{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"products":{"reference-bonus":{"_type":"localeString","en":"Offer a reference bonus","ru":"Предложить бонус за референс"},"configurator":{"ru":"Конфигуратор","_type":"localeString","en":"Configurator"},"i-sell-it":{"en":"I sell it","ru":"I sell it","_type":"localeString"},"i-use-it":{"_type":"localeString","en":"I use it","ru":"I use it"},"roi-calculator":{"en":"ROI-calculator","ru":"ROI-калькулятор","_type":"localeString"},"selling":{"ru":"Продают","_type":"localeString","en":"Selling"},"using":{"_type":"localeString","en":"Using","ru":"Используют"},"sort-title-asc":{"ru":"От А до Я","_type":"localeString","en":"From A to Z"},"supplier-popover":{"en":"supplier","ru":"поставщик","_type":"localeString"},"implementation-popover":{"en":"deployment","ru":"внедрение","_type":"localeString"},"vendor-popover":{"ru":"производитель","_type":"localeString","en":"vendor"},"sort-title-desc":{"ru":"от Я до А","_type":"localeString","en":"From Z to A"},"sort-rating-asc":{"ru":"По возрастанию рейтинга","_type":"localeString","en":"Rating ascending"},"sort-rating-desc":{"_type":"localeString","en":"Rating descending","ru":"По убыванию рейтинга"},"sort-discount-asc":{"ru":"По возрастанию скидки","_type":"localeString","en":"Rebate ascending"},"sort-discount-desc":{"ru":"По убыванию скидки","_type":"localeString","en":"Rebate descending"},"i-use-it-popover":{"ru":"Внесите свое внедрение и получите бонус от ROI4CIO или поставщика.","_type":"localeString","en":"Make your introduction and get a bonus from ROI4CIO or the supplier."},"details":{"_type":"localeString","en":"Details","ru":"Детальнее"},"rebate-for-poc":{"ru":"Бонус 4 POC","_type":"localeString","en":"Bonus 4 POC"},"rebate":{"en":"Bonus","ru":"Бонус","_type":"localeString"},"vendor-verified":{"ru":"Поставщик потверждён","_type":"localeString","en":"Vendor verified"},"program-sends-data":{"_type":"localeString","en":"Program sends data"},"learn-more-btn":{"ru":"Узнать больше","_type":"localeString","en":"Learn more"},"categories-popover":{"_type":"localeString","en":"categories","ru":"категории"},"sort-popular-asc":{"en":"Popular ascending","ru":"По возростанию популярности","_type":"localeString"},"sort-popular-desc":{"en":"Popular descending","ru":"По убыванию популярности","_type":"localeString"},"no-results":{"ru":"По вашему запросу ничего не найдено, попробуйте изменить запрос.","_type":"localeString","en":"No results found. We didn't find any results with the filter you selected."},"login":{"de":"Einloggen","ru":"Войти","_type":"localeString","en":"Login"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register","de":"Registrieren"},"auth-message":{"_type":"localeString","en":"You need to register or login.","de":"Sie müssen sich registrieren oder anmelden","ru":"Вам нужно зарегистрироваться или войти."},"add-to-comparison":{"_type":"localeString","en":"Add to comparison","ru":"Добавить в сравнение"},"added-to-comparison":{"ru":"Добавлено в сравнения","_type":"localeString","en":"Added to comparison"},"items-found":{"ru":"Продуктов найдено","_type":"localeString","en":"Products found"},"sort-sales-desc":{"en":"By sale","ru":"По продаже","_type":"localeString"},"sort-purchases-desc":{"en":"By purchase","ru":"По покупке","_type":"localeString"},"product-supplier":{"_type":"localeString","en":"Product supplier","ru":"Поставщик продукта"},"product-vendor":{"ru":"Производитель продукта","_type":"localeString","en":"Product producer"},"products-fetching-error":{"ru":"Произошла ошибка. Перезагрузите пожалуйста страницу.","_type":"localeString","en":"An error has occurred. Please reload the page."}},"header":{"help":{"_type":"localeString","en":"Help","de":"Hilfe","ru":"Помощь"},"how":{"_type":"localeString","en":"How does it works","de":"Wie funktioniert es","ru":"Как это работает"},"login":{"ru":"Вход","_type":"localeString","en":"Log in","de":"Einloggen"},"logout":{"_type":"localeString","en":"Sign out","ru":"Выйти"},"faq":{"en":"FAQ","de":"FAQ","ru":"FAQ","_type":"localeString"},"references":{"en":"Requests","de":"References","ru":"Мои запросы","_type":"localeString"},"solutions":{"en":"Solutions","ru":"Возможности","_type":"localeString"},"find-it-product":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"en":"Comparison Matrix","ru":"Матрица сравнения","_type":"localeString"},"roi-calculators":{"en":"ROI calculators","ru":"ROI калькуляторы","_type":"localeString"},"b4r":{"en":"Bonus for reference","ru":"Бонус за референс","_type":"localeString"},"business-booster":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"catalogs":{"ru":"Каталоги","_type":"localeString","en":"Catalogs"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"categories":{"en":"Categories","ru":"Категории","_type":"localeString"},"for-suppliers":{"en":"For suppliers","ru":"Поставщикам","_type":"localeString"},"blog":{"ru":"Блог","_type":"localeString","en":"Blog"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"en":"My account","ru":"Мой кабинет","_type":"localeString"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"comparison-deletion":{"en":"Deletion","ru":"Удаление","_type":"localeString"},"comparison-confirm":{"ru":"Подтвердите удаление","_type":"localeString","en":"Are you sure you want to delete"},"search-placeholder":{"ru":"Введите поисковый запрос","_type":"localeString","en":"Enter your search term"},"my-profile":{"ru":"Мои данные","_type":"localeString","en":"My profile"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"_type":"localeString","en":"Find IT product"},"sub_b4reference":{"en":"Get reference from user","_type":"localeString"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"en":"Create an avatar for the event","_type":"localeString"},"catalogs_new":{"en":"Products","_type":"localeString"},"b4reference":{"en":"Bonus4Reference","_type":"localeString"},"it_our_it_catalogs":{"_type":"localeString","en":"Our IT Catalogs"},"it_products":{"en":"Find and compare IT products","_type":"localeString"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"en":"Find vendor and company-supplier","_type":"localeString"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"en":"Our Products","_type":"localeString"},"it_it_catalogs":{"_type":"localeString","en":"IT catalogs"}},"footer":{"copyright":{"ru":"Все права защищены","_type":"localeString","en":"All rights reserved","de":"Alle rechte vorbehalten"},"company":{"ru":"О компании","_type":"localeString","en":"My Company","de":"Über die Firma"},"about":{"de":"Über uns","ru":"О нас","_type":"localeString","en":"About us"},"infocenter":{"de":"Infocenter","ru":"Инфоцентр","_type":"localeString","en":"Infocenter"},"tariffs":{"de":"Tarife","ru":"Тарифы","_type":"localeString","en":"Subscriptions"},"contact":{"_type":"localeString","en":"Contact us","de":"Kontaktiere uns","ru":"Связаться с нами"},"marketplace":{"ru":"Marketplace","_type":"localeString","en":"Marketplace","de":"Marketplace"},"products":{"ru":"Продукты","_type":"localeString","en":"Products","de":"Produkte"},"compare":{"de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare"},"calculate":{"de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString","en":"Calculate the cost"},"get_bonus":{"_type":"localeString","en":"Bonus for reference","de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс"},"salestools":{"de":"Salestools","ru":"Salestools","_type":"localeString","en":"Salestools"},"automatization":{"ru":"Автоматизация расчетов","_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung"},"roi_calcs":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators","de":"ROI-Rechner"},"matrix":{"ru":"Матрица сравнения","_type":"localeString","en":"Comparison matrix","de":"Vergleichsmatrix"},"b4r":{"de":"Rebate 4 Reference","ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference"},"our_social":{"de":"Unsere sozialen Netzwerke","ru":"Наши социальные сети","_type":"localeString","en":"Our social networks"},"subscribe":{"en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString"},"subscribe_info":{"ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString","en":"and be the first to know about promotions, new features and recent software reviews"},"policy":{"_type":"localeString","en":"Privacy Policy","ru":"Политика конфиденциальности"},"user_agreement":{"en":"Agreement","ru":"Пользовательское соглашение ","_type":"localeString"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find":{"_type":"localeString","en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта"},"quote":{"ru":"Калькулятор цены","_type":"localeString","en":"Price calculator"},"boosting":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"en":"blog","ru":"блог","_type":"localeString"},"pay4content":{"en":"we pay for content","ru":"платим за контент","_type":"localeString"},"categories":{"ru":"категории","_type":"localeString","en":"categories"},"showForm":{"ru":"Показать форму","_type":"localeString","en":"Show form"},"subscribe__title":{"en":"We send a digest of actual news from the IT world once in a month!","ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString"},"subscribe__email-label":{"en":"Email","ru":"Email","_type":"localeString"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"ru":"Это поле обязательное","_type":"localeString","en":"This field is required"},"subscribe__notify-label":{"ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString","en":"Yes, please, notify me about news, events and propositions"},"subscribe__agree-label":{"_type":"localeString","en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data","ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*"},"subscribe__submit-label":{"ru":"Подписаться","_type":"localeString","en":"Subscribe"},"subscribe__email-message":{"en":"Please, enter the valid email","ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"en":"Last, first name","ru":"Имя Фамилия","_type":"localeString"},"subscribe__success":{"_type":"localeString","en":"You are successfully subscribed! Check you mailbox.","ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик."},"subscribe__error":{"ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString","en":"Subscription is unsuccessful. Please, try again later."},"roi4presenter":{"de":"roi4presenter","ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"ru":"Главная","_type":"localeString","en":"Home"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"ru":"Продукты","_type":"localeString","en":"Products"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"login":{"ru":"Вход","_type":"localeString","en":"Login"},"registration":{"ru":"Регистрация","_type":"localeString","en":"Registration"},"b2b-platform":{"en":"B2B platform for IT buyers, vendors and suppliers","ru":"Портал для покупателей, поставщиков и производителей ИТ","_type":"localeString"}},"comment-form":{"title":{"_type":"localeString","en":"Leave comment","ru":"Оставить комментарий"},"firstname":{"ru":"Имя","_type":"localeString","en":"First name"},"lastname":{"ru":"Фамилия","_type":"localeString","en":"Last name"},"company":{"en":"Company name","ru":"Компания","_type":"localeString"},"position":{"_type":"localeString","en":"Position","ru":"Должность"},"actual-cost":{"_type":"localeString","en":"Actual cost","ru":"Фактическая стоимость"},"received-roi":{"_type":"localeString","en":"Received ROI","ru":"Полученный ROI"},"saving-type":{"ru":"Тип экономии","_type":"localeString","en":"Saving type"},"comment":{"en":"Comment","ru":"Комментарий","_type":"localeString"},"your-rate":{"en":"Your rate","ru":"Ваша оценка","_type":"localeString"},"i-agree":{"ru":"Я согласен","_type":"localeString","en":"I agree"},"terms-of-use":{"ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString","en":"With user agreement and privacy policy"},"send":{"en":"Send","ru":"Отправить","_type":"localeString"},"required-message":{"ru":"{NAME} - это обязательное поле","_type":"localeString","en":"{NAME} is required filed"}},"maintenance":{"title":{"ru":"На сайте проводятся технические работы","_type":"localeString","en":"Site under maintenance"},"message":{"_type":"localeString","en":"Thank you for your understanding","ru":"Спасибо за ваше понимание"}},"filters":{"from":{"_type":"localeString","en":"from","ru":"от"},"to":{"en":"to","ru":"до","_type":"localeString"},"filter-price-title":{"ru":"Фильтр по цене","_type":"localeString","en":"Filter by price"},"view-type-label":{"en":"View","ru":"Вид","_type":"localeString"},"sort-type-label":{"en":"Sorting","ru":"Сортировка","_type":"localeString"},"category":{"_type":"localeString","en":"Category","ru":"Категория"},"follow":{"en":"Follow","ru":"Следить","_type":"localeString"},"add-product":{"en":"Add Product","ru":"Добавить продукт","_type":"localeString"},"show-all":{"_type":"localeString","en":"Show all","ru":"Показать все"},"filter-toggle":{"ru":"Фильтр","_type":"localeString","en":"Filter"},"clear-button":{"ru":"Очистить","_type":"localeString","en":"Сlear"},"delivery-type-field":{"ru":"Тип поставки","_type":"localeString","en":"Delivery type"},"product-categories-field":{"ru":"категориz продуктаhjle","_type":"localeString","en":"product categories"},"providers-field":{"ru":"Поставщик, производитель","_type":"localeString","en":"Providers"},"business-tasks-field":{"_type":"localeString","en":"Business tasks","ru":"Бизнес задачи"},"problems-field":{"ru":"Проблемы","_type":"localeString","en":"Problems"},"with-discounts-checkbox":{"en":"With discounts","ru":"Со скидками","_type":"localeString"},"expert-price-checkbox":{"ru":"Конфигуратор","_type":"localeString","en":"Configurator"},"roi-calculator-checkbox":{"_type":"localeString","en":"ROI-calculator","ru":"ROI-калькулятор"},"apply-filter-button":{"_type":"localeString","en":"Apply filter","ru":"Применить фильтр"},"sorting-toggle":{"ru":"Сортировка","_type":"localeString","en":"Sorting"},"show-all-button":{"ru":"Показать все","_type":"localeString","en":"Show all"},"suggest-product-button":{"ru":"Предложить продукт","_type":"localeString","en":"Suggest product"},"with-projects-label":{"ru":"С внедрениями","_type":"localeString","en":"With deployments"},"bonus-4-reference":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus 4 Reference"},"product-categories":{"_type":"localeString","en":"Product Categories","ru":"Категории продуктов"},"countries":{"_type":"localeString","en":"Countries","ru":"Страны"},"seller":{"en":"Seller","ru":"Продавец","_type":"localeString"},"vendors":{"ru":"Производители продуктов пользователя","_type":"localeString","en":"User products vendors"},"suppliers":{"ru":"Поставщики пользователя","_type":"localeString","en":"User suppliers"},"business-process":{"_type":"localeString","en":"Problems","ru":"Проблемы"},"business-objectives":{"ru":"Бизнес задачи","_type":"localeString","en":"Business tasks"},"branch":{"ru":"Отрасль","_type":"localeString","en":" Branch"},"users":{"_type":"localeString","en":"Users","ru":"Пользователи"},"status":{"_type":"localeString","en":"Status","ru":"Статус"},"info-source":{"ru":"Информационный ресурс","_type":"localeString","en":"Info source"},"with-reference-checkbox":{"_type":"localeString","en":"With reference","ru":"С референсами"},"show-deal-checkbox":{"en":"Show deal with noname","ru":"Показывать сделки с noname","_type":"localeString"},"roi-checkbox":{"_type":"localeString","en":"ROI","ru":"ROI"},"problems":{"ru":"Проблемы","_type":"localeString","en":"Problems"},"find":{"_type":"localeString","en":"Find","ru":"Выполнить поиск"},"deal-date":{"en":"Date","ru":"Дата","_type":"localeString"},"try-button":{"_type":"localeString","en":"Try AI (Beta)","ru":"Попробовать AI (Beta)"},"hide":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"company-size":{"ru":"Размер компании","_type":"localeString","en":"Company size"},"add-company":{"ru":"Добавить компанию","_type":"localeString","en":"Add company"},"add-implementation":{"en":"Add deployment","ru":"Добавить внедрение","_type":"localeString"},"sort-title-asc":{"ru":"От А до Я","_type":"localeString","en":"From A to Z"},"sort-title-desc":{"ru":"От Я до А","_type":"localeString","en":"From Z to A"},"sellers-field":{"en":"Sellers","ru":"Поставщики, Производители","_type":"localeString"},"supply-types":{"en":"Supply type","ru":"Тип поставки","_type":"localeString"},"with-comments-checkbox":{"ru":"С комментариями","_type":"localeString","en":"With comments"},"supplier":{"en":"Supplier","ru":"Поставщик","_type":"localeString"},"vendor":{"en":"Vendor","ru":"Производитель","_type":"localeString"},"user":{"_type":"localeString","en":"User","ru":"Пользователь"},"company-type":{"ru":"Тип компании","_type":"localeString","en":"Company type"},"partners-field":{"en":"Partners","ru":" Партнеры","_type":"localeString"},"customers":{"_type":"localeString","en":"Customers","ru":"Покупатели"},"product-supplier":{"ru":"Поставщик продукта","_type":"localeString","en":"Product supplier"},"product-vendor":{"ru":"Производитель продукта","_type":"localeString","en":"Product vendor"},"implementation-date":{"ru":"Дата внедрения","_type":"localeString","en":"Deployment date"},"canceled":{"en":"Canceled","ru":"Отменено","_type":"localeString"},"deal-canceled":{"ru":"Сделка отменена","_type":"localeString","en":"Deal canceled"},"deal-closed":{"en":"Deal closed","ru":"Сделка закрыта","_type":"localeString"},"deal-in-progress":{"ru":"Сделка в процессе","_type":"localeString","en":"Deal in progress"},"deal-is-planned":{"_type":"localeString","en":"Deal is planned","ru":"Сделка планируется"},"finished":{"ru":"Завершено","_type":"localeString","en":"Finished"},"in-process":{"_type":"localeString","en":"In Process","ru":"Ведется"},"planned":{"en":"Planned","ru":"Планируется","_type":"localeString"},"proof-of-concept":{"ru":"Пилотный проект","_type":"localeString","en":"Proof of concept"},"stopped":{"_type":"localeString","en":"Stopped","ru":"Остановлено"},"competencies":{"_type":"localeString","en":"Competencies","ru":"Компетенции"}}},"translationsStatus":{"products":"success","filters":"success"},"sections":{"products-text-block":{"label":"catalog-products-text-block","body":{"ru":[{"_key":"28241882db7a","markDefs":[],"children":[{"_key":"28241882db7a0","_type":"span","marks":[],"text":"Каталог продуктов ROI4CIO - это база данных программного обеспечения, оборудования и ИТ-услуг для бизнеса. С помощью фильтров, подбирайте ИТ-продукты по категории, поставщику или производителю, бизнес-задачам, проблемам, наличию ROI калькулятора или калькулятора цены. Находите подходящие решения для бизнеса, воспользовавшись нейросетевым поиском, основанным на результатах внедрения софта в других компаниях."}],"_type":"block","style":"normal"}],"_type":"localeBlock","en":[{"markDefs":[],"children":[{"marks":[],"text":"The ROI4CIO Product Catalog is a database of business software, hardware, and IT services. Using filters, select IT products by category, supplier or vendor, business tasks and problems. Find the right business solutions by using a neural network search based on the results of deployment products in other companies.","_key":"8bebcfb349550","_type":"span"}],"_type":"block","style":"normal","_key":"8bebcfb34955"}]}}},"sectionsStatus":{"products-text-block":"success"},"pageMetaData":{"products":{"title":{"ru":"ROI4CIO: Продукты","_type":"localeString","en":"ROI4CIO: Products"},"meta":[{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"},{"content":"website","name":"og:type"}],"translatable_meta":[{"name":"og:title","translations":{"_type":"localeString","en":"Products","ru":"Продукты"}},{"name":"description","translations":{"_type":"localeString","en":"Description","ru":"Лучшие приложения и it услуги для бизнеса. Выбор по видам программного обеспечения, бизнес-задачам и проблемам. Расчет стоимости лицензионного ПО, ROI"}},{"name":"og:description","translations":{"ru":"Лучшие приложения и it услуги для бизнеса. Выбор по видам программного обеспечения, бизнес-задачам и проблемам. Расчет стоимости лицензионного ПО, ROI","_type":"localeString","en":"The best applications and it services for business. Choice by type of software, business tasks and problems. Calculation of the cost of licensed software, ROI"}},{"name":"keywords","translations":{"_type":"localeString","en":"keyword","ru":"каталог, программное обеспечение, софт, ит услуги"}},{"translations":{"ru":"Продукты","_type":"localeString","en":"Products"},"name":"title"}]}},"pageMetaDataStatus":{"products":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{"6scan":{"id":5706,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/sixscan.png","logo":true,"scheme":false,"title":"6Scan","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"6scan","companyTitle":"6Scan","companyTypes":["supplier","vendor"],"companyId":8606,"companyAlias":"6scan","description":"<span style=\"font-weight: bold;\">6Scan</span> is a full service security solution for you website. Patent-pending technology combines a full suite of features that scan and automatically fix critical issues that - if left unresolved - could damage your business and customers, your reputation and destroy your web presence. \r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">What Does 6Scan Do?</span></p>\r\n<ol><li><span style=\"font-weight: bold;\">Find.</span> The 6Scan six independent scanners work to detect vulnerabilities, scan for malware and inspect your website's files to determine any security issues or risks.<span style=\"font-weight: bold;\"></span></li><li><span style=\"font-weight: bold;\">Fix.</span> Patent-pending technology automatically fixes any security issues as soon as they are detected. We deploy a WAF (Web Application Firewall) and custom vulnerability patches to make sure any attack vectors are blocked. The entire process of detecting and fixing vulnerabilities is fully automated, managed through a unified dashboard.</li><li><span style=\"font-weight: bold;\">Protect.</span> 6Scan will continue to monitor your site for new vulnerabilities and security risks. The scanning is scheduled automatically or can be triggered manually and you will be notified of any issues. As with all our services, this process can be monitored from your dashboard where you have the opportunity to roll back any changes.</li></ol>\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Malware Scan. </span></span>A complex scan that runs a number of different tests to detect any signs of malware on your website. The 6Scan malware scan deploys a much larger set of tests than most of the simple or embedded scanners to make sure that even the latest emerging threats are detected. \r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Malware Removal.</span></span> A service to restore your website after a malware attack. 6Scan's security experts will access your website and remove any malicious code or backdoors. \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Server-Side Scan.</span></span> A scan and examination of the files on your hosting account for any signs of backdoors or hidden malware code which could be used to compromise your website. \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Website Scan.</span></span> Detects vulnerabilities that could make your site a target for attacks. The proactive service works seamlessly in the background to maintain website security. \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Auto Vulnerability Repair.</span></span> Patent-pending patching technology acts immediately to resolve problems with vulnerable website code. Left unchecked these issues become entry points for hackers to gain access to your website. \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">CMS Scan/Repair.</span></span> Automatically repairs problems created by outdated and vulnerable plug-ins and content management systems such as WordPress, Drupal, and Joomla, used by millions of websites.<br /><br />","shortDescription":"The First Automated Website Security Suite. Simple Yet Powerful Monitoring And Protection.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"6Scan","keywords":"","description":"<span style=\"font-weight: bold;\">6Scan</span> is a full service security solution for you website. Patent-pending technology combines a full suite of features that scan and automatically fix critical issues that - if left unresolved - could damage your busines","og:title":"6Scan","og:description":"<span style=\"font-weight: bold;\">6Scan</span> is a full service security solution for you website. Patent-pending technology combines a full suite of features that scan and automatically fix critical issues that - if left unresolved - could damage your busines","og:image":"https://old.roi4cio.com/fileadmin/user_upload/sixscan.png"},"eventUrl":"","translationId":5706,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":79,"title":"VM - Vulnerability management","alias":"vm-vulnerability-management","description":"Vulnerability management is the "cyclical practice of identifying, classifying, prioritizing, remediating and mitigating" software vulnerabilities. Vulnerability management is integral to computer security and network security, and must not be confused with a Vulnerability assessment.\r\nVulnerability management is an ongoing process that includes proactive asset discovery, continuous monitoring, mitigation, remediation and defense tactics to protect your organization's modern IT attack surface from Cyber Exposure.\r\nVulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer system in search of known vulnerabilities, such as open ports, insecure software configurations, and susceptibility to malware infections. They may also be identified by consulting public sources, such as NVD, or subscribing to a commercial vulnerability alerting services. Unknown vulnerabilities, such as a zero-day, may be found with fuzz testing, which can identify certain kinds of vulnerabilities, such as a buffer overflow with relevant test cases. Such analysis can be facilitated by test automation. In addition, antivirus software capable of heuristic analysis may discover undocumented malware if it finds software behaving suspiciously (such as attempting to overwrite a system file).\r\nCorrecting vulnerabilities may variously involve the installation of a patch, a change in network security policy, reconfiguration of software, or educating users about social engineering.\r\nNetwork vulnerabilities represent security gaps that could be abused by attackers to damage network assets, trigger a denial of service, and/or steal potentially sensitive information. Attackers are constantly looking for new vulnerabilities to exploit — and taking advantage of old vulnerabilities that may have gone unpatched.\r\nHaving a vulnerability management framework in place that regularly checks for new vulnerabilities is crucial for preventing cybersecurity breaches. Without a vulnerability testing and patch management system, old security gaps may be left on the network for extended periods of time. This gives attackers more of an opportunity to exploit vulnerabilities and carry out their attacks.\r\nOne statistic that highlights how crucial vulnerability management was featured in an Infosecurity Magazine article. According to survey data cited in the article, of the organizations that “suffered a breach, almost 60% were due to an unpatched vulnerability.” In other words, nearly 60% of the data breaches suffered by survey respondents could have been easily prevented simply by having a vulnerability management plan that would apply critical patches before attackers leveraged the vulnerability.","materialsDescription":" <span style=\"font-weight: bold;\">What is vulnerability management?</span>\r\nVulnerability management is a pro-active approach to managing network security by reducing the likelihood that flaws in code or design compromise the security of an endpoint or network.\r\n<span style=\"font-weight: bold;\">What processes does vulnerability management include?</span>\r\nVulnerability management processes include:\r\n<ul><li><span style=\"font-style: italic;\">Checking for vulnerabilities:</span> This process should include regular network scanning, firewall logging, penetration testing or use of an automated tool like a vulnerability scanner.</li><li><span style=\"font-style: italic;\">Identifying vulnerabilities:</span> This involves analyzing network scans and pen test results, firewall logs or vulnerability scan results to find anomalies that suggest a malware attack or other malicious event has taken advantage of a security vulnerability, or could possibly do so.</li><li><span style=\"font-style: italic;\">Verifying vulnerabilities:</span> This process includes ascertaining whether the identified vulnerabilities could actually be exploited on servers, applications, networks or other systems. This also includes classifying the severity of a vulnerability and the level of risk it presents to the organization.</li><li><span style=\"font-style: italic;\">Mitigating vulnerabilities:</span> This is the process of figuring out how to prevent vulnerabilities from being exploited before a patch is available, or in the event that there is no patch. It can involve taking the affected part of the system off-line (if it's non-critical), or various other workarounds.</li><li><span style=\"font-style: italic;\">Patching vulnerabilities:</span> This is the process of getting patches -- usually from the vendors of the affected software or hardware -- and applying them to all the affected areas in a timely way. This is sometimes an automated process, done with patch management tools. This step also includes patch testing.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VM_-_Vulnerability_management1.