":"3.00","implementationsCount":6,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-fusion-360","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Quickly iterate on design ideas with sculpting tools to explore form and modeling tools to create finishing features.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Engineer & simulate </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Test fit and motion, perform simulations, create assemblies, make photorealistic renderings and animations.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> CAM </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Create toolpaths to machine your components or use the 3D printing workflow to create a prototype.</span><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \"> Collaborate & manage </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; white-space: pre-wrap;\">Bring design teams together in a hybrid environment that harnesses the power of the cloud when necessary and uses local resources when it makes sense.</span></p>","shortDescription":"Fusion 360TM is the first 3D CAD, CAM, and CAE tool of its kind. It connects your entire product development process in a single cloud-based platform that works on both Mac and PC.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Fusion 360","keywords":"create, design, when, tools, prototype, Collaborate, manage, teams","description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:title":"Autodesk Fusion 360","og:description":"<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style=\"font-family: Verdana; font-weight: bold; white-space: pre-wrap; \">Design </span></p>\r\n<p dir=\"ltr\" style=\"line-height:1.38; margin-top:0pt; margin-bottom:0pt; \"><span style","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Fusion_360.png"},"eventUrl":"","translationId":1012,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":581,"title":"3D model Design","alias":"3d-model-design","description":" In 3D computer graphics, <span style=\"font-weight: bold; \">3D modeling</span> is the process of developing a mathematical representation of any surface of an object (either inanimate or living) in three dimensions via specialized software. The product is called a <span style=\"font-weight: bold; \">3D model.</span> Someone who works with 3D models may be referred to as a <span style=\"font-weight: bold; \">3D artist.</span> It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices.\r\n3D modeling can be achieved manually with specialized 3D model design software, such as <span style=\"font-weight: bold; \">computer-aided design</span> (CAD) programs, that lets an artist create and deform polygonal surfaces or by scanning real-world objects into a set of data points that can be used to represent the object digitally.\r\nSoftware to create 3D models is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called <span style=\"font-weight: bold; \">modeling applications</span> or <span style=\"font-weight: bold; \">modelers</span>.\r\nThree-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created by hand, algorithmically (procedural modeling), or scanned. Their surfaces may be further defined with texture mapping.\r\nAlthough complex mathematical formulas are at the foundation of 3D drawing software, the programs automate computation for users and have tool-based user interfaces. 3D models are an output of 3D modeling and are based on a variety of digital representations. Boundary representation (B-rep) uses mathematically defined surfaces such as cones, spheres and NURBS (non-uniform rational basis spline) which are connected by topology to accurately represent objects as water-tight volumes. B-rep models are the preferred solution for engineering, and many 3D modeling applications for the design, simulation and manufacture of consumer and industrial products are B-rep based. \r\nVirtual 3D models can be turned into physical objects through 3D printing or traditional manufacturing processes. Models can also be converted into a static image through 3D rendering, commonly used to create photo-realistic representation for sales, marketing and eCommerce applications. 3D models can be created by the process of reverse engineering, in which 3D scanning technology is used to create digital replicas of real-world objects, including manufactured parts and assemblies, free-form models designed in clay and human anatomy. Modern 3d modeling and animation tools create and interact with a “digital twin”, which is used to develop, test, simulate and manufacture its real world counterpart as part of the product lifecycle.\r\n3D modeling is used in a wide range of fields, including engineering, architecture, entertainment, film, special effects, game development, and commercial advertising. It is an integral part of many creative careers. Engineers and architects use it to plan and design their work. Animators and game designers rely on 3D modeling tools to bring their ideas to life. And just about every Hollywood blockbuster uses 3D modeling for special effects, to cut costs, and to speed up production.