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":481,"title":"WAF-web application firewall","alias":"waf-web-application-firewall","description":"A <span style=\"font-weight: bold; \">WAF (Web Application Firewall)</span> helps protect web applications by filtering and monitoring HTTP traffic between a web application and the Internet. It typically protects web applications from attacks such as cross-site forgery, cross-site-scripting (XSS), file inclusion, and SQL injection, among others. A WAF is a protocol layer 7 defense (in the OSI model), and is not designed to defend against all types of attacks. This method of attack mitigation is usually part of a suite of tools which together create a holistic defense against a range of attack vectors.\r\nIn recent years, web application security has become increasingly important, especially after web application attacks ranked as the most common reason for breaches, as reported in the Verizon Data Breach Investigations Report. WAFs have become a critical component of web application security, and guard against web application vulnerabilities while providing the ability to customize the security rules for each application. As WAF is inline with traffic, some functions are conveniently implemented by a load balancer.\r\nAccording to the PCI Security Standards Council, WAFs function as “a security policy enforcement point positioned between a web application and the client endpoint. This functionality can be implemented in software or hardware, running in an appliance device, or in a typical server running a common operating system. It may be a stand-alone device or integrated into other network components.”\r\nBy deploying a WAF firewall in front of a web application, a shield is placed between the web application and the Internet. While a proxy server protects a client machine’s identity by using an intermediary, a web firewall is a type of reverse-proxy, protecting the server from exposure by having clients pass through the WAF before reaching the server.\r\nA WAF operates through a set of rules often called <span style=\"font-weight: bold; \">policies.</span> These policies aim to protect against vulnerabilities in the application by filtering out malicious traffic. The value of a WAF management comes in part from the speed and ease with which policy modification can be implemented, allowing for faster response to varying attack vectors; during a DDoS attack, rate limiting can be quickly implemented by modifying WAF policies.\r\nWAF solutions can be deployed in several ways—it all depends on where your applications are deployed, the services needed, how you want to manage it, and the level of architectural flexibility and performance you require. Do you want to manage it yourself, or do you want to outsource that management? Is it a better model to have a cloud WAF service, option or do you want your WAF to sit on-premises?\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">A WAF products can be implemented one of three different ways:</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">A network-based WAF</span> is generally hardware-based. Since they are installed locally they minimize latency, but network-based WAFs are the most expensive option and also require the storage and maintenance of physical equipment.</li><li><span style=\"font-weight: bold; \">A host-based WAF</span> may be fully integrated into an application’s software. This solution is less expensive than a network-based WAF and offers more customizability. The downside of a host-based WAF is the consumption of local server resources, implementation complexity, and maintenance costs. These components typically require engineering time, and may be costly.</li><li><span style=\"font-weight: bold; \">Cloud-based WAFs</span> offer an affordable option that is very easy to implement; they usually offer a turnkey installation that is as simple as a change in DNS to redirect traffic. Cloud-based WAFs also have a minimal upfront cost, as users pay monthly or annually for security as a service. Cloud-based WAFs can also offer a solution that is consistently updated to protect against the newest threats without any additional work or cost on the user’s end. The drawback of a cloud-based WAF is that users hand over the responsibility to a third-party, therefore some features of the WAF may be a black box to them. </li></ul>\r\n<p class=\"align-left\"> </p>\r\n\r\n","materialsDescription":"<p class=\"align-center\"><span style=\"color: rgb(97, 97, 97); \"><span style=\"font-weight: bold; \">What types of attack WAF prevents?</span></span></p>\r\n<p class=\"align-left\"><span style=\"color: rgb(97, 97, 97); \">WAFs can prevent many attacks, including:</span></p>\r\n<ul><li><span style=\"color: rgb(97, 97, 97); \">Cross-site Scripting (XSS) — Attackers inject client-side scripts into web pages viewed by other users.</span></li><li><span style=\"color: rgb(97, 97, 97); \">SQL injection — Malicious code is inserted or injected into an web entry field that allows attackers to compromise the application and underlying systems.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Cookie poisoning — Modification of a cookie to gain unauthorized information about the user for purposes such as identity theft.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Unvalidated input — Attackers tamper with HTTP request (including the url, headers and form fields) to bypass the site’s security mechanisms.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Layer 7 DoS — An HTTP flood attack that utilizes valid requests in typical URL data retrievals.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Web scraping — Data scraping used for extracting data from websites.</span><span style=\"font-weight: bold; \"></span></li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">What are some WAFs Benefits?</span></p>\r\nWeb app firewall prevents attacks that try to take advantage of the vulnerabilities in web-based applications. The vulnerabilities are common in legacy applications or applications with poor coding or designs. WAFs handle the code deficiencies with custom rules or policies.\r\nIntelligent WAFs provide real-time insights into application traffic, performance, security and threat landscape. This visibility gives administrators the flexibility to respond to the most sophisticated attacks on protected applications.\r\nWhen the Open Web Application Security Project identifies the OWASP top vulnerabilities, WAFs allow administrators to create custom security rules to combat the list of potential attack methods. An intelligent WAF analyzes the security rules matching a particular transaction and provides a real-time view as attack patterns evolve. Based on this intelligence, the WAF can reduce false positives.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">What is the difference between a firewall and a Web Application Firewall?</span></p>\r\nA traditional firewall protects the flow of information between servers while a web application firewall is able to filter traffic for a specific web application. Network firewalls and web application firewalls are complementary and can work together.\r\nTraditional security methods include network firewalls, intrusion detection systems (IDS) and intrusion prevention systems (IPS). They are effective at blocking bad L3-L4 traffic at the perimeter on the lower end (L3-L4) of the Open Systems Interconnection (OSI) model. Traditional firewalls cannot detect attacks in web applications because they do not understand Hypertext Transfer Protocol (HTTP) which occurs at layer 7 of the OSI model. They also only allow the port that sends and receives requested web pages from an HTTP server to be open or closed. This is why web application firewalls are effective for preventing attacks like SQL injections, session hijacking and Cross-Site Scripting (XSS).","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_WAF_web_application_firewall.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"aegidy-rsc-suite":{"id":4412,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Aegify.jpg","logo":true,"scheme":false,"title":"Aegify RSC Suite","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"aegidy-rsc-suite","companyTitle":"Aegify Inc.","companyTypes":["supplier","vendor"],"companyId":6829,"companyAlias":"aegify-inc","description":"<p class=\"align-center\"><span style=\"font-weight: bold;\">Aegify RSC Suite</span></p>\r\n<ul><li>Reduced risk</li><li>Unified/integrated approach</li><li>Lower total cost of ownership</li><li>Oversight ease</li><li>Maximum security</li><li>No compliance tradeoffs</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">The NEED</span></p>\r\nRISK management is not optional for healthcare, retail and financial organizations.<br />When SECURITY breaches happen, critical data is compromised, jobs are lost and profits disappear.\r\nManaging the regulatory maze is challenging. PCI, ISO and SANS 20 COMPLIANCE is best practice. HIPAA, GLBA and FISMA COMPLIANCE is the law.\r\nRisk, security and compliance (RSC) protection is complex and cumbersome. Until now. \r\nDiscover the effective simplicity of a unified RSC solution. \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Discover Aegify.</span></span>\r\n<ul><li><span style=\"font-weight: bold;\">Aegify RSC Suite includes:</span></li><li><span style=\"font-weight: bold;\">Aegify Risk Manager</span></li><li><span style=\"font-weight: bold;\">Aegify Security Manager</span></li><li><span style=\"font-weight: bold;\">Aegify Compliance Manager</span></li><li><span style=\"font-weight: bold;\">Aegify Integrity Manager</span></li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">UNIFIED APPROACH</span></p>\r\nFor management ease and cost reduction, most healthcare providers and business associates prefer a unified Risk, Security and Compliance solution. Consider these diagnostic questions:\r\n<ul><li>Are you confident your vendors and business associates are compliant with all regulations?</li><li>Are burdens of compliance forcing you to take calculated risks due to resource constraints?</li><li>Do you have multiple siloed solutions that cause integration, management and financial headaches?</li><li>If your answers are mostly “yes,” consider Aegify RSC Suite</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Diagnose</span></p>\r\n<span style=\"font-weight: bold;\">Within hours, you will know:</span>\r\n<ul><li>Your total organizational risk including your risk from each of your vendors and business associates</li><li>Where your security threats lie</li><li>What curative measures need to be undertaken</li><li>Your compliance status with HIPAA, Meaningful Use, HITECH, PCI, ISO, SANS 20 and all other regulations and standards</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Cure</span></p>\r\n<span style=\"font-weight: bold;\">Follow Aegify instructions to:</span>\r\n<ul><li>Minimize organizational risk</li><li>Close your risk, security and compliance gaps</li><li>Comply with all applicable regulations and standards</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Protect</span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">24/7 continuous monitoring program will:</span></p>\r\n<ul><li> Reduce all risk… today and tomorrow</li><li>Diagnose and cure future security threats in real time</li><li>Comply with all applicable current and future regulations</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">WHY AEGIFY?</span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Aegify was founded on a simple set of guiding principles:</span></span></p>\r\n<ul><li>RSC services are too siloed, complicated and expensive</li><li>The market needs a holistic RSC solution that diagnoses, cures and prevents future catastrophic events from occurring</li></ul>\r\n<p class=\"align-left\">Today, the Aegify Suite is a unique unified solution that operates at the intersection of security, compliance and risk management for healthcare, retail and financial organizations.</p>\r\n<p class=\"align-left\">For those that don’t need a unified RSC Solution, each individual Aegify Manager product is a robust standalone solution.<br /><br /></p>","shortDescription":"The unique unified solution that operates at the intersection of security, compliance and risk management for healthcare, retail and financial organizations.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Aegify RSC Suite","keywords":"","description":"<p class=\"align-center\"><span style=\"font-weight: bold;\">Aegify RSC Suite</span></p>\r\n<ul><li>Reduced risk</li><li>Unified/integrated approach</li><li>Lower total cost of ownership</li><li>Oversight ease</li><li>Maximum security</li><li>No compliance tradeoffs","og:title":"Aegify RSC Suite","og:description":"<p class=\"align-center\"><span style=\"font-weight: bold;\">Aegify RSC Suite</span></p>\r\n<ul><li>Reduced risk</li><li>Unified/integrated approach</li><li>Lower total cost of ownership</li><li>Oversight ease</li><li>Maximum security</li><li>No compliance tradeoffs","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Aegify.jpg"},"eventUrl":"","translationId":4412,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":79,"title":"VM - Vulnerability management","alias":"vm-vulnerability-management","description":"Vulnerability management is the "cyclical practice of identifying, classifying, prioritizing, remediating and mitigating" software vulnerabilities. Vulnerability management is integral to computer security and network security, and must not be confused with a Vulnerability assessment.\r\nVulnerability management is an ongoing process that includes proactive asset discovery, continuous monitoring, mitigation, remediation and defense tactics to protect your organization's modern IT attack surface from Cyber Exposure.\r\nVulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer system in search of known vulnerabilities, such as open ports, insecure software configurations, and susceptibility to malware infections. They may also be identified by consulting public sources, such as NVD, or subscribing to a commercial vulnerability alerting services. Unknown vulnerabilities, such as a zero-day, may be found with fuzz testing, which can identify certain kinds of vulnerabilities, such as a buffer overflow with relevant test cases. Such analysis can be facilitated by test automation. In addition, antivirus software capable of heuristic analysis may discover undocumented malware if it finds software behaving suspiciously (such as attempting to overwrite a system file).\r\nCorrecting vulnerabilities may variously involve the installation of a patch, a change in network security policy, reconfiguration of software, or educating users about social engineering.\r\nNetwork vulnerabilities represent security gaps that could be abused by attackers to damage network assets, trigger a denial of service, and/or steal potentially sensitive information. Attackers are constantly looking for new vulnerabilities to exploit — and taking advantage of old vulnerabilities that may have gone unpatched.\r\nHaving a vulnerability management framework in place that regularly checks for new vulnerabilities is crucial for preventing cybersecurity breaches. Without a vulnerability testing and patch management system, old security gaps may be left on the network for extended periods of time. This gives attackers more of an opportunity to exploit vulnerabilities and carry out their attacks.\r\nOne statistic that highlights how crucial vulnerability management was featured in an Infosecurity Magazine article. According to survey data cited in the article, of the organizations that “suffered a breach, almost 60% were due to an unpatched vulnerability.” In other words, nearly 60% of the data breaches suffered by survey respondents could have been easily prevented simply by having a vulnerability management plan that would apply critical patches before attackers leveraged the vulnerability.","materialsDescription":" <span style=\"font-weight: bold;\">What is vulnerability management?</span>\r\nVulnerability management is a pro-active approach to managing network security by reducing the likelihood that flaws in code or design compromise the security of an endpoint or network.\r\n<span style=\"font-weight: bold;\">What processes does vulnerability management include?</span>\r\nVulnerability management processes include:\r\n<ul><li><span style=\"font-style: italic;\">Checking for vulnerabilities:</span> This process should include regular network scanning, firewall logging, penetration testing or use of an automated tool like a vulnerability scanner.</li><li><span style=\"font-style: italic;\">Identifying vulnerabilities:</span> This involves analyzing network scans and pen test results, firewall logs or vulnerability scan results to find anomalies that suggest a malware attack or other malicious event has taken advantage of a security vulnerability, or could possibly do so.</li><li><span style=\"font-style: italic;\">Verifying vulnerabilities:</span> This process includes ascertaining whether the identified vulnerabilities could actually be exploited on servers, applications, networks or other systems. This also includes classifying the severity of a vulnerability and the level of risk it presents to the organization.</li><li><span style=\"font-style: italic;\">Mitigating vulnerabilities:</span> This is the process of figuring out how to prevent vulnerabilities from being exploited before a patch is available, or in the event that there is no patch. It can involve taking the affected part of the system off-line (if it's non-critical), or various other workarounds.</li><li><span style=\"font-style: italic;\">Patching vulnerabilities:</span> This is the process of getting patches -- usually from the vendors of the affected software or hardware -- and applying them to all the affected areas in a timely way. This is sometimes an automated process, done with patch management tools. This step also includes patch testing.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VM_-_Vulnerability_management1.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":836,"title":"DRP - Digital Risk Protection","alias":"drp-digital-risk-protection","description":"Digital risks exist on social media and web channels, outside most organization's line of visibility. Organizations struggle to monitor these external, unregulated channels for risks targeting their business, their employees or their customers.\r\nCategories of risk include cyber (insider threat, phishing, malware, data loss), revenue (customer scams, piracy, counterfeit goods) brand (impersonations, slander) and physical (physical threats, natural disasters).\r\nDue to the explosive growth of digital risks, organizations need a flexible, automated approach that can monitor digital channels for organization-specific risks, trigger alerts and remediate malicious posts, profiles, content or apps.\r\nDigital risk protection (DRP) is the process of protecting social media and digital channels from security threats and business risks such as social engineering, external fraud, data loss, insider threat and reputation-based attacks. DRP reduces risks that emerge from digital transformation, protecting against the unwanted exposure of a company’s data, brand, and attack surface and providing actionable insight on threats from the open, deep, and dark web.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What is a digital risk?</span>\r\nDigital risks can take many forms. Most fundamentally, what makes a risk digital? Digital risk is any risk that plays out in one form or another online, outside of an organization’s IT infrastructure and beyond the security perimeter. This can be a cyber risk, like a phishing link or ransomware via LinkedIn, but can also include traditional risks with a digital component, such as credit card money flipping scams on Instagram.\r\n<span style=\"font-weight: bold;\">What are the features of Digital Risk Protection?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">The features are:</span></span>\r\n<ul><li>Protecting yourself from digital risk by building a watchtower, not a wall. A new Forrester report identifies two objectives for any digital risk protection effort: identifying risks and resolving them.</li><li>Digital risk comes in many forms, like unauthorized data disclosure, threat coordination from cybercriminals, risks inherent in the technology you use and in your third-party associates and even from your own employees.</li><li>The best solutions should automate the collection of data and draw from many sources; should have the capabilities to map, monitor, and mitigate digital risk and should be flexible enough to be applied in multiple use cases — factors that many threat intelligence solutions excel in.</li></ul>\r\n<span style=\"font-weight: bold;\">What elements constitute a digital risk?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Unauthorized Data Disclosure</span></span>\r\nThis includes the theft or leakage of any kind of sensitive data, like the personal financial information of a retail organization’s customers or the source code for a technology company’s proprietary products.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Threat Coordination Activity</span></span>\r\nMarketplaces and criminal forums on the dark web or even just on the open web are potent sources of risk. Here, a vulnerability identified by one group or individual who can’t act on it can reach the hands of someone who can. This includes the distribution of exploits in both targeted and untargeted campaigns.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supply Chain Issues</span></span>\r\nBusiness partners, third-party suppliers, and other vendors who interact directly with your organization but are not necessarily following the same security practices can open the door to increased risk.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Employee Risk</span></span>\r\nEven the most secure and unbreakable lock can still easily be opened if you just have the right key. Through social engineering efforts, identity or access management and manipulation, or malicious insider attacks coming from disgruntled employees, even the most robust cybersecurity program can be quickly subverted.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Technology Risks</span></span>\r\nThis broad category includes all of the risks you must consider across the different technologies your organization might rely on to get your work done, keep it running smoothly, and tell people about it.\r\n<ul><li><span style=\"font-weight: bold;\">Physical Infrastructure:</span> Countless industrial processes are now partly or completely automated, relying on SCADA, DCS, or PLC systems to run smoothly — and opening them up to cyber- attacks (like the STUXNET attack that derailed an entire country’s nuclear program).</li><li><span style=\"font-weight: bold;\">IT Infrastructure:</span> Maybe the most commonsensical source of digital risk, this includes all of the potential vulnerabilities in your software and hardware. The proliferation of the internet of things devices poses a growing and sometimes underappreciated risk here.</li><li><span style=\"font-weight: bold;\">Public-Facing Presence:</span> All of the points where you interact with your customers and other public entities, whether through social media, email campaigns, or other marketing strategies, represent potential sources of risk.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Digital_Risk_Protection.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"amt-banking-malware-detector":{"id":4571,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/minded_security.png","logo":true,"scheme":false,"title":"AMT - Banking Malware Detector","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"amt-banking-malware-detector","companyTitle":"Minded Security","companyTypes":["supplier","vendor"],"companyId":6982,"companyAlias":"minded-security","description":"<p class=\"align-center\"><span style=\"font-weight: bold;\">The AMT Technology Website</span></p>\r\nThe AMT (Agentless anti-Malware Technology) is a new proprietary Minded Security technology for detection and management of malware software.\r\nAMT has been developed after years of study for detecting and managing in real time advanced banking malware for our customers online users. The core engine is a JavaScript Analyzer written by renowned JavaScript experts specialized in advanced JavaScript security research.\r\nVarious innovative analysis technique have been used in AMT such as Trusted JavaScript Modeling combined with optimized WebInject differential analysis.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">The product: AMT Banking Malware Detector</span></p>\r\nThe AMT Banking Malware Detector is a sophisticated security platform for detecting and managing advanced malware on your online banking customers in real time.\r\nAMT Banking Malware Detector instantly recognizes all new malwares that have been installed on users' computer interacting with your Internet Banking Web Site.\r\nThe technology is able to detect all types of banking malwares, with a focus on targeted malware specifically designed to attack a particular bank.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Key Features:</span></p>\r\n<ul><li>Agentless: does not install anything on user’s computer.</li><li>Transparent: does not alter the user experience.</li><li>Proactive detection: detects malware not known yet.</li><li>Easy Setup: installation and tuning in just a few days.</li><li>Available in both modes cloud and appliance.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Performance</span></p>\r\n<p class=\"align-left\">No degradation in the performance of the bank infrastructure: no need to install new infrastructure components.<br />Light Deployment: for portals with millions of users does not require significant additional infrastructure.</p>\r\n<ul><li><span style=\"font-weight: bold;\">Fraud Risk Management</span></li></ul>\r\n<p class=\"align-left\">The technology reduces risk of infected users preventing frauds.<br />Can be easily managed by the bank's internal anti-fraud team through the innovative HTML5 interface.</p>\r\n<ul><li><span style=\"font-weight: bold;\">Easy Management</span></li></ul>\r\n<p class=\"align-left\">The product is easy to install with a single JavaScript source for multiple sites. No need to install new infrastructure components (no impact on Business Continuity).<br />Easy to manage with AMT control panel and AMT daily reports.</p>\r\n<ul><li><span style=\"font-weight: bold;\">Customization</span></li></ul>\r\n<p class=\"align-left\">It is designed to integrate with any anti-fraud systems with the ability to customize the modular components such as GUI, API, and specific components.<br />Ability to create ad hoc components for malware detection.</p>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Why choosing AMT?</span></p>\r\n<p class=\"align-left\">The key point of the AMT Banking Malware Detector is the new proactive approach.</p>\r\n<p class=\"align-left\">AMT creates a model of Custom Signature Engine (CSE) for each online banking service.</p>\r\n<p class=\"align-left\">The CSE permits to perform a continuous comparison with the mutations and to identify in real time a new threat.</p>\r\n<p class=\"align-left\"><span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">AMT Banking Malware Detector allows to identify malware victims before they will be defrauded.</span></span><br /><br /><br /><br /></p>","shortDescription":"The AMT Banking Malware Detector is a sophisticated security platform for detecting and managing advanced malware on your online banking customers in real time.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"AMT - Banking Malware Detector","keywords":"","description":"<p class=\"align-center\"><span style=\"font-weight: bold;\">The AMT Technology Website</span></p>\r\nThe AMT (Agentless anti-Malware Technology) is a new proprietary Minded Security technology for detection and management of malware software.\r\nAMT has been develope","og:title":"AMT - Banking Malware Detector","og:description":"<p class=\"align-center\"><span style=\"font-weight: bold;\">The AMT Technology Website</span></p>\r\nThe AMT (Agentless anti-Malware Technology) is a new proprietary Minded Security technology for detection and management of malware software.\r\nAMT has been develope","og:image":"https://old.roi4cio.com/fileadmin/user_upload/minded_security.png"},"eventUrl":"","translationId":4571,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":79,"title":"VM - Vulnerability management","alias":"vm-vulnerability-management","description":"Vulnerability management is the "cyclical practice of identifying, classifying, prioritizing, remediating and mitigating" software vulnerabilities. Vulnerability management is integral to computer security and network security, and must not be confused with a Vulnerability assessment.\r\nVulnerability management is an ongoing process that includes proactive asset discovery, continuous monitoring, mitigation, remediation and defense tactics to protect your organization's modern IT attack surface from Cyber Exposure.\r\nVulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer system in search of known vulnerabilities, such as open ports, insecure software configurations, and susceptibility to malware infections. They may also be identified by consulting public sources, such as NVD, or subscribing to a commercial vulnerability alerting services. Unknown vulnerabilities, such as a zero-day, may be found with fuzz testing, which can identify certain kinds of vulnerabilities, such as a buffer overflow with relevant test cases. Such analysis can be facilitated by test automation. In addition, antivirus software capable of heuristic analysis may discover undocumented malware if it finds software behaving suspiciously (such as attempting to overwrite a system file).\r\nCorrecting vulnerabilities may variously involve the installation of a patch, a change in network security policy, reconfiguration of software, or educating users about social engineering.\r\nNetwork vulnerabilities represent security gaps that could be abused by attackers to damage network assets, trigger a denial of service, and/or steal potentially sensitive information. Attackers are constantly looking for new vulnerabilities to exploit — and taking advantage of old vulnerabilities that may have gone unpatched.\r\nHaving a vulnerability management framework in place that regularly checks for new vulnerabilities is crucial for preventing cybersecurity breaches. Without a vulnerability testing and patch management system, old security gaps may be left on the network for extended periods of time. This gives attackers more of an opportunity to exploit vulnerabilities and carry out their attacks.\r\nOne statistic that highlights how crucial vulnerability management was featured in an Infosecurity Magazine article. According to survey data cited in the article, of the organizations that “suffered a breach, almost 60% were due to an unpatched vulnerability.” In other words, nearly 60% of the data breaches suffered by survey respondents could have been easily prevented simply by having a vulnerability management plan that would apply critical patches before attackers leveraged the vulnerability.","materialsDescription":" <span style=\"font-weight: bold;\">What is vulnerability management?</span>\r\nVulnerability management is a pro-active approach to managing network security by reducing the likelihood that flaws in code or design compromise the security of an endpoint or network.\r\n<span style=\"font-weight: bold;\">What processes does vulnerability management include?</span>\r\nVulnerability management processes include:\r\n<ul><li><span style=\"font-style: italic;\">Checking for vulnerabilities:</span> This process should include regular network scanning, firewall logging, penetration testing or use of an automated tool like a vulnerability scanner.</li><li><span style=\"font-style: italic;\">Identifying vulnerabilities:</span> This involves analyzing network scans and pen test results, firewall logs or vulnerability scan results to find anomalies that suggest a malware attack or other malicious event has taken advantage of a security vulnerability, or could possibly do so.</li><li><span style=\"font-style: italic;\">Verifying vulnerabilities:</span> This process includes ascertaining whether the identified vulnerabilities could actually be exploited on servers, applications, networks or other systems. This also includes classifying the severity of a vulnerability and the level of risk it presents to the organization.</li><li><span style=\"font-style: italic;\">Mitigating vulnerabilities:</span> This is the process of figuring out how to prevent vulnerabilities from being exploited before a patch is available, or in the event that there is no patch. It can involve taking the affected part of the system off-line (if it's non-critical), or various other workarounds.</li><li><span style=\"font-style: italic;\">Patching vulnerabilities:</span> This is the process of getting patches -- usually from the vendors of the affected software or hardware -- and applying them to all the affected areas in a timely way. This is sometimes an automated process, done with patch management tools. This step also includes patch testing.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VM_-_Vulnerability_management1.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":836,"title":"DRP - Digital Risk Protection","alias":"drp-digital-risk-protection","description":"Digital risks exist on social media and web channels, outside most organization's line of visibility. Organizations struggle to monitor these external, unregulated channels for risks targeting their business, their employees or their customers.\r\nCategories of risk include cyber (insider threat, phishing, malware, data loss), revenue (customer scams, piracy, counterfeit goods) brand (impersonations, slander) and physical (physical threats, natural disasters).\r\nDue to the explosive growth of digital risks, organizations need a flexible, automated approach that can monitor digital channels for organization-specific risks, trigger alerts and remediate malicious posts, profiles, content or apps.\r\nDigital risk protection (DRP) is the process of protecting social media and digital channels from security threats and business risks such as social engineering, external fraud, data loss, insider threat and reputation-based attacks. DRP reduces risks that emerge from digital transformation, protecting against the unwanted exposure of a company’s data, brand, and attack surface and providing actionable insight on threats from the open, deep, and dark web.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What is a digital risk?</span>\r\nDigital risks can take many forms. Most fundamentally, what makes a risk digital? Digital risk is any risk that plays out in one form or another online, outside of an organization’s IT infrastructure and beyond the security perimeter. This can be a cyber risk, like a phishing link or ransomware via LinkedIn, but can also include traditional risks with a digital component, such as credit card money flipping scams on Instagram.\r\n<span style=\"font-weight: bold;\">What are the features of Digital Risk Protection?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">The features are:</span></span>\r\n<ul><li>Protecting yourself from digital risk by building a watchtower, not a wall. A new Forrester report identifies two objectives for any digital risk protection effort: identifying risks and resolving them.</li><li>Digital risk comes in many forms, like unauthorized data disclosure, threat coordination from cybercriminals, risks inherent in the technology you use and in your third-party associates and even from your own employees.</li><li>The best solutions should automate the collection of data and draw from many sources; should have the capabilities to map, monitor, and mitigate digital risk and should be flexible enough to be applied in multiple use cases — factors that many threat intelligence solutions excel in.</li></ul>\r\n<span style=\"font-weight: bold;\">What elements constitute a digital risk?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Unauthorized Data Disclosure</span></span>\r\nThis includes the theft or leakage of any kind of sensitive data, like the personal financial information of a retail organization’s customers or the source code for a technology company’s proprietary products.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Threat Coordination Activity</span></span>\r\nMarketplaces and criminal forums on the dark web or even just on the open web are potent sources of risk. Here, a vulnerability identified by one group or individual who can’t act on it can reach the hands of someone who can. This includes the distribution of exploits in both targeted and untargeted campaigns.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supply Chain Issues</span></span>\r\nBusiness partners, third-party suppliers, and other vendors who interact directly with your organization but are not necessarily following the same security practices can open the door to increased risk.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Employee Risk</span></span>\r\nEven the most secure and unbreakable lock can still easily be opened if you just have the right key. Through social engineering efforts, identity or access management and manipulation, or malicious insider attacks coming from disgruntled employees, even the most robust cybersecurity program can be quickly subverted.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Technology Risks</span></span>\r\nThis broad category includes all of the risks you must consider across the different technologies your organization might rely on to get your work done, keep it running smoothly, and tell people about it.\r\n<ul><li><span style=\"font-weight: bold;\">Physical Infrastructure:</span> Countless industrial processes are now partly or completely automated, relying on SCADA, DCS, or PLC systems to run smoothly — and opening them up to cyber- attacks (like the STUXNET attack that derailed an entire country’s nuclear program).</li><li><span style=\"font-weight: bold;\">IT Infrastructure:</span> Maybe the most commonsensical source of digital risk, this includes all of the potential vulnerabilities in your software and hardware. The proliferation of the internet of things devices poses a growing and sometimes underappreciated risk here.</li><li><span style=\"font-weight: bold;\">Public-Facing Presence:</span> All of the points where you interact with your customers and other public entities, whether through social media, email campaigns, or other marketing strategies, represent potential sources of risk.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Digital_Risk_Protection.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"avocado-systems-platform":{"id":3691,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/avocado_systems.jpg","logo":true,"scheme":false,"title":"Avocado Systems Platform","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"avocado-systems-platform","companyTitle":"Avocado Systems Inc.","companyTypes":["supplier","vendor"],"companyId":5619,"companyAlias":"avocado-systems-inc","description":"<b>Avocado Security</b> platform provides “Deterministic Application Security Functions”. Thus, bringing the security stack literally into the application, enabling applications to secure themselves and carry the security stack with themselves when they migrate to cloud environment.\r\n<b>Features:</b>\r\n<b>Avocado Security Platform</b>\r\nThis includes Distributed Deterministic Security (DDS) plugins, Security Orchestrator and Z-Ray. DevOps integrated deployment can massively scale to protect application instances on any platform in any datacenter or any cloud.\r\n<b>Avocado DSS Plugins</b>\r\nCreates automatic plugins to applications to provide security segmentation and compliance enforcement points that intercepts & kills threats, collects forensics and statistics from cyber-attacks for compliance and reporting.\r\n<b>Avocado Security Orchestrator</b>\r\nVirtual Appliance which orchestrates security management, visualization and compliance. Performs app auto discovery & configuration. Providing complete programmability through RESTful APIs and scripted interface for SecOps and DevOps.\r\n<b>Avocado Z-Ray</b>\r\nEnd to end app security and visualization. Giving real-time experience of security dynamics. The orchestrator collects the logs, events and forensics from all DDS Plugins across the data center. Feeding it for threat intelligence sharing.\r\n<b>Benefits:</b>\r\n<ul> <li><b>One Touch Segmentation.</b> Deterministic threat detection at the web, application and database tiers.</li> <li><b>Zero Policies.</b> Highest resolution application of the pico segmentation without any policy.</li> <li><b>Platform Agnostic.</b> Bare metal, virtualized, containerized, and server-less platforms.</li> </ul>","shortDescription":"Avocado Security Platform is a concept of embedding Application Security Service Functions into the application itself","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Avocado Systems Platform","keywords":"","description":"<b>Avocado Security</b> platform provides “Deterministic Application Security Functions”. Thus, bringing the security stack literally into the application, enabling applications to secure themselves and carry the security stack with themselves when they migrat","og:title":"Avocado Systems Platform","og:description":"<b>Avocado Security</b> platform provides “Deterministic Application Security Functions”. Thus, bringing the security stack literally into the application, enabling applications to secure themselves and carry the security stack with themselves when they migrat","og:image":"https://old.roi4cio.com/fileadmin/user_upload/avocado_systems.jpg"},"eventUrl":"","translationId":3691,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"barracuda-sentinel":{"id":1908,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/barracuda_logo.png","logo":true,"scheme":false,"title":"Barracuda Sentinel","vendorVerified":0,"rating":"2.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":3,"alias":"barracuda-sentinel","companyTitle":"Barracuda Networks","companyTypes":["vendor"],"companyId":183,"companyAlias":"barracuda-networks","description":"<span style=\"font-weight: bold;\">A.I.-Based Protection from Spear Phishing, Account Takeover, and Business Email Compromise</span> <span style=\"font-weight: bold;\">Stop Targeted Attacks Before They Reach Your Users</span> \r\nBusiness Email Compromise (BEC) has cost businesses $12B since 2013 plus untold additional losses from lost productivity and damage to reputation. Email impersonation attacks have tricked individuals into sending wire transfers and sensitive customer and employee information to attackers who are impersonating their CEO, boss, or trusted colleague. Barracuda Sentinel uses artificial intelligence and deep integration with Office 365 to stop these attacks before they reach your mail server, as well as detecting threats already sitting in your inbox. \r\n<span style=\"font-weight: bold; text-decoration-line: underline;\">Benefits of Barracuda Sentinel</span> \r\n<span style=\"font-weight: bold;\">Stop Email Impersonation Attacks</span> \r\nTraditional email filters sit in front of your mail server, so they don't see threats already in your inbox. Sentinel works from inside O365 and uses artificial intelligence to detect signs of spear phishing and account takeover. \r\n<span style=\"font-weight: bold;\">Protect Your Business from Account Takeover</span> \r\nAccount takeover is a major new threat to business data. Sentinel detects account takeover attempts and blocks email attacks launched from compromised accounts. <span style=\"font-weight: bold;\">Protect Your Reputation and Stop Domain Fraud</span> Don't let hackers impersonate your domain to launch email attacks. Sentinel protects your brand and reputation through simplified DMARC reporting and analysis. <span style=\"font-weight: bold;\"><br /></span> <span style=\"font-weight: bold;\"></span>\r\n<span style=\"font-weight: bold;\">Identify and Secure Your Highest-Risk Individuals</span> \r\nSentinel uses machine learning to automatically identify the people within your organization who are most likely to be targeted. \r\n<span style=\"font-weight: bold;\">Part of a Complete Email Protection Platform</span> \r\nWith the Total Email Protection edition, Sentinel is combined with Barracuda Essentials and PhishLine for a complete email security, archiving, and data protection solution. \r\n<span style=\"font-weight: bold;\">Sentinel Detects Threats that Email Security Gateways Can't</span> \r\nSentinel detects threats that traditional email security systems can't. It integrates directly with Microsoft Office 365 APIs to detect attacks coming from both internal and external sources, including threats that may already be in your inbox. It uses artificial intelligence to detect signs of malicious intent and deception within every email with virtually no I.T. administration required. \r\n<span style=\"font-weight: bold;\">Protect Your Business Against Account Takeover</span> \r\nCorporate Account Takeover presents a significant new threat to business. Hackers gain access to corporate email accounts through stolen credentials and use them to launch subsequent targeted attacks, internally and against external targets. Account takeover or attacks that originate from these accounts are almost impossible to detect since they don’t leverage impersonation techniques—they come from a legitimate account and appear to be from a trusted source. In fact, traditional email security solutions don’t even observe internal traffic and have no way of stopping an attack originating internally. Barracuda Sentinel detects both account takeover attempts and attacks launched from compromised accounts. By analyzing both historical and inbound data Sentinel is able to identify behavioral, content, and link-forwarding anomalies within your organization, and to flag and quarantine fraudulent emails. It is also able to prevent attempts to compromise employee credentials by automatically blocking targeted phishing emails that try to harvest employee passwords. \r\n<span style=\"font-weight: bold;\">Features</span> \r\n<span style=\"font-weight: bold;\">Stop Targeted Attacks with AI</span>\r\n<ul> <li>Prevent Spear Phishing</li> <li>Prevent BEC and CEO Fraud</li> <li>Detect Employee Impersonation</li> <li>Stop Zero-Day Phishing</li> <li>Detect Web Impersonation</li> <li>Stop Inbound Spoofing</li> <li>Continuous Learning</li> <li>Exportable Reports</li> </ul>\r\n<span style=\"font-weight: bold;\">Stop Account Takeover with AI</span>\r\n<ul> <li>Alerting for Account Takeover</li> <li>Prevent Account Takeover Infiltration</li> <li>Detect Compromised Emails</li> <li>Delete Emails Sent Internally</li> <li>Notify External Recipients</li> <li>Lock Attackers Out of Accounts</li> </ul>\r\n<span style=\"font-weight: bold;\">Domain Fraud Prevention</span>\r\n<ul> <li>Prevent Third Party Domain Spoofing</li> <li>Automated DMARC Reporting</li> <li>DMARC Aggregation and Visualization</li> <li>DKIM/SPF Configuration and Troubleshooting</li> <li>Better Email Deliverability</li> <li>Spoofed Email Reports</li> <li>Detect Misconfigured Legitimate Senders</li> <li>Protects Customer Brands</li> <li>Exportable Reports</li> </ul>\r\n<span style=\"font-weight: bold;\">Flexible API-based Deployment</span>\r\n<ul> <li>Lightweight Architecture</li> <li>Instant Setup</li> <li>Works with Any Gateway</li> <li>Historical Assessment</li> </ul>\r\n<span style=\"font-weight: bold;\">Phishing Simulations</span>\r\n<ul> <li>Test Employee Security Awareness</li> <li>80 Real-World Templates</li> <li>Simulate Impersonation and BEC</li> <li>AI Determines Employee Risk</li> </ul>","shortDescription":"Barracuda Sentinel is A.I.-Based Protection from Spear Phishing, Account Takeover, and Business Email Compromise","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":15,"sellingCount":16,"discontinued":0,"rebateForPoc":0,"rebate":5,"seo":{"title":"Barracuda Sentinel","keywords":"","description":"<span style=\"font-weight: bold;\">A.I.-Based Protection from Spear Phishing, Account Takeover, and Business Email Compromise</span> <span style=\"font-weight: bold;\">Stop Targeted Attacks Before They Reach Your Users</span> \r\nBusiness Email Compromise (BEC) has ","og:title":"Barracuda Sentinel","og:description":"<span style=\"font-weight: bold;\">A.I.-Based Protection from Spear Phishing, Account Takeover, and Business Email Compromise</span> <span style=\"font-weight: bold;\">Stop Targeted Attacks Before They Reach Your Users</span> \r\nBusiness Email Compromise (BEC) has ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/barracuda_logo.png"},"eventUrl":"","translationId":1911,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":469,"title":"Secure E-mail Gateway","alias":"secure-e-mail-gateway","description":" According to technology research firm Gartner, secure email gateways “provide basic message transfer agent functions; inbound filtering of spam, phishing, malicious and marketing emails; and outbound data loss prevention (DLP) and email encryption.”\r\nTo put that in simpler language, a secure email gateway (also called an email security gateway) is a cybersecurity solution that monitors incoming and outgoing messages for suspicious behavior, preventing them from being delivered. Secure email gateways can be deployed via an email server, public cloud, on-premises software, or in a hybrid system. According to cybersecurity experts, none of these deployment options are inherently superior; each one has its own strengths and weaknesses that must be assessed by the individual enterprise.\r\nGartner defines the secure email gateway market as mature, with the key capabilities clearly defined by market demands and customer satisfaction. These capabilities include:\r\n<ul><li>Basic and Next-Gen Anti-Phishing and Anti-Spam</li><li>Additional Security Features</li><li>Customization of the Solution’s Management Features</li><li>Low False Positive and False Negative Percentages</li><li>External Processes and Storage</li></ul>\r\nSecure email gateways are designed to surpass the traditional detection capabilities of legacy antivirus and anti-phishing solutions. To do so, they offer more sophisticated detection and prevention capabilities; secure email gateways can make use of threat intelligence to stay up-to-date with the latest threats.\r\nAdditionally, SEGs can sandbox suspicious emails, observing their behavior in a safe, enclosed environment that resembles the legitimate network. Security experts can then determine if it is a legitimate threat or a false positive.\r\nSecure email gateway solutions will often offer data loss prevention and email encryption capabilities to protect outgoing communications from prying and unscrupulous eyes.\r\nMuch like SIEM or endpoint detection and response (EDR), secure email gateways can produce false positives and false negatives, although they do tend to be far less than rates found in SIEM and EDR alerts.","materialsDescription":" <span style=\"font-weight: bold;\">How Does a Secure Email Gateway Work?</span>\r\nA secure email gateway offers a robust framework of technologies that protect against these email-borne threats. It is effectively a firewall for your email and scans both outbound and inbound email for any malicious content. At a minimum, most secure gateways offer a minimum of four security features: virus and malware blocking, spam filtering, content filtering and email archiving. Let's take a look at these features in more detail:\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Virus and Malware Blocking</span></span>\r\nEmails infected with viruses or malware can make up approximately 1% of all email received by an organization. For a secure email gateway to effectively prevent these emails from reaching their intended recipients and delivering their payload, it must scan every email and be constantly kept up-to-date with the latest threat patterns and characteristics.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Spam Filtering</span></span>\r\nBelieve it or not, spam filtering is where the majority of a secure email gateway's processing power is focused. Spam is blocked in a number of different ways. Basic spam filtering usually involves a prefiltering technology that blocks or quarantines any emails received from known spammers. Spam filtering can also detect patterns commonly found in spam emails, such as preferred keywords used by spammers and the inclusion of links that could take the email recipient to a malicious site if clicked. Many email clients also allow users to flag spam messages that arrive in their mailbox and to block senders.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Content Filtering</span></span>\r\nContent filtering is typically applied to an outbound email sent by users within the company. For example, you can configure your secure email gateway to prevent specific sensitive documents from being sent to an external recipient, or put a block on image files or specific keywords within them being sent through the email system.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Email Archiving</span></span>\r\nEmail services, whether they are in the cloud or on-premise, need to be managed efficiently. Storage has been a problem for email administrators for many years, and while you may have almost infinite cloud storage available, email archiving can help to manage both user mailboxes and the efficiency of your systems. Compliance is also a major concern for many companies and email archiving is a must if you need to keep emails for a certain period of time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Secure_Email_Gateway.jpg"},{"id":483,"title":"Messaging Security","alias":"messaging-security","description":"<span style=\"font-weight: bold; \">Messaging security</span> is a subcategory of <span style=\"font-style: italic; \">unified threat management (UTM) </span>focused on securing and protecting an organization’s communication infrastructure. Communication channels can include email software, messaging apps, and social network IM platforms. This extra layer of security can help secure devices and block a wider range of viruses or malware attacks.\r\nMessaging security helps to ensure the confidentiality and authenticity of an organization’s communication methods. Confidentiality refers to making sure only the intended recipients are able to read the messages and authenticity refers to making sure the identity of each sender or recipient is verified.\r\nOftentimes, attackers aim to gain access to an entire network or system by infiltrating the messaging infrastructure. Implementing proper data and message security can minimize the chance of data leaks and identity theft.\r\n<span style=\"color: rgb(97, 97, 97); \">Encrypted messaging (also known as secure messaging) provides end-to-end encryption for user-to-user text messaging. Encrypted messaging prevents anyone from monitoring text conversations. Many encrypted messenger apps also offer end-to-end encryption for phone calls made using the apps, as well as for files that are sent using the apps.</span>\r\nTwo modern methods of encryption are the <span style=\"font-style: italic; \">Public Key (Asymmetric)</span> and the <span style=\"font-style: italic; \">Private Key (Symmetric</span>) methods. While these two methods of encryption are similar in that they both allow users to encrypt data to hide it from the prying eyes of outsiders and then decrypt it for viewing by an authorized party, they differ in how they perform the steps involved in the process.\r\n<span style=\"font-weight: bold; \">Email</span> security message can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send. \r\n<span style=\"font-weight: bold;\">Encrypted messaging systems </span>must be encrypted end-to-end, so that even the service provider and its staff are unable to decipher what’s in your communications. Ideal solutions is “server-less” encrypted chat where companies won’t store user information anywhere.\r\nIn a more general sense, users of unsecured public Wi-Fi should also consider using a <span style=\"font-weight: bold;\">Virtual Private Network </span>(VPN) application, to conceal their identity and location from Internet Service Providers (ISPs), higher level surveillance, and the attentions of hackers.","materialsDescription":"<h1 class=\"align-center\"> What is messaging security?</h1>\r\nMessaging Security is a program that provides protection for companies' messaging infrastructure. The programs include IP reputation-based anti-spam, pattern-based anti-spam, administrator-defined block/allow lists, mail antivirus, zero-hour malware detection, and email intrusion prevention.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Six Dimensions of Comprehensive Messaging Security</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">IP-Reputation Anti-spam.</span> It checks each email connection request with a database of IP addresses to establish whether a sender is a legitimate or known spam sender and malware. If a sender is recognized it undesirable the messaging Security program drops the connection before the message is accepted.</li><li><span style=\"font-weight: bold; \">Pattern-based anti-spam</span> utilizes a proprietary algorithm to establish a fingerprint-like signature of email messages. When a message comes in, its pattern is calculated and checked against a database to determine if the message matches a known email pattern. </li><li><span style=\"font-weight: bold; \">Block/Allow List Anti-spam.</span> Administrators can create a list of IP addresses or domains that they would like to either block or allow. This method ensures that trusted sources are explicitly allowed and unwanted sources are explicitly denied access.</li><li><span style=\"font-weight: bold; \">Mail Antivirus.</span> This layer of protection blocks a wide range of known viruses and malware attacks.</li><li><span style=\"font-weight: bold; \">Zero-Hour Malware Protection.</span> By analyzing large numbers of messages, outbreaks are detected along with their corresponding messages. These message patterns are then flagged as malicious, giving information about a given attack.</li><li><span style=\"font-weight: bold; \">SmartDefense Email IPS.</span> The messaging security program utilizes SmartDefense Email IPS to stop attacks targeting the messaging infrastructure. </li></ul>\r\n<h1 class=\"align-center\">What are Signal, Wire and LINE messenger security apps like ?</h1>\r\n<p class=\"align-left\">Secure private messenger is a messaging application that emphasizes the privacy and of users using encryption and service transparency. While every modern messenger system is using different security practices (most prominently SSL/HTTPS) - the difference between secure and classic messengers is what we don’t know in the scope of implementation and approach to user data. </p>\r\n<p class=\"align-left\">Message access control and secure messengers evolved into a distinct category due to the growing awareness that communication over the internet is accessible by third parties, and reasonable concerns that the messages can be used against the users.</p>\r\n<h1 class=\"align-center\">Why secure communication is essential for business?