\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Criteria to consider when choosing between 3D software programs</h1>\r\nThere is a wide range of 3D modeling and animation software addressing <span style=\"font-weight: bold; \">different fields of activity</span>. For instance, there is software dedicated to mechanical design, to engineering design, to civil engineering, to product design, to industrial design or to graphic design. The first thing to take into account is to select a design <span style=\"font-weight: bold; \">software targeted to your project</span>. Each field of activity has different needs. For example, a project about the creation of jewelry does not require the same 3D object software as a project of creation of aircraft models.\r\nAre you using a 3D drawing software for 3d printing, Laser Cutting or just for creating some digital art? Always take into account<span style=\"font-weight: bold; \"> the necessities of the technology</span> that you are designing for. Then, you can think: what is the <span style=\"font-weight: bold; \">budget</span> to select 3D modeling programs? If you afford to, you can pay for the required subscription. Alternatively, you can use the student license or the educational license that some design suites provide. Otherwise, there is various good quality 3D modeling app and software that is available for free and is equally good as professional options. In that case, you would like to get to know the software by downloading the limitied time and/or restricted functionality version that most vendors provide.\r\nChoose 3D design programs that are <span style=\"font-weight: bold; \">compatible with the Operating System</span> (OS) you are using, since not all the packages are meant to be used by all OS: Windows, Mac, Linux. Last but not least, choose a 3D modeling program according to your age and <span style=\"font-weight: bold; \">level of expertise.</span>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_3D_model_Design.png"},{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1411,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg","logo":true,"scheme":false,"title":"Autodesk AutoCAD","vendorVerified":0,"rating":"3.40","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-autocad","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. Since 2010, AutoCAD was released as a mobile- and web app as well, marketed as AutoCAD 360. Auto CAD and AutoCAD LT are available for English, German, French, Italian, Spanish, Korean, Chinese Simplified, Chinese Traditional, Brazilian Portuguese, Russian, Czech, Polish and Hungarian, Albanian (also through additional language packs). The extent of localization varies from full translation of the product to documentation only. The AutoCAD command set is localized as a part of the software localization. Source: https://en.wikipedia.org/wiki/AutoCAD","shortDescription":"AutoCAD is a commercial computer-aided design (CAD) and drafting software application. It is used across a wide range of industries, by architects, project managers, engineers and graphic designers.","type":null,"isRoiCalculatorAvaliable":true,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk AutoCAD","keywords":"AutoCAD, localization, Autodesk, released, Chinese, marketed, Hungarian, Albanian","description":"Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. Since 2010, AutoCAD was released as a mobile- and web app as well, marketed as AutoCAD 360. Auto CAD ","og:title":"Autodesk AutoCAD","og:description":"Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. Since 2010, AutoCAD was released as a mobile- and web app as well, marketed as AutoCAD 360. Auto CAD ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk.jpg"},"eventUrl":"","translationId":1411,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":58,"title":"CAD for mechanical engineering - Computer-Aided Design","alias":"cad-for-mechanical-engineering-computer-aided-design","description":"The term "CAD in engineering" usually refers to packages that perform the functions of CAD/CAM/CAE/PDM, that is, computer-aided design, preproduction and design, and engineering data management.\r\nThe first CAD-systems appeared at the stage of computing technology - in the 60s. It was at General Motors that an interactive graphic production preparation system was created, and its creator, Dr. Patrick Henretti (the founder of CAD), was a manufacturing and consulting company (MCS), which had a huge impact on the development of this industry. industry. According to analysts, MCS ideas are based on almost 70% of modern CAD systems. In the early 80s, when the computing power of computers grew significantly, the first CAM packages appeared on the scene, which partially automate the production process using CNC programs and CAE products designed to analyze complex structures. Thus, by the mid-80s, the CAD system in mechanical engineering has a form that still exists. This year there were new players of the "middle weight category". Increased competition has stimulated product development: thanks to a convenient graphical user interface, their use has increased significantly, new solid state modeling mechanisms ACIS and Parasolid have appeared, which are currently used in many modern CAD systems, and the functionality has been significantly expanded.