</h1>\r\n<p class=\"align-left\">In the context of business operation, communication is a vital element of maintaining an efficient and dynamic working process. It lets you keep everything up to date and on the same page. And since many things are going on at the same time - tools like messengers are one of the many helpers that make the working day a little more manageable.</p>\r\n<p class=\"align-left\">Some of the information, like employee and customer data, proprietary information, data directly linked to business performance or future projections, may be strictly under a non-disclosure agreement. Without proper text message authentication in information security or encryption, it remains vulnerable to exposure. The chances are slim, but the possibility remains. </p>\r\n<p class=\"align-left\">And there are people interested in acquiring that sensitive information, people who like to play dirty because getting a competitive advantage is a decent motivation to go beyond the law. And when private conversations leak, especially the business-related ones - the impact is comparable with the Titanic hitting an iceberg. </p>\r\n<p class=\"align-left\">Encrypted massages in messenger prevents this from happening.</p>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Messaging_Security.png"},{"id":487,"title":"Secure Web Gateway","alias":"secure-web-gateway","description":" <span style=\"font-weight: bold; \">Secure Web gateway</span> solutions protect Web-surfing PCs from infection and enforce company policies. A secure Web gateway is a solution that filters unwanted software/malware from user-initiated Web/Internet traffic and enforces corporate and regulatory policy compliance. \r\nThese gateways must, at a minimum, include URL filtering, malicious-code detection and filtering, and application controls for popular Web-based applications, such as instant messaging (IM) and Skype. Native or integrated data leak prevention is also increasingly included. Data leak prevention features are also essential. Let's take a look at some of these features in more detail:\r\n<span style=\"font-weight: bold;\">Real-Time Traffic Inspection.</span> A secure web gateway inspects web traffic in real-time, analyzing content against corporate policies and ensuring any content that is inappropriate or which contravenes company policy is blocked. The majority of secure web gateways allow administrators to enforce common security policy templates straight off the shelf and also configure policies that are suited to their business model or compliance requirements.\r\n<span style=\"font-weight: bold;\">Protection for Off-Grid Workers.</span> As workforces become more distributed, there is a need for security solutions to offer protection on an anywhere, anytime and any device basis. A secure web gateway allows roaming users to authenticate seamlessly and to have the same security policies applies to their devices as they would if they were in the office. The result is a protected connection no matter where they are working and total peace of mind that all internet traffic is secure.\r\n<span style=\"font-weight: bold;\">Time and Content-Based Access.</span> Whether you need to restrict access to the internet at specific times, or you wish to control access to particular web content, your secure web gateway can be configured to suit your acceptable use policy and compliance requirements. Individual users can be allocated time quotas or schedules that ensure maximum productivity or only permitted access to websites that are relevant to their job roles.\r\n<span style=\"font-weight: bold;\">Data Leak Prevention.</span> As its name suggests, data leak prevention stops your corporate data from being leaked to or stolen by a third party. From detecting common business terms such as payment card industry (PCI) number patterns and phrases or personally identifiable information, a web security gateway coupled with data leak prevention software can be a very robust line of defense from both internal and external threats.","materialsDescription":"<h1 class=\"align-center\"> Secure web gateway market</h1>\r\nThere are a variety of <span style=\"font-weight: bold;\">secure web gateway vendors</span> operating - among them Symantec, iboss, F5, Check Point Software, zScaler, Barracuda, Forcepoint, McAfee and Cisco<span style=\"font-style: italic;\">. </span>Most of these companies are now emphasizing <span style=\"font-weight: bold;\">cloud web gateway</span>. Although many still carry, maintain and market their on-premises versions, the competitive battleground has largely shifted to the cloud.\r\nAccording to Gartner, Symantec and Cisco are the market leaders in terms of revenue. Their efforts in this space give an indication of where the market is heading. Symantec favors proxy-based SWG appliances and services. Cisco, on the other hand, has concentrated on a hybrid of DNS and proxy capabilities. Both have acquired CASB technology and have been integrating it with their secure web gateway services. Cisco has also added DNS-based inspection into its package. This allows it to use DNS for most inspection traffic to raise performance. More involved content inspection of potentially risky websites can be done using HTTP/HTTPS proxying.\r\nCloud based secure web gateway offerings have been growing at around 30 percent per year for the last several years, according to Gartner. When coupled with growing integration with other security features, on-premises standalone secure web gateways are slowly giving way to larger cloud-based suites that incorporate gateway security. \r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Secure_Web_Gateway.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"barracuda-web-security-gateway":{"id":1198,"logoURL":"https://old.roi4cio.com/fileadmin/content/element_wsg_RGB.jpg","logo":true,"scheme":false,"title":"Barracuda Web Security Gateway","vendorVerified":0,"rating":"2.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":3,"alias":"barracuda-web-security-gateway","companyTitle":"Barracuda Networks","companyTypes":["vendor"],"companyId":183,"companyAlias":"barracuda-networks","description":"Barracuda Web Security Gateway - easily and completely blocks spyware and other types of malware from the computers of employees of the organization without loss of performance. Barracuda Networks Barracuda Web Security Gateway is a powerful integrated content protection and analysis solution that is applicable to all business categories. Barracuda Web Security Gateway is very easy to install, has an intuitive management and monitoring interface and is automatically updated every hour through the Barracuda Central website. To install the solution, no additional software is needed, network settings are changed, and there is no need to purchase licenses for each additional user when the system is expanded. Barracuda Web Security Gateway combines proactive, reactive and proactive protection measures, ensuring complete network security: Prevent spyware downloads. Preventing viruses loading. Blocking access to Web sites with spyware. Determining the access of spyware to the Internet. Complete removal of spyware. Blocking malicious Web sites.","shortDescription":"Barracuda Web Security Gateway protect users from malware and saves bandwidth","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":11,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":5,"seo":{"title":"Barracuda Web Security Gateway","keywords":"Barracuda, Gateway, spyware, Security, network, additional, solution, protection","description":"Barracuda Web Security Gateway - easily and completely blocks spyware and other types of malware from the computers of employees of the organization without loss of performance. Barracuda Networks Barracuda Web Security Gateway is a powerful integrated content","og:title":"Barracuda Web Security Gateway","og:description":"Barracuda Web Security Gateway - easily and completely blocks spyware and other types of malware from the computers of employees of the organization without loss of performance. Barracuda Networks Barracuda Web Security Gateway is a powerful integrated content","og:image":"https://old.roi4cio.com/fileadmin/content/element_wsg_RGB.jpg"},"eventUrl":"","translationId":1390,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":25,"title":"Web filtering","alias":"web-filtering","description":" <span style=\"font-weight: bold; \">Web filtering</span> is a technology that stops users from viewing certain URLs or websites by preventing their browsers from loading pages from these sites. Web filters are made in different ways and deliver various solutions for individual, family, institutional or enterprise use.\r\nIn general, Web filters work in two distinct ways. They can <span style=\"font-weight: bold; \">block content</span> as determined by quality of the site, by consulting known lists which document and categorize popular pages across all genres of content. Or, they can <span style=\"font-weight: bold; \">evaluate the content</span> of the page live and block it accordingly. Many Web filter tools work off of a constantly updated URL database that shows which websites and domains are associated with hosting malware, phishing, viruses or other tools for harmful activities.\r\n<span style=\"font-weight: bold;\">Web Filtering Types.</span> <span style=\"font-style: italic;\">Blacklist & Whitelist Filters:</span>when using blacklists, an administrator (which might be a parent) manually enters all websites that are deemed inappropriate into the program, and those sites are subsequently blocked. Whitelists are used in exactly the same way, only in reverse – i.e. URLs are manually entered onto a whitelist, and all other websites are then off-limits.\r\n<span style=\"font-style: italic; \">Keyword And Content Filters: </span>this type of filtering is in many ways similar to black and whitelist filtering, though with a slightly broader scope. Keyword and content filters will filter out websites that contain specific keywords or predefined content (such as pornography, for example).\r\nSome website filtering software also provides reporting so that the installer can see what kind of traffic is being filtered and who has requested it. Some products provide soft blocking (in which a warning page is sent to the user instead of the requested page while still allowing access to the page) and an override capability that allows an administrator to unlock a page. \r\n<span style=\"font-weight: bold; \">Web Filtering Software for Business.</span> Most organizations have moved to cloud based-applications, making browsers a tool that employees use on a daily basis to access work. Browsers have become a conduit to not only the cloud, but also to immeasurable malware and distractions hosted on the web. In order to ensure that browsers do not bring in malicious traffic, web filtering software becomes necessary.\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">What is Enterprise Web Filtering Software?</h1>\r\nAntivirus and antimalware software are required to detect malicious programs that has been downloaded, but it is now important for enterprise web filtering software to be installed. Content filtering software is an invaluable protection against a wide range of web-borne threats. Rather than allowing malware and ransomware to be downloaded, it prevents end users from visiting websites that contain these malicious threats.\r\nInternet filtering software is also one of the most effective ways to neutralize the threat from phishing. Phishing is a technique used by cybercriminals to gain access to sensitive user information. Phishers trick end users into revealing login credentials or downloading malicious software onto their computers.\r\nPhishing involves sophisticated social engineering techniques to fool end users into visiting malicious websites. If employees can be convinced to reveal sensitive information or download ransomware or malware, cybercriminals can easily bypass even the most sophisticated of cybersecurity defenses.\r\n<h1 class=\"align-center\">What is URL Filtering?</h1>\r\nURL filtering is a type of network filtering software that helps businesses control their users’ and guests’ ability to access certain content on the web. If you’ve ever gotten a “block” page while surfing the internet at the office, then your company is using web filtering.\r\nSome employers may only be concerned about blocking access to websites that are known to spread malware or steal information. Other businesses may block content they find inappropriate, such as adult websites or sites that promote violence, or content that violates compliance regulations. They may also choose to activate web protection software to block social media or video streaming sites to minimize drains on productivity and network bandwidth.\r\nTypically, URL filtering software is provided by a cybersecurity service, firewall, or router. Each of these may use a variety of threat intelligence sources to determine which websites fit into their chosen acceptable and unacceptable categories. That’s where highly reliable web reputation services are most valuable. Sources that have extensive web histories and real-time active crawling services will provide the most accurate content determinations.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_filtering.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":487,"title":"Secure Web Gateway","alias":"secure-web-gateway","description":" <span style=\"font-weight: bold; \">Secure Web gateway</span> solutions protect Web-surfing PCs from infection and enforce company policies. A secure Web gateway is a solution that filters unwanted software/malware from user-initiated Web/Internet traffic and enforces corporate and regulatory policy compliance. \r\nThese gateways must, at a minimum, include URL filtering, malicious-code detection and filtering, and application controls for popular Web-based applications, such as instant messaging (IM) and Skype. Native or integrated data leak prevention is also increasingly included. Data leak prevention features are also essential. Let's take a look at some of these features in more detail:\r\n<span style=\"font-weight: bold;\">Real-Time Traffic Inspection.</span> A secure web gateway inspects web traffic in real-time, analyzing content against corporate policies and ensuring any content that is inappropriate or which contravenes company policy is blocked. The majority of secure web gateways allow administrators to enforce common security policy templates straight off the shelf and also configure policies that are suited to their business model or compliance requirements.\r\n<span style=\"font-weight: bold;\">Protection for Off-Grid Workers.</span> As workforces become more distributed, there is a need for security solutions to offer protection on an anywhere, anytime and any device basis. A secure web gateway allows roaming users to authenticate seamlessly and to have the same security policies applies to their devices as they would if they were in the office. The result is a protected connection no matter where they are working and total peace of mind that all internet traffic is secure.\r\n<span style=\"font-weight: bold;\">Time and Content-Based Access.</span> Whether you need to restrict access to the internet at specific times, or you wish to control access to particular web content, your secure web gateway can be configured to suit your acceptable use policy and compliance requirements. Individual users can be allocated time quotas or schedules that ensure maximum productivity or only permitted access to websites that are relevant to their job roles.\r\n<span style=\"font-weight: bold;\">Data Leak Prevention.</span> As its name suggests, data leak prevention stops your corporate data from being leaked to or stolen by a third party. From detecting common business terms such as payment card industry (PCI) number patterns and phrases or personally identifiable information, a web security gateway coupled with data leak prevention software can be a very robust line of defense from both internal and external threats.","materialsDescription":"<h1 class=\"align-center\"> Secure web gateway market</h1>\r\nThere are a variety of <span style=\"font-weight: bold;\">secure web gateway vendors</span> operating - among them Symantec, iboss, F5, Check Point Software, zScaler, Barracuda, Forcepoint, McAfee and Cisco<span style=\"font-style: italic;\">. </span>Most of these companies are now emphasizing <span style=\"font-weight: bold;\">cloud web gateway</span>. Although many still carry, maintain and market their on-premises versions, the competitive battleground has largely shifted to the cloud.\r\nAccording to Gartner, Symantec and Cisco are the market leaders in terms of revenue. Their efforts in this space give an indication of where the market is heading. Symantec favors proxy-based SWG appliances and services. Cisco, on the other hand, has concentrated on a hybrid of DNS and proxy capabilities. Both have acquired CASB technology and have been integrating it with their secure web gateway services. Cisco has also added DNS-based inspection into its package. This allows it to use DNS for most inspection traffic to raise performance. More involved content inspection of potentially risky websites can be done using HTTP/HTTPS proxying.\r\nCloud based secure web gateway offerings have been growing at around 30 percent per year for the last several years, according to Gartner. When coupled with growing integration with other security features, on-premises standalone secure web gateways are slowly giving way to larger cloud-based suites that incorporate gateway security. \r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Secure_Web_Gateway.png"},{"id":548,"title":"Web security - Appliance","alias":"web-security-appliance","description":"A security appliance is any form of server appliance that is designed to protect computer networks from unwanted traffic. Types of network security appliance:\r\n<span style=\"font-weight: bold;\">Active devices</span> block unwanted traffic. Examples of such devices are firewalls, anti-virus scanning devices, and content filtering devices. For instance, if you want to make sure that you do not get pointless spam and other unnecessary issues, installing an active device might be a great idea. Active devices include anti-virus scanning devices, which will automatically scan throughout the network to ensure that no virus exists within the protected network. Then, there are web filtering appliances as well as firewalls, the purpose of both of which is to ensure that only useful content and traffic flows through the network and all pointless or harmful data is filtered.\r\n<span style=\"font-weight: bold;\">Passive devices detect and report on unwanted traffic.</span> A common example is intrusion detection appliances, which are installed in order to determine whether the network has been compromised in any way. These devices usually work in the background at all times.\r\n<span style=\"font-weight: bold;\">Preventative devices</span> scan networks and identify potential security problems (such as penetration testing and vulnerability assessment appliances). These devices are usually designed to 'prevent' damage to the network by identifying problems in advance. Common examples include devices that employ penetration testing as well as those devices which carry out vulnerability assessment on networks.\r\n<span style=\"font-weight: bold;\">Unified Threat Management (UTM)</span> combines features together into one system, such as some firewalls, content filtering, web caching etc. UTM devices are designed to provide users with a one-stop solution to all of their network needs and internet security appliances. As the name clearly suggests, these devices provide the features of all of the other network devices and condense them into one. These devices are designed to provide a number of different network security options in one package, hence providing networks with a simple solution. Rather than installing four different devices, users can easily install one and be done with it. The market of UTM devices has exceeded the billion dollar mark already, which just goes to show how popular these devices have become amongst network users.\r\nOne of the most popular and accessible types of web security appliance tools is the hardware <span style=\"font-weight: bold;\">keylogger.</span> This device is placed covertly between the case and keyboard with an output for the computer case and input for the keyboard. As hardware standards have changed over time, a USB hardware keylogger provides access on many devices.\r\nThe <span style=\"font-weight: bold;\">web proxy appliance</span> is basically hardware you use to manage user web access. More to the point, it's the type of device that handles the blocking or controlling of suspicious programs. It's typically placed in between network users and the worldwide web; ergo, it's most popular application is serving as a central control hub over employee Internet use by corporations and enterprises. It's the in-between gateway that serves as a termination point of sorts for online communications within a network and is capable of applying a multitude of rule-based limitations on Internet traffic, web content, and requests before they even end up with end users.\r\nAnother commonly used hardware tool is the <span style=\"font-weight: bold;\">wireless antenna.</span> These can be used to surveil a wide variety of wireless communications, including local cellular and internet service networks. More mechanical and general devices may include lockpicks or portable probes and hijack chips for compromising electronic devices through the physical circuit.\r\n<span style=\"font-weight: bold;\">Secure web gateway appliances</span> are solutions to prevent advanced threats, block unauthorized access to systems or websites, stop malware, and monitor real-time activity across websites accessed by users within the institution. Software and cloud-based platforms now perform this function as well.","materialsDescription":"<h1 class=\"align-center\"> What are the top Network Security Appliance brands?</h1>\r\n<span style=\"font-weight: bold;\">Blue Coat Systems,</span> Sunnyvale, Calif.-based Blue Coat has been part of security powerhouse Symantec since 2016.\r\n<span style=\"font-weight: bold;\">F5 Networks,</span> the Seattle-based network application delivery vendor, sold about $17.6 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">SonicWall.</span>Firewall power player SonicWall sold about $23.5 million in network security appliances through the channel in the second quarter, according to NPD.\r\n<span style=\"font-weight: bold;\">Fortinet,</span> Sunnyvale, Calif., security software vendor Fortinet sold about $24.4 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">Cisco Systems,</span> Cisco Systems was the quarter's growth champion, posting $77.2 million in network security appliance sales through the channel in the period, beating the previous year’s quarterly total of $62.3 million by about 24 percent, according to NPD.\r\n<span style=\"font-weight: bold;\">Palo Alto Networks.</span> With $94.2 million in network security appliance sales in the quarter, Palo Alto Networks was the best-selling network security appliance brand of the second quarter, according to NPD.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_security_Appliance.png"},{"id":550,"title":"Web filtering - Appliance","alias":"web-filtering-appliance","description":" <span style=\"font-weight: bold; \">A web filter appliance</span> is a device that allows the user to filter all online content for censorship purposes, such that any links, downloads, and email containing offensive materials or pornography is outright blocked or removed. Web filtering appliance can also help you prevent malware infection because, more often than not, malware is usually hidden within links that promise porn or controversial content. Moreover, because the number of online hazards is un stopped increasing every day, it's always prudent to get a web filter appliance that can adapt to the changing times and the ever-evolving hazards posed by the Internet.\r\nAt any rate, content filtering appliance has a distinct advantage over their software counterparts in terms of stable restriction features, unrestricted monitoring, no platform-based limitations, easy upgrades and improvements, and so on. That's because the best web filters are fully integrated software and hardware systems that optimize their hybrid attributes when it comes to content filtering by gaining full, unmitigated control over online usage through well-defined policies as mandated by the owner of the network or the IT security administrator.\r\nGetting a web content filtering appliance that has a list of premium-grade and detailed content analysis with predefined categories (which includes keywords for pornography, game downloads, drugs, violence, adult content, offensive content, racist content, controversial content, and the like) is a must for any major network. All of the items you'll ever need to block should be easily selectable with a click of your mouse as well; after all, sophisticated technology aside, a good web filter appliance should also be intuitive and practical to use as well.<br /> ","materialsDescription":"<h1 class=\"align-center\">How a Web Content Filter Appliance Works</h1>\r\n<p class=\"align-left\">Typically a web content filter appliance protects Internet users and networks by using a combination of blacklists, URIBL and SURBL filters, category filters and keyword filters. Blacklists, URIBL and SURBL filters work together to prevent users visiting websites known to harbor malware, those that have been identified as fake phishing sites, and those who hid their true identity by using the whois privacy feature or a proxy server. Genuine websites have no reason to hide their true identity.</p>\r\n<p class=\"align-left\">In the category filtering process, the content of millions of webpages are analyzed and assigned a category. System administrators can then choose which categories to block access to (i.e. online shopping, alcohol, pornography, gambling, etc.) depending on whether the web content filter appliance is providing a service to a business, a store, a school, a restaurant, or a workplace. Most appliances for filtering web content also offer the facility to create bespoke categories.</p>\r\n<p class=\"align-left\">Keyword filters have multiple uses. They can be used to block access to websites containing specific words (for example the business name of a competitor), specific file extensions (typically those most commonly used for deploying malware and ransomware), and specific web applications; if, for example, a business wanted to allow its marketing department access to Facebook, but not FaceTime. Effectively, the keyword filters fine-tune the category settings, enhance security and increase productivity.</p>\r\n<h1 class=\"align-center\">Are there any home web filter appliance?</h1>\r\nFor children today, the Internet has always existed. To them, it’s second nature to pop online and watch a funny video, find a fact, or chat with a friend. But, of course, the Internet is also filled with a lot of dark corners (It’s a hop, skip, and a click to adult content). Parents, then, are presented with the daunting task of not only monitoring what sites their children visit but also their screen time consumption. There are a number of home content filtering appliance that allow parents to do just this. The best parental control apps and devices, be they hardware or software, not only put parents in command of such things as the content their children can view and the amount of time they can spend online but help restore a parent’s sense of control. With them, parents, from can restrict access to only specific sites and apps, filter dangerous or explicit web-content, manage time, and even track their location.\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_filtering_Appliance.png"},{"id":552,"title":"Secure Web Gateway - Appliance","alias":"secure-web-gateway-appliance","description":"Secure web gateways are generally appliance-based security solutions that prevent advanced threats, block unauthorized access to systems or websites, stop malware, and monitor real-time activity across websites accessed by users within the institution.\r\nA secure web gateway is primarily used to monitor and prevent malicious traffic and data from entering, or even leaving, an organization’s network. Typically, it is implemented to secure an organization against threats originating from the Internet, websites and other Web 2.0 products/services. It is generally implemented through a hardware gateway device implemented at the outer boundaries of a network. Some of the features a secure Web gateway provides include URL filtering, application-level control, data leakage prevention, and virus/malware code detection.\r\nA Secure web gateway (SWG) protects users against phishing, malware and other Internet-borne threats. Unlike traditional firewalls, SWGs are focused on layer 7 web traffic inspection, both inbound and outbound. As web security solutions, they apply no protection to WAN traffic, which is left to the corporate next generation firewalls. In recent years, SWGs appeared as a cloud service. The cloud instances enable secure web and cloud access from anywhere – including outside the office by mobile users. The traffic coverage and solution form factor remain the key distinctions between SWGs and next generation firewalls, which often provide a very similar level of security capabilities.\r\nA converged, cloud-based network security solution converges the capabilities of a next generation firewall (WAN and Internet traffic inspection) and the extended coverage for mobile users of SWGs.\r\nA converged approach eliminates the need to maintain policies across multiple point solutions and the appliance life cycle.","materialsDescription":"<span style=\"font-weight: bold;\">Why is a secure web gateway important?</span>\r\nSecure web gateways have become increasingly common as cybercriminals have grown more sophisticated in embedding threat vectors into seemingly innocuous or professional-looking websites. These counterfeit websites can compromise the enterprise as users access them, unleashing malicious code and unauthorized access in the background without the user's knowledge. These fake, criminal websites can be quite convincing.\r\nSome of these scam websites appear to be so authentic that they can convince users to enter credit card numbers and personal identification information (PII) such as social security numbers. Other sites require only the connection to the user to bypass web browser controls and inject malicious code such as viruses or malware into the user's network. Examples include fake online shopping sites posing as brand-name sellers, sites that appear to be legitimate government agencies and even business-to-business intranets. Secure web gateways can also prevent data from flowing out of an organization, making certain that restricted data is blocked from leaving the organization.\r\n<span style=\"font-weight: bold;\">How does a secure web gateway work?</span>\r\nSecure web gateways are installed as a software component or a hardware device on the edge of the network or at user endpoints. All traffic to and from users to other networks must pass through the gateway that monitors it. The gateway monitors this traffic for malicious code, web application use, and all user/non-user attempted URL connections.\r\nThe gateway checks or filters website URL addresses against stored lists of known and approved websites—all others not on the approved lists can be explicitly blocked. Known malicious sites can be explicitly blocked as well. URL filters that maintain allowed web addresses are maintained in whitelists, while known, off-limits sites that are explicitly blocked are maintained in blacklists. In enterprises, these lists are maintained in the secure gateway's database, which then applies the list filters to all incoming and outgoing traffic.\r\nSimilarly, data flowing out of the network can be checked, disallowing restricted data sources—data on the network or user devices that are prohibited from distribution. Application-level controls can also be restricted to known and approved functions, such as blocking uploads to software-as-a-service (SaaS) applications (such as Office 365 and Salesforce.com). Although some enterprises deploy secure web gateways in hardware appliances that filter all incoming and outgoing traffic, many organizations use cloud-based, SaaS secure web gateways as a more flexible and less costly solution to deploy and maintain. Organizations with existing hardware investments often combine the two, using hardware at their larger physical sites and cloud-based gateways for remote locations and traveling workers.\r\n<span style=\"font-weight: bold;\">What are some features of secure web gateways?</span>\r\nBeyond basic URL, web application control and data filtering, secure web gateways should provide additional controls and features that enhance network security.\r\n<ul><li>Encrypted traffic analysis. The gateway should compare all traffic to local and global threat lists and reputation sources first, then also analyze the nature of the traffic itself to determine if any content or code poses a threat to the network. This should include SSL-based encrypted traffic.</li><li>Data Loss Prevention. If, for example, a website accepts uploaded documents or data, the documents should first be scanned for sensitive data before being uploaded.</li><li>Social media protection. All information to and from social media should be scanned and filtered.</li><li>Support for all protocols. HTTP, HTTPS, and FTP internet protocols must be supported. While HTTPS is the industry standard now, many sites still support HTTP and FTP connections.</li><li>Integration with zero-day anti-malware solutions. Threats will be discovered, and integration with anti-malware solutions that can detect zero-day (never seen before) threats deliver the best prevention and remediation.</li><li>Integration with security monitoring. Security administrators should be notified of any web gateway security problems via their monitoring solution of choice, typically a security information and event management (SIEM) solution.</li><li>Choice of location. Choose where your secure web gateway best fits in your network—the edge, at endpoints, or in the cloud.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Secure_Web_Gateway_Appliance.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"bufferzone":{"id":3698,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/bufferzone.png","logo":true,"scheme":false,"title":"BufferZone","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"bufferzone","companyTitle":"BUFFERZONE Security","companyTypes":["supplier","vendor"],"companyId":5637,"companyAlias":"bufferzone-security","description":"Even the best detection technology cannot return the data, money or reputation that is lost in a breach. While a layered approach that addresses the entire attack cycle is a must, prevention still has the highest return on investment. <b>BUFFERZONE</b> provides a better way to reduce the attack surface and protect the most vulnerable part of the organization – employee endpoints.\r\n<b>How it Works?</b>\r\nThe <b>BUFFERZONE</b> virtual container protects any application that you define as insecure including web browsers, email, Skype, FTP and even removable storage. BUFFERZONE is transparent to both the application and the end-user, yet completely seals off threats from the rest of the computer. Unlike conventional endpoint detection solutions that depend on signatures or behavioral profiles to detect malicious activity, BUFFERZONE simply isolates malware regardless of whether it is known or new, and prevents it from doing any harm.\r\n<b>The BUFFERZONE Endpoint Security solution includes:</b>\r\n<ul> <li><b>Virtual Container:</b> A secure, virtual environment for accessing content from any potentially risky source including internet browsers, removable media and e-mail.</li> <li><b>Secure Bridge:</b> A configurable process for extracting data from the container to enable collaboration between people and systems while ensuring security and compliance.</li> <li><b>Endpoint Intelligence:</b> Detailed reporting and integration with SIEM and Big Data analytics to identify targeted attacks.</li> </ul>\r\n<b>Features:</b>\r\n<b>Virtual Containment</b>\r\nOn endpoints running the BUFFERZONE agent, access to external, untrusted sources such as the internet and the effects of such access are completely isolated inside a virtualized container. Potential threats are thus isolated from the endpoint’s native resources from which trusted organizational resources are accessed, making it impossible for threats to in any way harm the endpoint or the rest of the organization. A configurable, centralized policy determines application containment.\r\n<b>Network Separation</b>\r\nEndpoint-based network segmentation. Define separate firewall-type rules for contained and uncontained applications, preventing uncontained, trusted applications from accessing risky destinations such as the internet and preventing contained, untrusted applications from accessing sensitive, internal organizational network destinations.\r\n<b>Email Attachment Containment</b>\r\nContains attachments from external, untrusted sources, protecting the endpoint and trusted organizational resources from the attachments. Emails arriving from outside the organization are saved normally (uncontained) on endpoints but are subsequently opened on any protected endpoint in a BUFFERZONE container.\r\n<b>DLP Features</b>\r\nSeveral BUFFERZONE features can contribute to an organizational data-loss prevention (DLP) strategy by blocking information from exiting the organization by various paths:\r\n<ul> <li><b>Containment Features.</b> Prevent uncontained applications, which can access organizational resources, from accessing the internet; and prevent contained applications, which can access the internet, from accessing organizational resources.</li> <li><b>Hidden Files.</b> Set file locations, that may contain sensitive data, to be hidden from contained applications.</li> <li><b>Upload Blocker.</b> When Upload Blocker is enabled, contained browsers can download to and upload from only a designated folder (by default: Downloads), which is isolated from uncontained programs. This prevents browsers from uploading any files to the internet other than contained files that were previously downloaded from the internet.</li> </ul>\r\n<b>BUFFERZONE Management Server (BZMS)</b>\r\nFor centralized management, you can integrate BUFFERZONE with your existing endpoint management system; or, for fuller management capabilities, use the BUFFERZONE Management Server (BZMS) to manage organizational BUFFERZONE agents, gain visibility to relevant organizational endpoints, and serve and assign organizational policy by endpoint and/or user.","shortDescription":"BUFFERZONE endpoint security solution protects enterprises from malicious exploits including Ransomware, Zero-Day, Phishing Attacks etc.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":10,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"BufferZone","keywords":"","description":"Even the best detection technology cannot return the data, money or reputation that is lost in a breach. While a layered approach that addresses the entire attack cycle is a must, prevention still has the highest return on investment. <b>BUFFERZONE</b> provide","og:title":"BufferZone","og:description":"Even the best detection technology cannot return the data, money or reputation that is lost in a breach. While a layered approach that addresses the entire attack cycle is a must, prevention still has the highest return on investment. <b>BUFFERZONE</b> provide","og:image":"https://old.roi4cio.com/fileadmin/user_upload/bufferzone.png"},"eventUrl":"","translationId":3697,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":24,"title":"DLP - Data Leak Prevention","alias":"dlp-data-leak-prevention","description":"Data leak prevention (DLP) is a suite of technologies aimed at stemming the loss of sensitive information that occurs in enterprises across the globe. By focusing on the location, classification and monitoring of information at rest, in use and in motion, this solution can go far in helping an enterprise get a handle on what information it has, and in stopping the numerous leaks of information that occur each day. DLP is not a plug-and-play solution. The successful implementation of this technology requires significant preparation and diligent ongoing maintenance. Enterprises seeking to integrate and implement DLP should be prepared for a significant effort that, if done correctly, can greatly reduce risk to the organization. Those implementing the solution must take a strategic approach that addresses risks, impacts and mitigation steps, along with appropriate governance and assurance measures.","materialsDescription":" <span style=\"font-weight: bold;\">How to protect the company from internal threats associated with leakage of confidential information?</span>\r\nIn order to protect against any threat, you must first realize its presence. Unfortunately, not always the management of companies is able to do this if it comes to information security threats. The key to successfully protecting against information leaks and other threats lies in the skillful use of both organizational and technical means of monitoring personnel actions.\r\n<span style=\"font-weight: bold;\">How should the personnel management system in the company be organized to minimize the risks of leakage of confidential information?</span>\r\nA company must have a special employee responsible for information security, and a large department must have a department directly reporting to the head of the company.\r\n<span style=\"font-weight: bold;\">Which industry representatives are most likely to encounter confidential information leaks?</span>\r\nMore than others, representatives of such industries as industry, energy, and retail trade suffer from leaks. Other industries traditionally exposed to leakage risks — banking, insurance, IT — are usually better at protecting themselves from information risks, and for this reason they are less likely to fall into similar situations.\r\n<span style=\"font-weight: bold;\">What should be adequate measures to protect against leakage of information for an average company?</span>\r\nFor each organization, the question of protection measures should be worked out depending on the specifics of its work, but developing information security policies, instructing employees, delineating access to confidential data and implementing a DLP system are necessary conditions for successful leak protection for any organization. Among all the technical means to prevent information leaks, the DLP system is the most effective today, although its choice must be taken very carefully to get the desired result. So, it should control all possible channels of data leakage, support automatic detection of confidential information in outgoing traffic, maintain control of work laptops that temporarily find themselves outside the corporate network...\r\n<span style=\"font-weight: bold;\">Is it possible to give protection against information leaks to outsourcing?</span>\r\nFor a small company, this may make sense because it reduces costs. However, it is necessary to carefully select the service provider, preferably before receiving recommendations from its current customers.\r\n<span style=\"font-weight: bold;\">What data channels need to be monitored to prevent leakage of confidential information?</span>\r\nAll channels used by employees of the organization - e-mail, Skype, HTTP World Wide Web protocol ... It is also necessary to monitor the information recorded on external storage media and sent to print, plus periodically check the workstation or laptop of the user for files that are there saying should not.\r\n<span style=\"font-weight: bold;\">What to do when the leak has already happened?</span>\r\nFirst of all, you need to notify those who might suffer - silence will cost your reputation much more. Secondly, you need to find the source and prevent further leakage. Next, you need to assess where the information could go, and try to somehow agree that it does not spread further. In general, of course, it is easier to prevent the leakage of confidential information than to disentangle its consequences.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Leak_Prevention.png"},{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":793,"title":"Web Application Vulnerability Scanner","alias":"web-application-vulnerability-scanner","description":" A <span style=\"font-weight: bold; \">web application vulnerability scanner,</span> also known as a <span style=\"font-weight: bold; \">web application security scanner,</span> is an automated security tool. It scans web applications for malware, vulnerabilities, and logical flaws. Web application scanner use black box tests, as these tests do not require access to the source code but instead launch external attacks to test for security vulnerabilities. These simulated attacks can detect path traversal, cross-site scripting(XSS), and command injection.\r\nWeb app scanners are categorized as <span style=\"font-weight: bold; \">Dynamic Application Security Testing (DAST) tools.</span> DAST tools provide insight into how your web applications behave while they are in production, enabling your business to address potential vulnerabilities before a hacker uses them to stage an attack. As your web applications evolve, DAST solutions continue to scan them so that your business can promptly identify and remediate emerging issues before they develop into serious risks.\r\nWeb app vulnerability scanner first crawls the entire website, analyzing in-depth each file it finds, and displaying the entire website structure. After this discovery stage, it performs an automatic audit for common security vulnerabilities by launching a series of Web attacks. Web application scanners check for vulnerabilities on the Web server, proxy server, Web application server and even on other Web services. Unlike source code scanners, web application scanners don't have access to the source code and therefore detect vulnerabilities by actually performing attacks.\r\nA web application vulnerability assessment is very different than a general vulnerability assessment where security focus on networks and hosts. App vulnerability scanner scans ports, connect to services, and use other techniques to gather information revealing the patch levels, configurations, and potential exposures of our infrastructure.\r\nAutomated web application scanning tools help the user making sure the whole website is properly crawled, and that no input or parameter is left unchecked. Automated web vulnerability scanners also help in finding a high percentage of the technical vulnerabilities, and give you a very good overview of the website’s structure, and security status. \r\nThe best way to identify web application security threats is to perform web application vulnerability assessment. The importance of these threats could leave your organization exposed if they are not properly identified and mitigated. Therefore, implementing a web app security scanner solution should be of paramount importance for your organizations security plans in the future. \r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Why Web Application Vulnerability Scanning is important?</h1>\r\nWeb applications are the technological base of modern companies. That’s why more and more businesses are betting on the development of this type of digital platforms. They stand out because they allow to automate processes, simplify tasks, be more efficient and offer a better service to the customer.<br /><br />The objective of web applications is that the user completes a task, be it buying, making a bank transaction, accessing e-mail, editing photos, texts, among many other things. In fact, they are very useful for an endless number of services, hence their popularity. Their disadvantages are few, but there is one that requires special attention: vulnerabilities.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Main web application security risks</span></p>\r\nA web vulnerability scanner tools will help you keep your services protected. However, it is important to be aware of the major security risks that exist so that both developers and security professionals are always alert and can find the most appropriate solutions in a timely manner.\r\n<ul><li><span style=\"font-weight: bold; \">Injection</span></li></ul>\r\nThis is a vulnerability that affects the application databases. They occur when unreliable data is sent to an interpreter by means of a command or query. The attacker may inject malicious code to disrupt the normal operation of the application by making it access the data without authorization or execute involuntary commands.\r\n<ul><li><span style=\"font-weight: bold; \">Authentication failures</span></li></ul>\r\nIf a vulnerability scan in web applications finds a failure, it may be due to loss of authentication. This is a critical vulnerability, as it allows the attacker to impersonate another user. This can compromise important data such as usernames, passwords, session tokens, and more.\r\n<ul><li><span style=\"font-weight: bold; \">Sensitive data exposure</span></li></ul>\r\nA serious risk is the exposure of sensitive data especially financial information such as credit cards or account numbers, personal data such as place of residence, or health-related information. If an attacker scans for this type of vulnerability, he or she may modify or steal this data and use it fraudulently. Therefore, it is essential to use a web app scanning tools to find vulnerabilities in web applications.<br /><br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_Application_Vulnerability_Scanner.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"claroty-continuous-threat-detection":{"id":3246,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Claroty.png","logo":true,"scheme":false,"title":"Claroty Continuous Threat Detection","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"claroty-continuous-threat-detection","companyTitle":"Claroty","companyTypes":["supplier","vendor"],"companyId":5121,"companyAlias":"claroty","description":"Continuous Threat Detection extracts precise details about each asset on the industrial network, profiles all communications and protocols, generates a fine-grain behavioral baseline that characterizes legitimate traffic, and alerts you to network changes, new vulnerabilities and threats. The alerts the system generates provides the contextual information you need to investigate and respond quickly.\r\nContinuous Threat Detection delivers immediate value enabling customers to:\r\n<ul><li>Rapidly detect industrial operations risk, enhance cyber resiliency, and minimize unplanned downtime</li><li>Prevent impact to physical processes, expensive industrial equipment or injuries to people</li><li> Quickly deploy and scale across multiple sites and reduce overall management costs</li></ul>\r\n<span style=\"font-weight: bold; \">Extreme Visibility</span> \r\n<span style=\"left: 84.4882px; top: 280.737px; font-size: 15.8333px; font-family: sans-serif; transform: scaleX(1.01201); \">Continuous Threat Detection deeply understands ICS network communications, protocols and behaviors – providing </span><span style=\"left: 84.4882px; top: 304.076px; font-size: 15.8333px; font-family: sans-serif; transform: scaleX(0.995025); \">detailed, accurate information that remains up-to-date. The system automatically discovers asset details across the </span><span style=\"left: 84.4882px; top: 327.414px; font-size: 15.8333px; font-family: sans-serif; transform: scaleX(0.991638); \">entire industrial network – IP assigned, nested assets and assets that communicate over serial connections.</span><span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Security and Operational Alerts</span>\r\nContinuous Threat Detection creates a very fine-grain “baseline” model of the ICS environment. Leveraging a “known good” baseline, and knowledge about how ICS systems work, Continuous Threat Detection employs advanced pattern matching techniques; generating rich alerts when anomalous activity or critical changes occur.\r\n<span style=\"font-weight: bold; \">Continuous Vulnerability Monitoring</span>\r\nWith deep insights into the ICS environment, CTD enables users to proactively identify and fix configuration and other network hygiene issues that can leave your network vulnerable to attacks. Leveraging proprietary intelligence, the system continuously monitors the network for new known vulnerabilities – providing precise CVE matching down to the firmware versions for industrial devices.","shortDescription":"CTD provides extreme visibility, continuous threat and vulnerability monitoring, and deep insights into ICS networks. It ensures safe and secure operations in large, complex industrial networks.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":10,"sellingCount":7,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Claroty Continuous Threat Detection","keywords":"","description":"Continuous Threat Detection extracts precise details about each asset on the industrial network, profiles all communications and protocols, generates a fine-grain behavioral baseline that characterizes legitimate traffic, and alerts you to network changes, new","og:title":"Claroty Continuous Threat Detection","og:description":"Continuous Threat Detection extracts precise details about each asset on the industrial network, profiles all communications and protocols, generates a fine-grain behavioral baseline that characterizes legitimate traffic, and alerts you to network changes, new","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Claroty.png"},"eventUrl":"","translationId":3247,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":5,"title":"Security Software","alias":"security-software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png"},{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":50,"title":"IPC - Information Protection and Control","alias":"ipc-information-protection-and-control","description":"Information Protection and Control (IPC) is a technology for protecting confidential information from internal threats. IPC solutions are designed to protect information from internal threats, prevent various types of information leaks, corporate espionage, and business intelligence. The term IPC combines two main technologies: encryption of storage media at all points of the network and control of technical channels of information leakage using Data Loss Prevention (DLP) technologies. Network, application and data access control is a possible third technology in IPC class systems. IPC includes solutions of the Data Loss Prevention (DLP) class, a system for encrypting corporate information and controlling access to it. The term IPC was one of the first to use IDC analyst Brian Burke in his report, Information Protection and Control Survey: Data Loss Prevention and Encryption Trends.\r\nIPC technology is a logical continuation of DLP technology and allows you to protect data not only from leaks through technical channels, that is, insiders, but also from unauthorized user access to the network, information, applications, and in cases where the direct storage medium falls into the hands of third parties. This allows you to prevent leaks in those cases when an insider or a person who does not have legal access to data gain access to the direct carrier of information. For example, removing a hard drive from a personal computer, an insider will not be able to read the information on it. This allows you to prevent the compromise of confidential data even in the event of loss, theft or seizure (for example, when organizing operational events by special services specialists, unscrupulous competitors or raiders).\r\nThe main objective of IPC systems is to prevent the transfer of confidential information outside the corporate information system. Such a transfer (leak) may be intentional or unintentional. Practice shows that most of the leaks (more than 75%) do not occur due to malicious intent, but because of errors, carelessness, carelessness, and negligence of employees - it is much easier to detect such cases. The rest is connected with the malicious intent of operators and users of enterprise information systems, in particular, industrial espionage and competitive intelligence. Obviously, malicious insiders, as a rule, try to trick IPC analyzers and other control systems.","materialsDescription":"<span style=\"font-weight: bold; \">What is Information Protection and Control (IPC)?</span>\r\nIPC (English Information Protection and Control) is a generic name for technology to protect confidential information from internal threats.\r\nIPC solutions are designed to prevent various types of information leaks, corporate espionage, and business intelligence. IPC combines two main technologies: media encryption and control of technical channels of information leakage (Data Loss Prevention - DLP). Also, the functionality of IPC systems may include systems of protection against unauthorized access (unauthorized access).\r\n<span style=\"font-weight: bold; \">What are the objectives of IPC class systems?</span>\r\n<ul><li>preventing the transfer of confidential information beyond the corporate information system;</li><li>prevention of outside transmission of not only confidential but also other undesirable information (offensive expressions, spam, eroticism, excessive amounts of data, etc.);</li><li>preventing the transmission of unwanted information not only from inside to outside but also from outside to inside the organization’s information system;</li><li>preventing employees from using the Internet and network resources for personal purposes;</li><li>spam protection;</li><li>virus protection;</li><li>optimization of channel loading, reduction of inappropriate traffic;</li><li>accounting of working hours and presence at the workplace;</li><li>tracking the reliability of employees, their political views, beliefs, collecting dirt;</li><li>archiving information in case of accidental deletion or damage to the original;</li><li>protection against accidental or intentional violation of internal standards;</li><li>ensuring compliance with standards in the field of information security and current legislation.</li></ul>\r\n<span style=\"font-weight: bold; \">Why is DLP technology used in IPC?</span>\r\nIPC DLP technology supports monitoring of the following technical channels for confidential information leakage:\r\n<ul><li>corporate email;</li><li>webmail;</li><li>social networks and blogs;</li><li>file-sharing networks;</li><li>forums and other Internet resources, including those made using AJAX technology;</li><li>instant messaging tools (ICQ, Mail.Ru Agent, Skype, AOL AIM, Google Talk, Yahoo Messenger, MSN Messenger, etc.);</li><li>P2P clients;</li><li>peripheral devices (USB, LPT, COM, WiFi, Bluetooth, etc.);</li><li>local and network printers.</li></ul>\r\nDLP technologies in IPC support control, including the following communication protocols:\r\n<ul><li>FTP;</li><li>FTP over HTTP;</li><li>FTPS;</li><li>HTTP;</li><li>HTTPS (SSL);</li><li>NNTP;</li><li>POP3;</li><li>SMTP.