\r\nAccording to the analytical company Daratech, in 1999 the sales of CAD/CAM systems increased by 11.1% over the year, in 2000 by 4.7%, in 2001 by 3.5%, and in 2002 - by 1.3% (preliminary estimate). We can say that the transition to the new century has become a turning point for the CAD market. In this situation, two main trends emerged in the foreground. A striking example of the first trend is the purchase of EDS in 2001 by two well-known developers representing CAD systems - Unigraphics and SDRC, the second is the actively promoted PLM (Product Lifecycle Management) concept, which provides access to information throughout its life cycle.\r\nTraditionally, CAD products in mechanical engineering are divided into four classes: the heavy, medium, light and mature market. Such a classification has developed historically, and although there has long been talk that the boundaries between classes are about to be erased, they remain, since the systems still differ in price and functionality. As a result, now in this area there are several powerful systems, a kind of "oligarchs" of the CAD world, stably developing products of the middle class and inexpensive, easy-to-use programs that are widely distributed. There is also the so-called "non-class stratum of society", the role of which is performed by various specialized solutions.","materialsDescription":" <span style=\"font-weight: bold;\">Why implement CAD?</span>\r\nAt present, computer-aided design (CAD) systems of various types are commonly used at machine-building enterprises. Over the long history of use, they have proven their effectiveness and economic feasibility. However, most system manufacturers cannot give a clear and unambiguous answer, what economic effect will the purchase of their software bring?\r\nWhen choosing one or another system, it is difficult to unambiguously understand which solution will be the most suitable for an organization and why the introduction of CAD is generally necessary? To answer these questions, it is necessary, first of all, to determine the factors by which the economic efficiency of the implementation and use of the system is achieved, as well as refer to the world experience of using CAD systems.\r\nOne of the leaders conducting research in this area is the international research agency Aberdeen Group, which, together with Autodesk, since 2007, has issued a number of reports on this topic:\r\n<ul><li>Additional strategies for building digital and physical prototypes: how to avoid a crisis situation when developing products?</li><li>System design: Development of new products for mechatronics.</li><li>Technical Change Management 2.0: Intelligent Change Management to optimize business solutions.</li><li>Design without borders. Revenue growth through the use of 3D technology.</li></ul>\r\nThe organizations participating in the research were divided into three groups according to how they fulfill their calendar and budget: 20% are best-in-class companies (leading companies), 50% are companies with industry averages and 30% are companies with results below average. Then a comparative analysis was conducted to understand which processes, ways of organizing work and technology were more often used by the best-in-class companies.\r\nAccording to the results of research, the main economic factors affecting the economic efficiency of using CAD are time and money spent on developing prototypes of products of machine-building organizations, as well as time and costs of making changes to prototypes and manufactured products.\r\nThe participating companies were also interviewed about the main factors that, in their opinion, are the most significant prerequisites for the use of computer-aided design tools.\r\n<ul><li>91% of respondents put in the first place a reduction in product design time,</li><li>in second place with 38% - reducing the cost of design,</li><li>further follow: increase in manufacturability of designed products (30%), acceleration of product modifications in accordance with the requirements of Customers (product customization) - 15%.</li></ul>\r\nAn interesting feature is that, despite the great opportunities to reduce costs, as in previous studies, the key factor is the possibility of reducing the design time.\r\n<span style=\"font-weight: bold;\">Why use CAD the best engineering companies?</span>\r\nThe functionality of CAD, which is used by machine-building enterprises to achieve the above effects, can be divided into the following main areas:\r\n<ul><li>Development of the project concept in digital format.</li><li>Creation, optimization and approval of projects.</li><li>Design of electrical and mechanical parts.</li><li>Product data management.</li><li>Visualization of product solutions, reviews, sales and marketing.</li></ul>\r\nIt should be noted that the product data management functionality relates more to PDM / PLM solutions, however, computer-aided design systems are an integral part of them.