</li></ul>\r\n<span style=\"font-weight: bold; \">What information protection facilities does IPC technology include?</span>\r\nIPC technology includes the ability to encrypt information at all key points in the network. The objects of information security are:\r\n<ul><li>Server hard drives;</li><li>SAN;</li><li>NAS;</li><li>Magnetic tapes;</li><li>CD/DVD/Blue-ray discs;</li><li>Personal computers (including laptops);</li><li>External devices.</li></ul>\r\nIPC technologies use various plug-in cryptographic modules, including the most efficient algorithms DES, Triple DES, RC5, RC6, AES, XTS-AES. The most used algorithms in IPC solutions are RC5 and AES, the effectiveness of which can be tested on the project [distributed.net]. They are most effective for solving the problems of encrypting data of large amounts of data on server storages and backups.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IPC_-_Information_Protection_and_Control.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":824,"title":"ATP - Advanced Threat Protection","alias":"atp-advanced-threat-protection","description":" Advanced threat protection (ATP) refers to a category of security solutions that defend against sophisticated malware or hacking-based attacks targeting sensitive data. Advanced threat protection solutions can be available as software or as managed services. ATP solutions can differ in approaches and components, but most include some combination of endpoint agents, network devices, email gateways, malware protection systems, and a centralized management console to correlate alerts and manage defenses.\r\nThe primary benefit offered by advanced threat protection software is the ability to prevent, detect, and respond to new and sophisticated attacks that are designed to circumvent traditional security solutions such as antivirus, firewalls, and IPS/IDS. Attacks continue to become increasingly targeted, stealthy, and persistent, and ATP solutions take a proactive approach to security by identifying and eliminating advanced threats before data is compromised.\r\nAdvanced threat protection services build on this benefit by providing access to a global community of security professionals dedicated to monitoring, tracking, and sharing information about emerging and identified threats. ATP service providers typically have access to global threat information sharing networks, augmenting their own threat intelligence and analysis with information from third parties. When a new, advanced threat is detected, ATP service providers can update their defenses to ensure protection keeps up. This global community effort plays a substantial role in maintaining the security of enterprises around the world.\r\nEnterprises that implement advanced threat protection are better able to detect threats early and more quickly formulate a response to minimize damage and recover should an attack occur. A good security provider will focus on the lifecycle of an attack and manage threats in real-time. ATP providers notify the enterprise of attacks that have occurred, the severity of the attack, and the response that was initiated to stop the threat in its tracks or minimize data loss. Whether managed in-house or provided as a service, advanced threat protection solutions secure critical data and systems, no matter where the attack originates or how major the attack or potential attack is perceived.","materialsDescription":" <span style=\"font-weight: bold;\">How Advanced Threat Protection Works?</span>\r\nThere are three primary goals of advanced threat protection: early detection (detecting potential threats before they have the opportunity to access critical data or breach systems), adequate protection (the ability to defend against detected threats swiftly), and response (the ability to mitigate threats and respond to security incidents). To achieve these goals, advanced threat protection services and solutions must offer several components and functions for comprehensive ATP:\r\n<ul><li><span style=\"font-weight: bold;\">Real-time visibility</span> – Without continuous monitoring and real-time visibility, threats are often detected too late. When damage is already done, response can be tremendously costly in terms of both resource utilization and reputation damage.</li><li><span style=\"font-weight: bold;\">Context</span> – For true security effectiveness, threat alerts must contain context to allow security teams to effectively prioritize threats and organize response.</li><li><span style=\"font-weight: bold;\">Data awareness</span> – It’s impossible to determine threats truly capable of causing harm without first having a deep understanding of enterprise data, its sensitivity, value, and other factors that contribute to the formulation of an appropriate response.</li></ul>\r\nWhen a threat is detected, further analysis may be required. Security services offering ATP typically handle threat analysis, enabling enterprises to conduct business as usual while continuous monitoring, threat analysis, and response occurs behind the scenes. Threats are typically prioritized by potential damage and the classification or sensitivity of the data at risk. Advanced threat protection should address three key areas:\r\n<ul><li>Halting attacks in progress or mitigating threats before they breach systems</li><li>Disrupting activity in progress or countering actions that have already occurred as a result of a breach</li><li>Interrupting the lifecycle of the attack to ensure that the threat is unable to progress or proceed</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon-ATP.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"platforma-claroty":{"id":3244,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Claroty.png","logo":true,"scheme":false,"title":"Claroty Platform","vendorVerified":0,"rating":"1.70","implementationsCount":2,"suppliersCount":0,"supplierPartnersCount":0,"alias":"platforma-claroty","companyTitle":"Claroty","companyTypes":["supplier","vendor"],"companyId":5121,"companyAlias":"claroty","description":"Claroty’s integrated ICS suite protects the safety of people, assets, and critical processes from cyber-attacks. The platform provides security teams with extreme visibility into industrial control networks, real-time monitoring, network segmentation, control over employee and 3rd party remote access, and integration with existing SOC, cybersecurity and network infrastructure.\r\n<span style=\"font-weight: bold;\">Claroty Platform</span>\r\n<ul> <li>Provides extreme visibility into ICS Networks</li> <li>Identifies security gaps – including known and emerging threats and vulnerabilities</li> <li>Automatically generates current state of OT process-level communications and presents an ideal network segmentation strategy</li> <li>Detects security posture changes</li> <li>Enables proactive threat hunting with actionable threat information</li> <li>Secures, monitors, and records remote connections to ICS assets</li> </ul>\r\n<span style=\"font-weight: bold;\">Protect. </span>Proactively discover and eliminate vulnerabilities, misconfigurations and unsecure connections.\r\n<span style=\"font-weight: bold;\">Respond</span>. Receive context rich alerts for rapid triage and investigation, and automate response using existing network infrastructure.\r\n<span style=\"font-weight: bold;\">Detect.</span> Continuously monitor and detect malicious activity and high-risk changes throughout the attack “kill-chain”.\r\n<span style=\"font-weight: bold;\">Control.</span> Implement network segmentation and manage remote access by enforcing granular access policies and recording sessions.\r\nThe Claroty Platform support the following levels of cyber security:\r\n<span style=\"font-weight: bold;\">Passive: </span>\r\n<ul> <li>Continuous, real-time monitoring of OT Networks</li> <li>Rapidly discover network communications and asset details down to the I/O level</li> <li>Field Proven and 100% safe for OT networks</li> </ul>\r\n<span style=\"font-weight: bold;\">Active:</span>\r\n<ul> <li>Precise, periodic queries of OT and IT Assets</li> <li>Safely query ICS and non-ICS assets for enhanced visibility into asset configurations</li> <li>Enhanced context for alerts and vulnerabilities</li> </ul>","shortDescription":"The Claroty platform provides security teams with visibility into industrial control networks, real-time monitoring, network segmentation and integration with existing SOC","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":20,"sellingCount":16,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Claroty Platform","keywords":"","description":"Claroty’s integrated ICS suite protects the safety of people, assets, and critical processes from cyber-attacks. The platform provides security teams with extreme visibility into industrial control networks, real-time monitoring, network segmentation, co","og:title":"Claroty Platform","og:description":"Claroty’s integrated ICS suite protects the safety of people, assets, and critical processes from cyber-attacks. The platform provides security teams with extreme visibility into industrial control networks, real-time monitoring, network segmentation, co","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Claroty.png"},"eventUrl":"","translationId":3245,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":101,"title":"ICS/SCADA Cyber Security"}],"testingArea":"","categories":[{"id":50,"title":"IPC - Information Protection and Control","alias":"ipc-information-protection-and-control","description":"Information Protection and Control (IPC) is a technology for protecting confidential information from internal threats. IPC solutions are designed to protect information from internal threats, prevent various types of information leaks, corporate espionage, and business intelligence. The term IPC combines two main technologies: encryption of storage media at all points of the network and control of technical channels of information leakage using Data Loss Prevention (DLP) technologies. Network, application and data access control is a possible third technology in IPC class systems. IPC includes solutions of the Data Loss Prevention (DLP) class, a system for encrypting corporate information and controlling access to it. The term IPC was one of the first to use IDC analyst Brian Burke in his report, Information Protection and Control Survey: Data Loss Prevention and Encryption Trends.\r\nIPC technology is a logical continuation of DLP technology and allows you to protect data not only from leaks through technical channels, that is, insiders, but also from unauthorized user access to the network, information, applications, and in cases where the direct storage medium falls into the hands of third parties. This allows you to prevent leaks in those cases when an insider or a person who does not have legal access to data gain access to the direct carrier of information. For example, removing a hard drive from a personal computer, an insider will not be able to read the information on it. This allows you to prevent the compromise of confidential data even in the event of loss, theft or seizure (for example, when organizing operational events by special services specialists, unscrupulous competitors or raiders).\r\nThe main objective of IPC systems is to prevent the transfer of confidential information outside the corporate information system. Such a transfer (leak) may be intentional or unintentional. Practice shows that most of the leaks (more than 75%) do not occur due to malicious intent, but because of errors, carelessness, carelessness, and negligence of employees - it is much easier to detect such cases. The rest is connected with the malicious intent of operators and users of enterprise information systems, in particular, industrial espionage and competitive intelligence. Obviously, malicious insiders, as a rule, try to trick IPC analyzers and other control systems.","materialsDescription":"<span style=\"font-weight: bold; \">What is Information Protection and Control (IPC)?</span>\r\nIPC (English Information Protection and Control) is a generic name for technology to protect confidential information from internal threats.\r\nIPC solutions are designed to prevent various types of information leaks, corporate espionage, and business intelligence. IPC combines two main technologies: media encryption and control of technical channels of information leakage (Data Loss Prevention - DLP). Also, the functionality of IPC systems may include systems of protection against unauthorized access (unauthorized access).\r\n<span style=\"font-weight: bold; \">What are the objectives of IPC class systems?</span>\r\n<ul><li>preventing the transfer of confidential information beyond the corporate information system;</li><li>prevention of outside transmission of not only confidential but also other undesirable information (offensive expressions, spam, eroticism, excessive amounts of data, etc.);</li><li>preventing the transmission of unwanted information not only from inside to outside but also from outside to inside the organization’s information system;</li><li>preventing employees from using the Internet and network resources for personal purposes;</li><li>spam protection;</li><li>virus protection;</li><li>optimization of channel loading, reduction of inappropriate traffic;</li><li>accounting of working hours and presence at the workplace;</li><li>tracking the reliability of employees, their political views, beliefs, collecting dirt;</li><li>archiving information in case of accidental deletion or damage to the original;</li><li>protection against accidental or intentional violation of internal standards;</li><li>ensuring compliance with standards in the field of information security and current legislation.</li></ul>\r\n<span style=\"font-weight: bold; \">Why is DLP technology used in IPC?</span>\r\nIPC DLP technology supports monitoring of the following technical channels for confidential information leakage:\r\n<ul><li>corporate email;</li><li>webmail;</li><li>social networks and blogs;</li><li>file-sharing networks;</li><li>forums and other Internet resources, including those made using AJAX technology;</li><li>instant messaging tools (ICQ, Mail.Ru Agent, Skype, AOL AIM, Google Talk, Yahoo Messenger, MSN Messenger, etc.);</li><li>P2P clients;</li><li>peripheral devices (USB, LPT, COM, WiFi, Bluetooth, etc.);</li><li>local and network printers.</li></ul>\r\nDLP technologies in IPC support control, including the following communication protocols:\r\n<ul><li>FTP;</li><li>FTP over HTTP;</li><li>FTPS;</li><li>HTTP;</li><li>HTTPS (SSL);</li><li>NNTP;</li><li>POP3;</li><li>SMTP.</li></ul>\r\n<span style=\"font-weight: bold; \">What information protection facilities does IPC technology include?</span>\r\nIPC technology includes the ability to encrypt information at all key points in the network. The objects of information security are:\r\n<ul><li>Server hard drives;</li><li>SAN;</li><li>NAS;</li><li>Magnetic tapes;</li><li>CD/DVD/Blue-ray discs;</li><li>Personal computers (including laptops);</li><li>External devices.</li></ul>\r\nIPC technologies use various plug-in cryptographic modules, including the most efficient algorithms DES, Triple DES, RC5, RC6, AES, XTS-AES. The most used algorithms in IPC solutions are RC5 and AES, the effectiveness of which can be tested on the project [distributed.net]. They are most effective for solving the problems of encrypting data of large amounts of data on server storages and backups.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IPC_-_Information_Protection_and_Control.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":824,"title":"ATP - Advanced Threat Protection","alias":"atp-advanced-threat-protection","description":" Advanced threat protection (ATP) refers to a category of security solutions that defend against sophisticated malware or hacking-based attacks targeting sensitive data. Advanced threat protection solutions can be available as software or as managed services. ATP solutions can differ in approaches and components, but most include some combination of endpoint agents, network devices, email gateways, malware protection systems, and a centralized management console to correlate alerts and manage defenses.\r\nThe primary benefit offered by advanced threat protection software is the ability to prevent, detect, and respond to new and sophisticated attacks that are designed to circumvent traditional security solutions such as antivirus, firewalls, and IPS/IDS. Attacks continue to become increasingly targeted, stealthy, and persistent, and ATP solutions take a proactive approach to security by identifying and eliminating advanced threats before data is compromised.\r\nAdvanced threat protection services build on this benefit by providing access to a global community of security professionals dedicated to monitoring, tracking, and sharing information about emerging and identified threats. ATP service providers typically have access to global threat information sharing networks, augmenting their own threat intelligence and analysis with information from third parties. When a new, advanced threat is detected, ATP service providers can update their defenses to ensure protection keeps up. This global community effort plays a substantial role in maintaining the security of enterprises around the world.\r\nEnterprises that implement advanced threat protection are better able to detect threats early and more quickly formulate a response to minimize damage and recover should an attack occur. A good security provider will focus on the lifecycle of an attack and manage threats in real-time. ATP providers notify the enterprise of attacks that have occurred, the severity of the attack, and the response that was initiated to stop the threat in its tracks or minimize data loss. Whether managed in-house or provided as a service, advanced threat protection solutions secure critical data and systems, no matter where the attack originates or how major the attack or potential attack is perceived.","materialsDescription":" <span style=\"font-weight: bold;\">How Advanced Threat Protection Works?</span>\r\nThere are three primary goals of advanced threat protection: early detection (detecting potential threats before they have the opportunity to access critical data or breach systems), adequate protection (the ability to defend against detected threats swiftly), and response (the ability to mitigate threats and respond to security incidents). To achieve these goals, advanced threat protection services and solutions must offer several components and functions for comprehensive ATP:\r\n<ul><li><span style=\"font-weight: bold;\">Real-time visibility</span> – Without continuous monitoring and real-time visibility, threats are often detected too late. When damage is already done, response can be tremendously costly in terms of both resource utilization and reputation damage.</li><li><span style=\"font-weight: bold;\">Context</span> – For true security effectiveness, threat alerts must contain context to allow security teams to effectively prioritize threats and organize response.</li><li><span style=\"font-weight: bold;\">Data awareness</span> – It’s impossible to determine threats truly capable of causing harm without first having a deep understanding of enterprise data, its sensitivity, value, and other factors that contribute to the formulation of an appropriate response.</li></ul>\r\nWhen a threat is detected, further analysis may be required. Security services offering ATP typically handle threat analysis, enabling enterprises to conduct business as usual while continuous monitoring, threat analysis, and response occurs behind the scenes. Threats are typically prioritized by potential damage and the classification or sensitivity of the data at risk. Advanced threat protection should address three key areas:\r\n<ul><li>Halting attacks in progress or mitigating threats before they breach systems</li><li>Disrupting activity in progress or countering actions that have already occurred as a result of a breach</li><li>Interrupting the lifecycle of the attack to ensure that the threat is unable to progress or proceed</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon-ATP.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"core-security":{"id":4366,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/ServerChoice.png","logo":true,"scheme":false,"title":"CORE Security","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"core-security","companyTitle":"ServerChoice","companyTypes":["supplier","vendor"],"companyId":6756,"companyAlias":"serverchoice","description":"<p class=\"align-center\"><span style=\"font-weight: bold;\">Introducing CORE Security</span></p>\r\nWhen it comes to securing your cloud, you need to peace of mind that security’s at the core of your hosted infrastructure. That’s why we’ve put together three ServerChoice CORE Security™ packages, with varying levels of protection, so you can get best-fit cyber security for your organisation.\r\n<p class=\"align-center\"><span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">CORE Base</span></span></p>\r\n<ul><li>Two-factor authentication</li><li>TrendMicro anti-virus & malware protection</li><li>Vulnerability scanning: Unmanaged Quarterly</li><li>System hardening</li><li>Next-generation firewall</li><li>Advanced DDoS mitigation: Standard (20 Gbps)</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">CORE Enterprise</span></span></p>\r\n<ul><li>Two-factor authentication</li><li>TrendMicro anti-virus & malware protection</li><li>Vulnerability scanning: Unmanaged Monthly</li><li>System hardening</li><li>Next-generation firewall</li><li>File integrity monitoring</li><li>Advanced DDoS mitigation: Enhanced (250 Gbps)</li><li>24/7 SIEM services</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">CORE Platinum</span></span></p>\r\n<ul><li>Two-factor authentication</li><li>TrendMicro anti-virus & malware protection</li><li>Vulnerability scanning: Managed Monthly</li><li>System hardening</li><li>Next-generation firewall</li><li>File integrity monitoring</li><li>Advanced DDoS mitigation</li><li>Pro (Terabit+)</li><li>24/7 SIEM services</li><li>Intrusion Prevention System (IPS)</li></ul>\r\n<p class=\"align-center\"><span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Bolt-on CORE Security™ Services</span></span></p>\r\nIn addition to the above security packages, we offer a range of additional security enhancements to deliver maximum protection from cyber threats:\r\n<ul><li>Data loss prevention (DLP)</li><li>Web application firewalls (WAF)</li><li>Penetration testing</li><li>URL filtering (Virtual Desktops only)</li><li>Email spam filtering and antivirus (Exchange only)</li><li>Compliance consultancy</li></ul>\r\n\r\n","shortDescription":"Flexible packages for enhanced securityю When it comes to securing your cloud, you need to peace of mind that security’s at the core of your hosted infrastructure. \r\n\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"CORE Security","keywords":"","description":"<p class=\"align-center\"><span style=\"font-weight: bold;\">Introducing CORE Security</span></p>\r\nWhen it comes to securing your cloud, you need to peace of mind that security’s at the core of your hosted infrastructure. That’s why we’ve put together three Server","og:title":"CORE Security","og:description":"<p class=\"align-center\"><span style=\"font-weight: bold;\">Introducing CORE Security</span></p>\r\nWhen it comes to securing your cloud, you need to peace of mind that security’s at the core of your hosted infrastructure. That’s why we’ve put together three Server","og:image":"https://old.roi4cio.com/fileadmin/user_upload/ServerChoice.png"},"eventUrl":"","translationId":4366,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":24,"title":"DLP - Data Leak Prevention","alias":"dlp-data-leak-prevention","description":"Data leak prevention (DLP) is a suite of technologies aimed at stemming the loss of sensitive information that occurs in enterprises across the globe. By focusing on the location, classification and monitoring of information at rest, in use and in motion, this solution can go far in helping an enterprise get a handle on what information it has, and in stopping the numerous leaks of information that occur each day. DLP is not a plug-and-play solution. The successful implementation of this technology requires significant preparation and diligent ongoing maintenance. Enterprises seeking to integrate and implement DLP should be prepared for a significant effort that, if done correctly, can greatly reduce risk to the organization. Those implementing the solution must take a strategic approach that addresses risks, impacts and mitigation steps, along with appropriate governance and assurance measures.","materialsDescription":" <span style=\"font-weight: bold;\">How to protect the company from internal threats associated with leakage of confidential information?</span>\r\nIn order to protect against any threat, you must first realize its presence. Unfortunately, not always the management of companies is able to do this if it comes to information security threats. The key to successfully protecting against information leaks and other threats lies in the skillful use of both organizational and technical means of monitoring personnel actions.\r\n<span style=\"font-weight: bold;\">How should the personnel management system in the company be organized to minimize the risks of leakage of confidential information?</span>\r\nA company must have a special employee responsible for information security, and a large department must have a department directly reporting to the head of the company.\r\n<span style=\"font-weight: bold;\">Which industry representatives are most likely to encounter confidential information leaks?</span>\r\nMore than others, representatives of such industries as industry, energy, and retail trade suffer from leaks. Other industries traditionally exposed to leakage risks — banking, insurance, IT — are usually better at protecting themselves from information risks, and for this reason they are less likely to fall into similar situations.\r\n<span style=\"font-weight: bold;\">What should be adequate measures to protect against leakage of information for an average company?</span>\r\nFor each organization, the question of protection measures should be worked out depending on the specifics of its work, but developing information security policies, instructing employees, delineating access to confidential data and implementing a DLP system are necessary conditions for successful leak protection for any organization. Among all the technical means to prevent information leaks, the DLP system is the most effective today, although its choice must be taken very carefully to get the desired result. So, it should control all possible channels of data leakage, support automatic detection of confidential information in outgoing traffic, maintain control of work laptops that temporarily find themselves outside the corporate network...\r\n<span style=\"font-weight: bold;\">Is it possible to give protection against information leaks to outsourcing?</span>\r\nFor a small company, this may make sense because it reduces costs. However, it is necessary to carefully select the service provider, preferably before receiving recommendations from its current customers.\r\n<span style=\"font-weight: bold;\">What data channels need to be monitored to prevent leakage of confidential information?</span>\r\nAll channels used by employees of the organization - e-mail, Skype, HTTP World Wide Web protocol ... It is also necessary to monitor the information recorded on external storage media and sent to print, plus periodically check the workstation or laptop of the user for files that are there saying should not.\r\n<span style=\"font-weight: bold;\">What to do when the leak has already happened?</span>\r\nFirst of all, you need to notify those who might suffer - silence will cost your reputation much more. Secondly, you need to find the source and prevent further leakage. Next, you need to assess where the information could go, and try to somehow agree that it does not spread further. In general, of course, it is easier to prevent the leakage of confidential information than to disentangle its consequences.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Leak_Prevention.png"},{"id":34,"title":"ITSM - IT Service Management","alias":"itsm-it-service-management","description":"<span style=\"font-weight: bold; \">IT service management (ITSM)</span> is the process of designing, delivering, managing, and improving the IT services an organization provides to its end users. ITSM is focused on aligning IT processes and services with business objectives to help an organization grow.\r\nITSM positions IT services as the key means of delivering and obtaining value, where an internal or external IT service provider works with business customers, at the same time taking responsibility for the associated costs and risks. ITSM works across the whole lifecycle of a service, from the original strategy, through design, transition and into live operation.\r\nTo ensure sustainable quality of IT services, ITSM establishes a set of practices, or processes, constituting a service management system. There are industrial, national and international standards for IT service management solutions, setting up requirements and good practices for the management system. \r\nITSM system is based on a set of principles, such as focusing on value and continual improvement. It is not just a set of processes – it is a cultural mindset to ensure that the desired outcome for the business is achieved. \r\n<span style=\"font-weight: bold; \">ITIL (IT Infrastructure Library)</span> is a framework of best practices and recommendations for managing an organization's IT operations and services. IT service management processes, when built based on the ITIL framework, pave the way for better IT service operations management and improved business. To summarize, ITIL is a set of guidelines for effective IT service management best practices. ITIL has evolved beyond the delivery of services to providing end-to-end value delivery. The focus is now on the co-creation of value through service relationships. \r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">ITSM processes typically include five stages, all based on the ITIL framework:</span></p>\r\n<span style=\"font-weight: bold; \">ITSM strategy.