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/CAD_for_mechanical_engineering_-_Computer-Aided_Design.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":1414,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Revit.png","logo":true,"scheme":false,"title":"Autodesk Revit","vendorVerified":0,"rating":"3.70","implementationsCount":2,"suppliersCount":0,"supplierPartnersCount":33,"alias":"autodesk-revit","companyTitle":"Autodesk","companyTypes":["vendor"],"companyId":180,"companyAlias":"autodesk","description":"<p><span style=\"font-weight: bold;\">What does Revit do?</span> Revit is software for BIM. Its powerful tools let you use the intelligent model-based process to plan, design, construct, and manage buildings and infrastructure. Revit supports a multidiscipline design process for collaborative design.</p>\r\n<ul>\r\n<li>Design. Model building components, analyze and simulate systems and structures, and iterate designs. Generate documentation from Revit models.</li>\r\n<li>Collaborate. Multiple project contributors can access centrally shared models. This results in better coordination, which helps reduce clashes and rework.</li>\r\n<li>Visualize. Communicate design intent more effectively to project owners and team members by using models to create high-impact 3D visuals.</li>\r\n</ul>\r\n<p><span style=\"font-weight: bold;\">One multidiscipline BIM platform</span> Revit has features for all disciplines involved in a building project. When architects, engineers, and construction professionals work on one unified platform, the risk of data translation errors can be reduced and the design process can be more predictable. <span style=\"font-weight: bold;\">Interoperability</span> Revit helps you work with members of an extended project team. It imports, exports, and links your data with commonly used formats, including IFC, DWG™ and DGN. <span style=\"font-weight: bold;\">Tools created expressly for your discipline</span> Whether you’re an architect; a mechanical, electrical, or plumbing (MEP) engineer; a structural engineer; or a construction professional, Revit offers BIM features specifically designed for you. <span style=\"font-weight: bold;\">For architects</span> Use Revit to take an idea from conceptual design to construction documentation within a single software environment. Optimize building performance and create stunning visualizations. <span style=\"font-weight: bold;\">For structural engineers</span> Use tools specific to structural design to create intelligent structure models in coordination with other building components. Evaluate how well they conform to building and safety regulations. <span style=\"font-weight: bold;\">For MEP engineers</span> Design MEP building systems with greater accuracy and in better coordination with architectural and structural components, using the coordinated and consistent information inherent in the intelligent model. <span style=\"font-weight: bold;\">For construction professionals</span> Evaluate constructability and design intent before construction begins. Gain a better understanding of the means, methods, and materials, and how they all come together. <span style=\"font-weight: bold;\">Connect teams with Collaboration for Revit</span> Extend Revit worksharing to project teams in almost any location with this service, which lets multiple users co-author Revit models in the cloud. Increase communication, centralize efforts of distributed teams, and let entire teams take part in the BIM process. <span style=\"font-weight: bold;\">Better team communication</span> Use real-time chat within project models. Know who’s working in the model and what they’re doing. <span style=\"font-weight: bold;\">Extended team integration</span> Subscribe to Collaboration for Revit and receive a subscription to BIM 360 Team, an integrated, cloud-based web service that provides centralized team access to project data. <span style=\"font-weight: bold;\">Access more projects</span> Extend your reach and participate in projects or joint venture partnerships, wherever they’re located. <span style=\"font-weight: bold;\">Better allocate team talents and resources</span> Assign the best team members with the strongest skill sets. Let designers work on multiple projects based in different locations at the same time. <span style=\"font-weight: bold;\">Minimize in-person meetings or co-location of teams</span> Help lower travel expenses and support greater work-life balance for team members. Visualization and rendering. Show how your product will look with visualization and rendering tools.</p>","shortDescription":"Revit® software for BIM (Building Information Modeling) includes features for architectural design, MEP and structural engineering, and construction.","type":null,"isRoiCalculatorAvaliable":true,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Autodesk Revit","keywords":"","description":"<p><span style=\"font-weight: bold;\">What does Revit do?</span> Revit is software for BIM. Its powerful tools let you use the intelligent model-based process to plan, design, construct, and manage buildings and infrastructure. Revit supports a multidiscipline d","og:title":"Autodesk Revit","og:description":"<p><span style=\"font-weight: bold;\">What does Revit do?</span> Revit is software for BIM. Its powerful tools let you use the intelligent model-based process to plan, design, construct, and manage buildings and infrastructure. Revit supports a multidiscipline d","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Autodesk_Revit.png"},"eventUrl":"","translationId":1414,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":17,"title":"CAD for architecture and construction - Computer-Aided Design"}],"testingArea":"","categories":[{"id":780,"title":"CAD for architecture and construction - Computer-Aided Design","alias":"cad-for-architecture-and-construction-computer-aided-design","description":"Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining or other manufacturing operations. The term CADD (for Computer Aided Design and Drafting) is also used.\r\nCAD may be used to design curves and figures in two-dimensional (2D) space or curves, surfaces and solids in three-dimensional (3D) space.\r\nCAD is an important industrial art extensively used in many applications, including architectural design, prosthetics and many more.\r\nSoftware for architecture - systems designed specifically for architects, whose tools allow you to build drawings and models from familiar objects (walls, columns, floors, etc.), to design buildings and facilities for industrial and civil construction. These programs have the tools to build three-dimensional models and obtain all the necessary working documentation and support modern technology of information modeling of buildings.<br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal;\">What is a CAD drafter or CAD Designer?</span></h1>\r\nEverything around us that is manufactured begins with an idea in a written plan. When these plans require illustrations or drawings to convey meaning, a CAD drafter is needed to prepare these ideas in graphic forms of communication. Drafters translate ideas and rough sketches of other professionals, such as architects and engineers, into scaled detail (or working) drawings. A CAD designer often prepares the plans and rough sketches for an architect or engineer. The designer has more education and thus more responsibility than the drafter but less than an architect or engineer.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What software do architects use?</span></h1>\r\n<p class=\"align-left\">Before computer-aided design software, architects relied solely on hand drawings and handmade architecture models to communicate their designs. With the evolution of technology and the architecture industry, architectural drafting software has changed the way architects plan and design buildings. Implementing 2D and 3D architecture software allows designers to draft at greater speed, test ideas and determine consistent project workflows. Advancements in rendering software provide architects and their clients with the ability to visually experience designs before a project is realized.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Is CAD 2D or 3D?</span></h1>\r\n<p class=\"align-left\">A common misconception surrounding CAD is that it is a 3D architecture software modeling tool only. However, CAD can be used as a 2D drawing tool as well. Construction designers might use a CAD tool that only works in 2D while architects might work in a 3D software architecture tools that has a 2D converter. It is highly dependent upon the actual platform used. This can be convenient because a company might only use a 2D tool and can pay for that tool alone. However, as construction centers around 3D modeling software for architecture and informational models, it will be harder for companies who only to use a 2D tool.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is CAD used for in construction?</span></h1>\r\n<p class=\"align-left\">There are a lot of uses for CAD in construction. Subcontractor’s designers can take the drawings made by the architect and add in additional necessary details to ensure constructability. From there they have a plan that they can work off of and check their work against. Companies have already done this to a degree of success. Some companies were able to use a combination of drones and 3D models to notice issues with the construction. Specifically, a company can overlay their live drone footage with the model. They could note that the foundation would be off and make corrections.</p>\r\n<p class=\"align-left\">Architecture planning software benefits contractors because the drawings and plans can be easily stored in the cloud. This allows for contractors to use their plans at any location. Also, if they are included in a shared file for the project, they can easily see changes to the plans. So, a subcontractor could quickly determine which changes were made, by who, and how it will impact construction.</p>\r\n<p class=\"align-left\">Another benefit of professional architecture software is it is more accurate than manual drawings. It’s easier for construction design software than it is when it’s manual. And it’s easier for subcontractors to add details than it is in manual drawings.