</span> This stage forms the foundation or the framework of an organization's ITSM process building. It involves defining the services that the organization will offer, strategically planning processes, and recognizing and developing the required assets to keep processes moving. \r\n<span style=\"font-weight: bold; \">Service design.</span> This stage's main aim is planning and designing the IT services the organization offers to meet business demands. It involves creating and designing new services as well as assessing current services and making relevant improvements.\r\n<span style=\"font-weight: bold; \">Service transition.</span> Once the designs for IT services and their processes have been finalized, it's important to build them and test them out to ensure that processes flow. IT teams need to ensure that the designs don't disrupt services in any way, especially when existing IT service processes are upgraded or redesigned. This calls for change management, evaluation, and risk management. \r\n<span style=\"font-weight: bold; \">Service operation. </span>This phase involves implementing the tried and tested new or modified designs in a live environment. While in this stage, the processes have already been tested and the issues fixed, but new processes are bound to have hiccups—especially when customers start using the services. \r\n<span style=\"font-weight: bold;\">Continual service improvement (CSI).</span> Implementing IT processes successfully shouldn't be the final stage in any organization. There's always room for improvement and new development based on issues that pop up, customer needs and demands, and user feedback.\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Benefits of efficient ITSM processes</h1>\r\nIrrespective of the size of business, every organization is involved in IT service management in some way. ITSM ensures that incidents, service requests, problems, changes, and IT assets—in addition to other aspects of IT services—are managed in a streamlined way.\r\nIT teams in your organization can employ various workflows and best practices in ITSM, as outlined in ITIL. Effective IT service management can have positive effects on an IT organization's overall function.\r\nHere are the 10 key benefits of ITSM:\r\n<ul><li> Lower costs for IT operations</li><li> Higher returns on IT investments</li><li> Minimal service outages</li><li> Ability to establish well-defined, repeatable, and manageable IT processes</li><li> Efficient analysis of IT problems to reduce repeat incidents</li><li> Improved efficiency of IT help desk teams</li><li> Well-defined roles and responsibilities</li><li> Clear expectations on service levels and service availability</li><li> Risk-free implementation of IT changes</li><li> Better transparency into IT processes and services</li></ul>\r\n<h1 class=\"align-center\">How to choose an ITSM tool?</h1>\r\nWith a competent IT service management goal in mind, it's important to invest in a service desk solution that caters to your business needs. It goes without saying, with more than 150 service desk tools to choose from, selecting the right one is easier said than done. Here are a few things to keep in mind when choosing an ITSM products:\r\n<span style=\"font-weight: bold; \">Identify key processes and their dependencies. </span>Based on business goals, decide which key ITSM processes need to be implemented and chart out the integrations that need to be established to achieve those goals. \r\n<span style=\"font-weight: bold; \">Consult with ITSM experts.</span> Participate in business expos, webinars, demos, etc., and educate yourself about the various options that are available in the market. Reports from expert analysts such as Gartner and Forrester are particularly useful as they include reviews of almost every solution, ranked based on multiple criteria.\r\n<span style=\"font-weight: bold; \">Choose a deployment option.</span> Every business has a different IT infrastructure model. Selecting an on-premises or software as a service (SaaS IT service management) tool depends on whether your business prefers to host its applications and data on its own servers or use a public or private cloud.\r\n<span style=\"font-weight: bold; \">Plan ahead for the future.</span> Although it's important to consider the "needs" primarily, you shouldn't rule out the secondary or luxury capabilities. If the ITSM tool doesn't have the potential to adapt to your needs as your organization grows, it can pull you back from progressing. Draw a clear picture of where your business is headed and choose an service ITSM that is flexible and technology-driven.\r\n<span style=\"font-weight: bold;\">Don't stop with the capabilities of the ITSM tool.</span> It might be tempting to assess an ITSM tool based on its capabilities and features but it's important to evaluate the vendor of the tool. A good IT support team, and a vendor that is endorsed for their customer-vendor relationship can take your IT services far. Check Gartner's magic quadrant and other analyst reports, along with product and support reviews to ensure that the said tool provides good customer support.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_ITSM.png"},{"id":41,"title":"Antispam","alias":"antispam","description":"In each system, which involves the communication of users, there is always the problem of spam, or the mass mailing of unsolicited emails, which is solved using the antispam system. An antispam system is installed to catch and filter spam at different levels. Spam monitoring and identification are relevant on corporate servers that support corporate email, here the antispam system filters spam on the server before it reaches the mailbox. There are many programs that help to cope with this task, but not all of them are equally useful. The main objective of such programs is to stop sending unsolicited letters, however, the methods of assessing and suppressing such actions can be not only beneficial but also detrimental to your organization. So, depending on the rules and policies of mail servers, your server, or even a domain, may be blacklisted and the transfer of letters will be limited through it, and you may not even be warned about it.\r\nThe main types of installation and use of anti-spam systems:\r\n<ul><li>installation of specialized equipment, a gateway that filters mail before it reaches the server;</li><li>use of external antispam systems for analyzing emails and content;</li><li>setting up an antispam system with the ability to learn on the mail server itself;</li><li>installation of spam filtering software on the client’s computer.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Anti-spam technologies:</span>\r\n<span style=\"font-weight: bold;\">Heuristic analysis</span>\r\nExtremely complex, highly intelligent technology for empirical analysis of all parts of a message: header fields, message bodies, etc. Not only the message itself is analyzed. The heuristic analyzer is constantly being improved, new rules are continuously added to it. It works “ahead of the curve” and makes it possible to recognize still unknown varieties of spam of a new generation before the release of available updates.\r\n<span style=\"font-weight: bold;\">Filtering counteraction</span>\r\nThis is one of the most advanced and effective anti-spam technologies. It is to recognize the tricks resorted to by spammers to bypass anti-spam filters.\r\n<span style=\"font-weight: bold;\">HTML based analysis</span>\r\nHTML code comparable to samples of HTML signatures in antispam. Such a comparison, using the available data on the size of typical spam images, protects users from spam messages using HTML-code, which are often included in the online image.\r\n<span style=\"font-weight: bold;\">Spam detection technology for message envelopes</span>\r\nDetection of fakes in the "stamps" of SMTP-servers and in other elements of the e-mail header is the newest direction in the development of anti-spam methods. Email addresses can not be trusted. Fake emails contain more than just spam. For example, anonymous and even threats. Technologies of various anti-spam systems allow you to send such messages. Thus, it provides not only the economic movement, but also the protection of employees.\r\n<span style=\"font-weight: bold;\">Semantic analysis</span>\r\nMeaning in words and phrases is compared with typical spam vocabulary. Comparison of provisions for a special dictionary, for expression and symbols.\r\n<span style=\"font-weight: bold;\">Anti-camming technology</span>\r\nScamming is probably the most dangerous type of spam. All of them have the so-called "Nigerian letters", reports of winnings in the lottery, casino, fake letters and credit services.\r\n<span style=\"font-weight: bold;\">Technical spam filtering</span>\r\nAutomatic notification of e-mail - bounce-messages - to inform users about the malfunction of the postal system (for example, non-delivery of address letters). Attackers can use similar messages. Under the guise of a technical notification, computer service or ordinary spam can penetrate the computer.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Antispam.png"},{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":79,"title":"VM - Vulnerability management","alias":"vm-vulnerability-management","description":"Vulnerability management is the "cyclical practice of identifying, classifying, prioritizing, remediating and mitigating" software vulnerabilities. Vulnerability management is integral to computer security and network security, and must not be confused with a Vulnerability assessment.\r\nVulnerability management is an ongoing process that includes proactive asset discovery, continuous monitoring, mitigation, remediation and defense tactics to protect your organization's modern IT attack surface from Cyber Exposure.\r\nVulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer system in search of known vulnerabilities, such as open ports, insecure software configurations, and susceptibility to malware infections. They may also be identified by consulting public sources, such as NVD, or subscribing to a commercial vulnerability alerting services. Unknown vulnerabilities, such as a zero-day, may be found with fuzz testing, which can identify certain kinds of vulnerabilities, such as a buffer overflow with relevant test cases. Such analysis can be facilitated by test automation. In addition, antivirus software capable of heuristic analysis may discover undocumented malware if it finds software behaving suspiciously (such as attempting to overwrite a system file).\r\nCorrecting vulnerabilities may variously involve the installation of a patch, a change in network security policy, reconfiguration of software, or educating users about social engineering.\r\nNetwork vulnerabilities represent security gaps that could be abused by attackers to damage network assets, trigger a denial of service, and/or steal potentially sensitive information. Attackers are constantly looking for new vulnerabilities to exploit — and taking advantage of old vulnerabilities that may have gone unpatched.\r\nHaving a vulnerability management framework in place that regularly checks for new vulnerabilities is crucial for preventing cybersecurity breaches. Without a vulnerability testing and patch management system, old security gaps may be left on the network for extended periods of time. This gives attackers more of an opportunity to exploit vulnerabilities and carry out their attacks.\r\nOne statistic that highlights how crucial vulnerability management was featured in an Infosecurity Magazine article. According to survey data cited in the article, of the organizations that “suffered a breach, almost 60% were due to an unpatched vulnerability.” In other words, nearly 60% of the data breaches suffered by survey respondents could have been easily prevented simply by having a vulnerability management plan that would apply critical patches before attackers leveraged the vulnerability.","materialsDescription":" <span style=\"font-weight: bold;\">What is vulnerability management?</span>\r\nVulnerability management is a pro-active approach to managing network security by reducing the likelihood that flaws in code or design compromise the security of an endpoint or network.\r\n<span style=\"font-weight: bold;\">What processes does vulnerability management include?</span>\r\nVulnerability management processes include:\r\n<ul><li><span style=\"font-style: italic;\">Checking for vulnerabilities:</span> This process should include regular network scanning, firewall logging, penetration testing or use of an automated tool like a vulnerability scanner.</li><li><span style=\"font-style: italic;\">Identifying vulnerabilities:</span> This involves analyzing network scans and pen test results, firewall logs or vulnerability scan results to find anomalies that suggest a malware attack or other malicious event has taken advantage of a security vulnerability, or could possibly do so.</li><li><span style=\"font-style: italic;\">Verifying vulnerabilities:</span> This process includes ascertaining whether the identified vulnerabilities could actually be exploited on servers, applications, networks or other systems. This also includes classifying the severity of a vulnerability and the level of risk it presents to the organization.</li><li><span style=\"font-style: italic;\">Mitigating vulnerabilities:</span> This is the process of figuring out how to prevent vulnerabilities from being exploited before a patch is available, or in the event that there is no patch. It can involve taking the affected part of the system off-line (if it's non-critical), or various other workarounds.</li><li><span style=\"font-style: italic;\">Patching vulnerabilities:</span> This is the process of getting patches -- usually from the vendors of the affected software or hardware -- and applying them to all the affected areas in a timely way. This is sometimes an automated process, done with patch management tools. This step also includes patch testing.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VM_-_Vulnerability_management1.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":481,"title":"WAF-web application firewall","alias":"waf-web-application-firewall","description":"A <span style=\"font-weight: bold; \">WAF (Web Application Firewall)</span> helps protect web applications by filtering and monitoring HTTP traffic between a web application and the Internet. It typically protects web applications from attacks such as cross-site forgery, cross-site-scripting (XSS), file inclusion, and SQL injection, among others. A WAF is a protocol layer 7 defense (in the OSI model), and is not designed to defend against all types of attacks. This method of attack mitigation is usually part of a suite of tools which together create a holistic defense against a range of attack vectors.\r\nIn recent years, web application security has become increasingly important, especially after web application attacks ranked as the most common reason for breaches, as reported in the Verizon Data Breach Investigations Report. WAFs have become a critical component of web application security, and guard against web application vulnerabilities while providing the ability to customize the security rules for each application. As WAF is inline with traffic, some functions are conveniently implemented by a load balancer.\r\nAccording to the PCI Security Standards Council, WAFs function as “a security policy enforcement point positioned between a web application and the client endpoint. This functionality can be implemented in software or hardware, running in an appliance device, or in a typical server running a common operating system. It may be a stand-alone device or integrated into other network components.”\r\nBy deploying a WAF firewall in front of a web application, a shield is placed between the web application and the Internet. While a proxy server protects a client machine’s identity by using an intermediary, a web firewall is a type of reverse-proxy, protecting the server from exposure by having clients pass through the WAF before reaching the server.\r\nA WAF operates through a set of rules often called <span style=\"font-weight: bold; \">policies.</span> These policies aim to protect against vulnerabilities in the application by filtering out malicious traffic. The value of a WAF management comes in part from the speed and ease with which policy modification can be implemented, allowing for faster response to varying attack vectors; during a DDoS attack, rate limiting can be quickly implemented by modifying WAF policies.\r\nWAF solutions can be deployed in several ways—it all depends on where your applications are deployed, the services needed, how you want to manage it, and the level of architectural flexibility and performance you require. Do you want to manage it yourself, or do you want to outsource that management? Is it a better model to have a cloud WAF service, option or do you want your WAF to sit on-premises?\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">A WAF products can be implemented one of three different ways:</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">A network-based WAF</span> is generally hardware-based. Since they are installed locally they minimize latency, but network-based WAFs are the most expensive option and also require the storage and maintenance of physical equipment.</li><li><span style=\"font-weight: bold; \">A host-based WAF</span> may be fully integrated into an application’s software. This solution is less expensive than a network-based WAF and offers more customizability. The downside of a host-based WAF is the consumption of local server resources, implementation complexity, and maintenance costs. These components typically require engineering time, and may be costly.</li><li><span style=\"font-weight: bold; \">Cloud-based WAFs</span> offer an affordable option that is very easy to implement; they usually offer a turnkey installation that is as simple as a change in DNS to redirect traffic. Cloud-based WAFs also have a minimal upfront cost, as users pay monthly or annually for security as a service. Cloud-based WAFs can also offer a solution that is consistently updated to protect against the newest threats without any additional work or cost on the user’s end. The drawback of a cloud-based WAF is that users hand over the responsibility to a third-party, therefore some features of the WAF may be a black box to them. </li></ul>\r\n<p class=\"align-left\"> </p>\r\n\r\n","materialsDescription":"<p class=\"align-center\"><span style=\"color: rgb(97, 97, 97); \"><span style=\"font-weight: bold; \">What types of attack WAF prevents?</span></span></p>\r\n<p class=\"align-left\"><span style=\"color: rgb(97, 97, 97); \">WAFs can prevent many attacks, including:</span></p>\r\n<ul><li><span style=\"color: rgb(97, 97, 97); \">Cross-site Scripting (XSS) — Attackers inject client-side scripts into web pages viewed by other users.</span></li><li><span style=\"color: rgb(97, 97, 97); \">SQL injection — Malicious code is inserted or injected into an web entry field that allows attackers to compromise the application and underlying systems.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Cookie poisoning — Modification of a cookie to gain unauthorized information about the user for purposes such as identity theft.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Unvalidated input — Attackers tamper with HTTP request (including the url, headers and form fields) to bypass the site’s security mechanisms.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Layer 7 DoS — An HTTP flood attack that utilizes valid requests in typical URL data retrievals.</span></li><li><span style=\"color: rgb(97, 97, 97); \">Web scraping — Data scraping used for extracting data from websites.</span><span style=\"font-weight: bold; \"></span></li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">What are some WAFs Benefits?</span></p>\r\nWeb app firewall prevents attacks that try to take advantage of the vulnerabilities in web-based applications. The vulnerabilities are common in legacy applications or applications with poor coding or designs. WAFs handle the code deficiencies with custom rules or policies.\r\nIntelligent WAFs provide real-time insights into application traffic, performance, security and threat landscape. This visibility gives administrators the flexibility to respond to the most sophisticated attacks on protected applications.\r\nWhen the Open Web Application Security Project identifies the OWASP top vulnerabilities, WAFs allow administrators to create custom security rules to combat the list of potential attack methods. An intelligent WAF analyzes the security rules matching a particular transaction and provides a real-time view as attack patterns evolve. Based on this intelligence, the WAF can reduce false positives.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">What is the difference between a firewall and a Web Application Firewall?</span></p>\r\nA traditional firewall protects the flow of information between servers while a web application firewall is able to filter traffic for a specific web application. Network firewalls and web application firewalls are complementary and can work together.\r\nTraditional security methods include network firewalls, intrusion detection systems (IDS) and intrusion prevention systems (IPS). They are effective at blocking bad L3-L4 traffic at the perimeter on the lower end (L3-L4) of the Open Systems Interconnection (OSI) model. Traditional firewalls cannot detect attacks in web applications because they do not understand Hypertext Transfer Protocol (HTTP) which occurs at layer 7 of the OSI model. They also only allow the port that sends and receives requested web pages from an HTTP server to be open or closed. This is why web application firewalls are effective for preventing attacks like SQL injections, session hijacking and Cross-Site Scripting (XSS).","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_WAF_web_application_firewall.png"},{"id":483,"title":"Messaging Security","alias":"messaging-security","description":"<span style=\"font-weight: bold; \">Messaging security</span> is a subcategory of <span style=\"font-style: italic; \">unified threat management (UTM) </span>focused on securing and protecting an organization’s communication infrastructure. Communication channels can include email software, messaging apps, and social network IM platforms. This extra layer of security can help secure devices and block a wider range of viruses or malware attacks.\r\nMessaging security helps to ensure the confidentiality and authenticity of an organization’s communication methods. Confidentiality refers to making sure only the intended recipients are able to read the messages and authenticity refers to making sure the identity of each sender or recipient is verified.\r\nOftentimes, attackers aim to gain access to an entire network or system by infiltrating the messaging infrastructure. Implementing proper data and message security can minimize the chance of data leaks and identity theft.\r\n<span style=\"color: rgb(97, 97, 97); \">Encrypted messaging (also known as secure messaging) provides end-to-end encryption for user-to-user text messaging. Encrypted messaging prevents anyone from monitoring text conversations. Many encrypted messenger apps also offer end-to-end encryption for phone calls made using the apps, as well as for files that are sent using the apps.</span>\r\nTwo modern methods of encryption are the <span style=\"font-style: italic; \">Public Key (Asymmetric)</span> and the <span style=\"font-style: italic; \">Private Key (Symmetric</span>) methods. While these two methods of encryption are similar in that they both allow users to encrypt data to hide it from the prying eyes of outsiders and then decrypt it for viewing by an authorized party, they differ in how they perform the steps involved in the process.\r\n<span style=\"font-weight: bold; \">Email</span> security message can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send. \r\n<span style=\"font-weight: bold;\">Encrypted messaging systems </span>must be encrypted end-to-end, so that even the service provider and its staff are unable to decipher what’s in your communications. Ideal solutions is “server-less” encrypted chat where companies won’t store user information anywhere.\r\nIn a more general sense, users of unsecured public Wi-Fi should also consider using a <span style=\"font-weight: bold;\">Virtual Private Network </span>(VPN) application, to conceal their identity and location from Internet Service Providers (ISPs), higher level surveillance, and the attentions of hackers.","materialsDescription":"<h1 class=\"align-center\"> What is messaging security?</h1>\r\nMessaging Security is a program that provides protection for companies' messaging infrastructure. The programs include IP reputation-based anti-spam, pattern-based anti-spam, administrator-defined block/allow lists, mail antivirus, zero-hour malware detection, and email intrusion prevention.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Six Dimensions of Comprehensive Messaging Security</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">IP-Reputation Anti-spam.</span> It checks each email connection request with a database of IP addresses to establish whether a sender is a legitimate or known spam sender and malware. If a sender is recognized it undesirable the messaging Security program drops the connection before the message is accepted.</li><li><span style=\"font-weight: bold; \">Pattern-based anti-spam</span> utilizes a proprietary algorithm to establish a fingerprint-like signature of email messages. When a message comes in, its pattern is calculated and checked against a database to determine if the message matches a known email pattern. </li><li><span style=\"font-weight: bold; \">Block/Allow List Anti-spam.</span> Administrators can create a list of IP addresses or domains that they would like to either block or allow. This method ensures that trusted sources are explicitly allowed and unwanted sources are explicitly denied access.</li><li><span style=\"font-weight: bold; \">Mail Antivirus.</span> This layer of protection blocks a wide range of known viruses and malware attacks.</li><li><span style=\"font-weight: bold; \">Zero-Hour Malware Protection.</span> By analyzing large numbers of messages, outbreaks are detected along with their corresponding messages. These message patterns are then flagged as malicious, giving information about a given attack.</li><li><span style=\"font-weight: bold; \">SmartDefense Email IPS.</span> The messaging security program utilizes SmartDefense Email IPS to stop attacks targeting the messaging infrastructure. </li></ul>\r\n<h1 class=\"align-center\">What are Signal, Wire and LINE messenger security apps like ?</h1>\r\n<p class=\"align-left\">Secure private messenger is a messaging application that emphasizes the privacy and of users using encryption and service transparency. While every modern messenger system is using different security practices (most prominently SSL/HTTPS) - the difference between secure and classic messengers is what we don’t know in the scope of implementation and approach to user data. </p>\r\n<p class=\"align-left\">Message access control and secure messengers evolved into a distinct category due to the growing awareness that communication over the internet is accessible by third parties, and reasonable concerns that the messages can be used against the users.</p>\r\n<h1 class=\"align-center\">Why secure communication is essential for business?</h1>\r\n<p class=\"align-left\">In the context of business operation, communication is a vital element of maintaining an efficient and dynamic working process. It lets you keep everything up to date and on the same page. And since many things are going on at the same time - tools like messengers are one of the many helpers that make the working day a little more manageable.</p>\r\n<p class=\"align-left\">Some of the information, like employee and customer data, proprietary information, data directly linked to business performance or future projections, may be strictly under a non-disclosure agreement. Without proper text message authentication in information security or encryption, it remains vulnerable to exposure. The chances are slim, but the possibility remains. </p>\r\n<p class=\"align-left\">And there are people interested in acquiring that sensitive information, people who like to play dirty because getting a competitive advantage is a decent motivation to go beyond the law. And when private conversations leak, especially the business-related ones - the impact is comparable with the Titanic hitting an iceberg. </p>\r\n<p class=\"align-left\">Encrypted massages in messenger prevents this from happening.</p>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Messaging_Security.