</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What architects’ tools have been transformed by technology?</span></h1>\r\nWorking methods that previously resulted in only the documentation of an idea are now moving toward the realization of a full virtual copy of a building and all its complex components before a single nail is hammered. As such, architects’ tools that used to be physical, like pens and pencils, are now mere basics in a virtual toolbox with capabilities an analog architect couldn’t even fathom. The breakneck pace of this change is good reason to reflect on the history of these architect software virtual tools by comparing them to their physical forebears.\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Arm vs. Dynamic Input. </span>Appearing like an alien appendage affixed to a drawing board, a drafting arm originally consolidated a variety of tasks completed with separate rulers, straightedges and protractors into a single versatile tool. AutoCAD’s crosshair reticle, for example, once relied on manual input with compass-style designations before it featured point-and-click functionality with real-time metrics following it around the screen.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Tape Measure vs. Surveying App.</span> Documenting an existing building in order to plan its transformation is likely one of the most frequent tasks architects complete. Until recently, the only way to correctly do this was by hand, with a tape measure, pen and paper. Since the advent of infrared scanners, depth-sensing cameras and software that can communicate with them, the time-intensive process of surveying an existing space has been cut to a fraction of what it once was.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Drafting Template vs. Premade 3-D Models.</span> In the days of hand-drafting, adding furniture to a drawing meant choosing an appropriately scaled object from a stencil and tracing it. Today’s sophisticated equivalent that architecture software programs offer allows an infinite number of premade models to be brought into a wide range of design software with a single click. Despite technological advances in this practice, the old method may actually be advantageous due to its reliance on abstraction because choosing realistically detailed furnishings for an early design scheme often prompts cosmetic decisions long before they need to be made.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Electric Eraser vs. Undo.</span> The most simple, and, for this reason, the most underappreciated, transformation an architect’s tools have undergone between physical and virtual methods is the ease with which one can now reverse the work they’ve done. Allowing what essentially amounts to time travel, the Undo function is universal to almost all software programs and as such is often taken for granted. Prior to this wonderful invention, the savviest architects wielded handheld electric erasers allowing them to salvage large drawing sets in the event of a drafting mistake or last-minute design change.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Blueprint Machine vs. Inkjet Plotter. </span>If you hang around an architecture firm long enough, you might hear older designers talk about using a blueprint machine. Originally the premier method for producing copies of drawings, blueprint machines involved rolling an original drawing through a chemical mixture that reproduced the image on a special type of paper. For some time now, digital plotters have removed manual labor from the equation, being fed information directly from a virtual drawing file.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Digitizer Tablet vs. Touchscreen Workstation.</span> Early iterations of digital drafting were often paired with a digitizer: a special keyboard that could choose commands or be directly drawn on. Software used in architecture eventually got better at incorporating a keyboard and mouse, but nowadays the tide might be turning back to a hands-on approach as devices like Microsoft’s Surface Studio are pushing an interface with touch-heavy tools just for architects. Though currently limited to apps for sketching and drawing review, the way architects work could be changed forever if a large influential company like Autodesk or Graphisoft were to fully embrace touchscreen capabilities.</li></ul>\r\n\r\n<p class=\"align-left\"><br /><br /> <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CAD.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"suppliedProducts":[],"partnershipProgramme":{"levels":[{"id":914,"level":"Bronze"},{"id":916,"level":"Silver"},{"id":918,"level":"Gold"},{"id":920,"level":"Platinum"},{"id":922,"level":"Distributor"}],"partnerDiscounts":{"Bronze":"","Silver":"","Gold":"","Platinum":"","Distributor":""},"registeredDiscounts":{"Bronze":"","Silver":"","Gold":"","Platinum":"","Distributor":""},"additionalBenefits":[],"salesPlan":{"Bronze":"","Silver":"","Gold":"","Platinum":"","Distributor":""},"additionalRequirements":[]}}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}