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":836,"title":"DRP - Digital Risk Protection","alias":"drp-digital-risk-protection","description":"Digital risks exist on social media and web channels, outside most organization's line of visibility. Organizations struggle to monitor these external, unregulated channels for risks targeting their business, their employees or their customers.\r\nCategories of risk include cyber (insider threat, phishing, malware, data loss), revenue (customer scams, piracy, counterfeit goods) brand (impersonations, slander) and physical (physical threats, natural disasters).\r\nDue to the explosive growth of digital risks, organizations need a flexible, automated approach that can monitor digital channels for organization-specific risks, trigger alerts and remediate malicious posts, profiles, content or apps.\r\nDigital risk protection (DRP) is the process of protecting social media and digital channels from security threats and business risks such as social engineering, external fraud, data loss, insider threat and reputation-based attacks. DRP reduces risks that emerge from digital transformation, protecting against the unwanted exposure of a company’s data, brand, and attack surface and providing actionable insight on threats from the open, deep, and dark web.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What is a digital risk?</span>\r\nDigital risks can take many forms. Most fundamentally, what makes a risk digital? Digital risk is any risk that plays out in one form or another online, outside of an organization’s IT infrastructure and beyond the security perimeter. This can be a cyber risk, like a phishing link or ransomware via LinkedIn, but can also include traditional risks with a digital component, such as credit card money flipping scams on Instagram.\r\n<span style=\"font-weight: bold;\">What are the features of Digital Risk Protection?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">The features are:</span></span>\r\n<ul><li>Protecting yourself from digital risk by building a watchtower, not a wall. A new Forrester report identifies two objectives for any digital risk protection effort: identifying risks and resolving them.</li><li>Digital risk comes in many forms, like unauthorized data disclosure, threat coordination from cybercriminals, risks inherent in the technology you use and in your third-party associates and even from your own employees.</li><li>The best solutions should automate the collection of data and draw from many sources; should have the capabilities to map, monitor, and mitigate digital risk and should be flexible enough to be applied in multiple use cases — factors that many threat intelligence solutions excel in.</li></ul>\r\n<span style=\"font-weight: bold;\">What elements constitute a digital risk?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Unauthorized Data Disclosure</span></span>\r\nThis includes the theft or leakage of any kind of sensitive data, like the personal financial information of a retail organization’s customers or the source code for a technology company’s proprietary products.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Threat Coordination Activity</span></span>\r\nMarketplaces and criminal forums on the dark web or even just on the open web are potent sources of risk. Here, a vulnerability identified by one group or individual who can’t act on it can reach the hands of someone who can. This includes the distribution of exploits in both targeted and untargeted campaigns.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supply Chain Issues</span></span>\r\nBusiness partners, third-party suppliers, and other vendors who interact directly with your organization but are not necessarily following the same security practices can open the door to increased risk.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Employee Risk</span></span>\r\nEven the most secure and unbreakable lock can still easily be opened if you just have the right key. Through social engineering efforts, identity or access management and manipulation, or malicious insider attacks coming from disgruntled employees, even the most robust cybersecurity program can be quickly subverted.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Technology Risks</span></span>\r\nThis broad category includes all of the risks you must consider across the different technologies your organization might rely on to get your work done, keep it running smoothly, and tell people about it.\r\n<ul><li><span style=\"font-weight: bold;\">Physical Infrastructure:</span> Countless industrial processes are now partly or completely automated, relying on SCADA, DCS, or PLC systems to run smoothly — and opening them up to cyber- attacks (like the STUXNET attack that derailed an entire country’s nuclear program).</li><li><span style=\"font-weight: bold;\">IT Infrastructure:</span> Maybe the most commonsensical source of digital risk, this includes all of the potential vulnerabilities in your software and hardware. The proliferation of the internet of things devices poses a growing and sometimes underappreciated risk here.</li><li><span style=\"font-weight: bold;\">Public-Facing Presence:</span> All of the points where you interact with your customers and other public entities, whether through social media, email campaigns, or other marketing strategies, represent potential sources of risk.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Digital_Risk_Protection.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"coronet-securecloud":{"id":4443,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Coronet.png","logo":true,"scheme":false,"title":"Coronet SecureCloud","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"coronet-securecloud","companyTitle":"Coronet","companyTypes":["supplier","vendor"],"companyId":6847,"companyAlias":"coronet","description":"True cloud security must ensure users are authenticated, that the device used is not compromised, that the network used is safe, and yes, that the user behavior (Access, downloads, uploads, collaboration, reporting) is allowed.\r\nTo ensure true cloud security, organizations must purchase, integrate, and operate multiple platforms - which is very expensive, very complicated, labor intensive, and extremely time consuming.\r\n<span style=\"font-weight: bold;\">SecureCloud platform</span> tackles this problem by providing continuous, real time visibility, control and remediation, Coronet SecureCloud ensures that corporate data is used only by trusted users, using trusted devices, connecting through trusted networks to trusted cloud services.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Threat Protection</span></p>\r\n<ul><li>Ensure Control over who has access to the cloud platforms, and where from</li><li>Ensure GDPR, HIPPA, SOX, compliance, and detect PII, PHI, and EDR automatically</li><li>Block compromised devices from accessing corporate data in the cloud resources</li><li>Control what users can do, and who they can collaborate with</li><li>Prevent malware spread through cloud usage (such as file sharing)</li><li>Provide visibility into activity in the cloud, the devices used, and the data that was shared</li><li>Detect and mitigate advanced cloud-to-cloud attacks</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">SecureCloud device authentication</span></p>\r\nWith SecureCloud, an organization can not only enforce fine-grained access control to a cloud service, but also create and enforce a policy that prohibits access from unmanaged devices with no active Coronet agent running. \r\nSecureCloud uses federated user authentication processes, such as SAML, that put the SecureCloud service in the path of SaaS applications. \r\nEach authentication request is steered to the SecureCloud authentication proxy that performs pre-authentication risk assessment based on user, device and service security postures and makes context-based access decisions.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Location based defense</span></p>\r\nMany organizations require that sensitive information and services only be accessed on premises or in secure locations. SecureCloud includes sophisticated location resources management and turns raw geo-location data into geo-spatial intelligence, leveraged in access control, threat prevention and data control.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Threat prevention</span></p>\r\nAdditionally, the administrator can mark a named location as trusted or risky (white and black list). For a conditional access policy, the trusted or risky locations are yet another filter options available for conditional access policy definition. \r\nNamed locations are also important for the reduction of false positives during detection of impossible travel and atypical locations risk events. SecureCloud identifies, mitigates, and automatically remediates threats across cloud services.\r\n It monitors activity patterns in the cloud, determines the behavioral models and establishes baselines. Upon connection of a cloud service, all cloud activity is scored according to various predefined risk factors. \r\nSecureCloud inspects every user session and takes automatic remediation actions when something happens that is different from either the baseline or from the user’s regular activity. \r\nIn this manner, SecureCloud continues evolving its models as it observes new and often unusual behavior without human intervention.\r\nThese capabilities set SecureCloud apart from traditional approaches that require an unreasonable number of manual updates to ensure accurate threats detection.<br /><br /><br />","shortDescription":"Autonomous, all-in-one platform that protects corporate cloud applications from unauthorized access, prevents data leakage, and mitigates cloud threats.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":13,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Coronet SecureCloud","keywords":"","description":"True cloud security must ensure users are authenticated, that the device used is not compromised, that the network used is safe, and yes, that the user behavior (Access, downloads, uploads, collaboration, reporting) is allowed.\r\nTo ensure true cloud security, ","og:title":"Coronet SecureCloud","og:description":"True cloud security must ensure users are authenticated, that the device used is not compromised, that the network used is safe, and yes, that the user behavior (Access, downloads, uploads, collaboration, reporting) is allowed.\r\nTo ensure true cloud security, ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Coronet.png"},"eventUrl":"","translationId":4444,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":24,"title":"DLP - Data Leak Prevention","alias":"dlp-data-leak-prevention","description":"Data leak prevention (DLP) is a suite of technologies aimed at stemming the loss of sensitive information that occurs in enterprises across the globe. By focusing on the location, classification and monitoring of information at rest, in use and in motion, this solution can go far in helping an enterprise get a handle on what information it has, and in stopping the numerous leaks of information that occur each day. DLP is not a plug-and-play solution. The successful implementation of this technology requires significant preparation and diligent ongoing maintenance. Enterprises seeking to integrate and implement DLP should be prepared for a significant effort that, if done correctly, can greatly reduce risk to the organization. Those implementing the solution must take a strategic approach that addresses risks, impacts and mitigation steps, along with appropriate governance and assurance measures.","materialsDescription":" <span style=\"font-weight: bold;\">How to protect the company from internal threats associated with leakage of confidential information?</span>\r\nIn order to protect against any threat, you must first realize its presence. Unfortunately, not always the management of companies is able to do this if it comes to information security threats. The key to successfully protecting against information leaks and other threats lies in the skillful use of both organizational and technical means of monitoring personnel actions.\r\n<span style=\"font-weight: bold;\">How should the personnel management system in the company be organized to minimize the risks of leakage of confidential information?</span>\r\nA company must have a special employee responsible for information security, and a large department must have a department directly reporting to the head of the company.\r\n<span style=\"font-weight: bold;\">Which industry representatives are most likely to encounter confidential information leaks?</span>\r\nMore than others, representatives of such industries as industry, energy, and retail trade suffer from leaks. Other industries traditionally exposed to leakage risks — banking, insurance, IT — are usually better at protecting themselves from information risks, and for this reason they are less likely to fall into similar situations.\r\n<span style=\"font-weight: bold;\">What should be adequate measures to protect against leakage of information for an average company?</span>\r\nFor each organization, the question of protection measures should be worked out depending on the specifics of its work, but developing information security policies, instructing employees, delineating access to confidential data and implementing a DLP system are necessary conditions for successful leak protection for any organization. Among all the technical means to prevent information leaks, the DLP system is the most effective today, although its choice must be taken very carefully to get the desired result. So, it should control all possible channels of data leakage, support automatic detection of confidential information in outgoing traffic, maintain control of work laptops that temporarily find themselves outside the corporate network...\r\n<span style=\"font-weight: bold;\">Is it possible to give protection against information leaks to outsourcing?</span>\r\nFor a small company, this may make sense because it reduces costs. However, it is necessary to carefully select the service provider, preferably before receiving recommendations from its current customers.\r\n<span style=\"font-weight: bold;\">What data channels need to be monitored to prevent leakage of confidential information?</span>\r\nAll channels used by employees of the organization - e-mail, Skype, HTTP World Wide Web protocol ... It is also necessary to monitor the information recorded on external storage media and sent to print, plus periodically check the workstation or laptop of the user for files that are there saying should not.\r\n<span style=\"font-weight: bold;\">What to do when the leak has already happened?</span>\r\nFirst of all, you need to notify those who might suffer - silence will cost your reputation much more. Secondly, you need to find the source and prevent further leakage. Next, you need to assess where the information could go, and try to somehow agree that it does not spread further. In general, of course, it is easier to prevent the leakage of confidential information than to disentangle its consequences.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Leak_Prevention.png"},{"id":50,"title":"IPC - Information Protection and Control","alias":"ipc-information-protection-and-control","description":"Information Protection and Control (IPC) is a technology for protecting confidential information from internal threats. IPC solutions are designed to protect information from internal threats, prevent various types of information leaks, corporate espionage, and business intelligence. The term IPC combines two main technologies: encryption of storage media at all points of the network and control of technical channels of information leakage using Data Loss Prevention (DLP) technologies. Network, application and data access control is a possible third technology in IPC class systems. IPC includes solutions of the Data Loss Prevention (DLP) class, a system for encrypting corporate information and controlling access to it. The term IPC was one of the first to use IDC analyst Brian Burke in his report, Information Protection and Control Survey: Data Loss Prevention and Encryption Trends.\r\nIPC technology is a logical continuation of DLP technology and allows you to protect data not only from leaks through technical channels, that is, insiders, but also from unauthorized user access to the network, information, applications, and in cases where the direct storage medium falls into the hands of third parties. This allows you to prevent leaks in those cases when an insider or a person who does not have legal access to data gain access to the direct carrier of information. For example, removing a hard drive from a personal computer, an insider will not be able to read the information on it. This allows you to prevent the compromise of confidential data even in the event of loss, theft or seizure (for example, when organizing operational events by special services specialists, unscrupulous competitors or raiders).\r\nThe main objective of IPC systems is to prevent the transfer of confidential information outside the corporate information system. Such a transfer (leak) may be intentional or unintentional. Practice shows that most of the leaks (more than 75%) do not occur due to malicious intent, but because of errors, carelessness, carelessness, and negligence of employees - it is much easier to detect such cases. The rest is connected with the malicious intent of operators and users of enterprise information systems, in particular, industrial espionage and competitive intelligence. Obviously, malicious insiders, as a rule, try to trick IPC analyzers and other control systems.","materialsDescription":"<span style=\"font-weight: bold; \">What is Information Protection and Control (IPC)?</span>\r\nIPC (English Information Protection and Control) is a generic name for technology to protect confidential information from internal threats.\r\nIPC solutions are designed to prevent various types of information leaks, corporate espionage, and business intelligence. IPC combines two main technologies: media encryption and control of technical channels of information leakage (Data Loss Prevention - DLP). Also, the functionality of IPC systems may include systems of protection against unauthorized access (unauthorized access).\r\n<span style=\"font-weight: bold; \">What are the objectives of IPC class systems?</span>\r\n<ul><li>preventing the transfer of confidential information beyond the corporate information system;</li><li>prevention of outside transmission of not only confidential but also other undesirable information (offensive expressions, spam, eroticism, excessive amounts of data, etc.);</li><li>preventing the transmission of unwanted information not only from inside to outside but also from outside to inside the organization’s information system;</li><li>preventing employees from using the Internet and network resources for personal purposes;</li><li>spam protection;</li><li>virus protection;</li><li>optimization of channel loading, reduction of inappropriate traffic;</li><li>accounting of working hours and presence at the workplace;</li><li>tracking the reliability of employees, their political views, beliefs, collecting dirt;</li><li>archiving information in case of accidental deletion or damage to the original;</li><li>protection against accidental or intentional violation of internal standards;</li><li>ensuring compliance with standards in the field of information security and current legislation.</li></ul>\r\n<span style=\"font-weight: bold; \">Why is DLP technology used in IPC?</span>\r\nIPC DLP technology supports monitoring of the following technical channels for confidential information leakage:\r\n<ul><li>corporate email;</li><li>webmail;</li><li>social networks and blogs;</li><li>file-sharing networks;</li><li>forums and other Internet resources, including those made using AJAX technology;</li><li>instant messaging tools (ICQ, Mail.Ru Agent, Skype, AOL AIM, Google Talk, Yahoo Messenger, MSN Messenger, etc.);</li><li>P2P clients;</li><li>peripheral devices (USB, LPT, COM, WiFi, Bluetooth, etc.);</li><li>local and network printers.</li></ul>\r\nDLP technologies in IPC support control, including the following communication protocols:\r\n<ul><li>FTP;</li><li>FTP over HTTP;</li><li>FTPS;</li><li>HTTP;</li><li>HTTPS (SSL);</li><li>NNTP;</li><li>POP3;</li><li>SMTP.</li></ul>\r\n<span style=\"font-weight: bold; \">What information protection facilities does IPC technology include?</span>\r\nIPC technology includes the ability to encrypt information at all key points in the network. The objects of information security are:\r\n<ul><li>Server hard drives;</li><li>SAN;</li><li>NAS;</li><li>Magnetic tapes;</li><li>CD/DVD/Blue-ray discs;</li><li>Personal computers (including laptops);</li><li>External devices.</li></ul>\r\nIPC technologies use various plug-in cryptographic modules, including the most efficient algorithms DES, Triple DES, RC5, RC6, AES, XTS-AES. The most used algorithms in IPC solutions are RC5 and AES, the effectiveness of which can be tested on the project [distributed.net]. They are most effective for solving the problems of encrypting data of large amounts of data on server storages and backups.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IPC_-_Information_Protection_and_Control.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":832,"title":"CASB - Cloud Access Security Broker","alias":"casb-cloud-access-security-broker","description":"A cloud access security broker (CASB) (sometimes pronounced cas-bee) is on-premises or cloud-based software that sits between cloud service users and cloud applications, and monitors all activity and enforces security policies. A CASB can offer a variety of services, including but not limited to monitoring user activity, warning administrators about potentially hazardous actions, enforcing security policy compliance, and automatically preventing malware.\r\nA CASB may deliver security, the management or both. Broadly speaking, "security" is the prevention of high-risk events, whilst "management" is the monitoring and mitigation of high-risk events.\r\nCASBs that deliver security must be in the path of data access, between the user and the cloud. Architecturally, this might be achieved with proxy agents on each end-point device, or in agentless fashion without requiring any configuration on each device. Agentless CASB allows for rapid deployment and delivers security on all devices, company-managed or unmanaged BYOD. Agentless CASB also respects user privacy, inspecting only corporate data. Agent-based CASB is difficult to deploy and effective only on devices that are managed by the corporation. Agent-based CASB typically inspects both corporate and personal data.\r\nCASBs that deliver management may use APIs to inspect data and activity in the cloud to alert of risky events after the fact. Another management capability of a CASB is to inspect firewall or proxy logs for the usage of cloud applications.","materialsDescription":"<span style=\"font-weight: bold;\">What is CASB?</span> A Cloud Access Security Broker (CASB) is a policy enforcement point that secures data & apps in the cloud and on any device, anywhere.\r\n<span style=\"font-weight: bold;\">What is the difference between security and management?</span> Security is preventing risky events from happening, management is cleaning up after high-risk events.\r\n<span style=\"font-weight: bold;\">What is Shadow IT?</span> Cloud applications used by business users without IT oversight, also known as unmanaged apps.\r\n<span style=\"font-weight: bold;\">What are managed apps?</span> Cloud Applications that are managed by IT, e.g.Office 365.\r\n<span style=\"font-weight: bold;\">What are the types of CASB?</span> Three types of Cloud Access Security Broker\r\n<ul><li>a) API-only CASB offer basic management</li><li>b) multi-mode first-gen CASB offer management & security</li><li>c) Next-Gen CASB deliver management, security & Zero-Day protection.</li></ul>\r\n<span style=\"font-weight: bold;\">What is a forward proxy?</span> A proxy where traffic must be forwarded by the end-point Such proxies requires agents and configuration on client devices.\r\n<span style=\"font-weight: bold;\">What is a reverse proxy?</span> A proxy where traffic is automatically routed, requiring no agent or configuration on the end-point.\r\n<span style=\"font-weight: bold;\">What is AJAX-VM?</span> Acronym for "Adaptive Javascript and XML- Virtual Machine." AJAX-VM virtualizes cloud apps on the fly so they can be proxied without agents. Reverse-proxy CASB are brittle without AJAX-VM and break frequently with app changes.\r\n<span style=\"font-weight: bold;\">What are the types of CASB architecture?</span> There are three types of CASB architecture: API-only, forward proxy, and reverse proxy. Some CASB are API-only, others API and forward proxy. Next-Gen CASBs offer all three with AJAX-VM.\r\n<span style=\"font-weight: bold;\">What is CASB encryption?</span> Encryption/decryption of data prior to upload/download to a cloud application.\r\n <span style=\"font-weight: bold;\">What is searchable encryption?</span> An encryption system that combines full encryption with a clear-text index to enable search and sort without compromising encryption strength.\r\n<span style=\"font-weight: bold;\">What is tokenization?</span> Obfuscation by encoding each input string as a unique output string.\r\n<span style=\"font-weight: bold;\">What is agentless MDM?</span> Mobile security for BYOD that does not require agents. Easy to deploy and has no access to personal data or apps, thereby preserving user privacy.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_CASB.png"},{"id":836,"title":"DRP - Digital Risk Protection","alias":"drp-digital-risk-protection","description":"Digital risks exist on social media and web channels, outside most organization's line of visibility. Organizations struggle to monitor these external, unregulated channels for risks targeting their business, their employees or their customers.\r\nCategories of risk include cyber (insider threat, phishing, malware, data loss), revenue (customer scams, piracy, counterfeit goods) brand (impersonations, slander) and physical (physical threats, natural disasters).\r\nDue to the explosive growth of digital risks, organizations need a flexible, automated approach that can monitor digital channels for organization-specific risks, trigger alerts and remediate malicious posts, profiles, content or apps.\r\nDigital risk protection (DRP) is the process of protecting social media and digital channels from security threats and business risks such as social engineering, external fraud, data loss, insider threat and reputation-based attacks. DRP reduces risks that emerge from digital transformation, protecting against the unwanted exposure of a company’s data, brand, and attack surface and providing actionable insight on threats from the open, deep, and dark web.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What is a digital risk?</span>\r\nDigital risks can take many forms. Most fundamentally, what makes a risk digital? Digital risk is any risk that plays out in one form or another online, outside of an organization’s IT infrastructure and beyond the security perimeter. This can be a cyber risk, like a phishing link or ransomware via LinkedIn, but can also include traditional risks with a digital component, such as credit card money flipping scams on Instagram.\r\n<span style=\"font-weight: bold;\">What are the features of Digital Risk Protection?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">The features are:</span></span>\r\n<ul><li>Protecting yourself from digital risk by building a watchtower, not a wall. A new Forrester report identifies two objectives for any digital risk protection effort: identifying risks and resolving them.</li><li>Digital risk comes in many forms, like unauthorized data disclosure, threat coordination from cybercriminals, risks inherent in the technology you use and in your third-party associates and even from your own employees.</li><li>The best solutions should automate the collection of data and draw from many sources; should have the capabilities to map, monitor, and mitigate digital risk and should be flexible enough to be applied in multiple use cases — factors that many threat intelligence solutions excel in.</li></ul>\r\n<span style=\"font-weight: bold;\">What elements constitute a digital risk?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Unauthorized Data Disclosure</span></span>\r\nThis includes the theft or leakage of any kind of sensitive data, like the personal financial information of a retail organization’s customers or the source code for a technology company’s proprietary products.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Threat Coordination Activity</span></span>\r\nMarketplaces and criminal forums on the dark web or even just on the open web are potent sources of risk. Here, a vulnerability identified by one group or individual who can’t act on it can reach the hands of someone who can. This includes the distribution of exploits in both targeted and untargeted campaigns.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supply Chain Issues</span></span>\r\nBusiness partners, third-party suppliers, and other vendors who interact directly with your organization but are not necessarily following the same security practices can open the door to increased risk.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Employee Risk</span></span>\r\nEven the most secure and unbreakable lock can still easily be opened if you just have the right key. Through social engineering efforts, identity or access management and manipulation, or malicious insider attacks coming from disgruntled employees, even the most robust cybersecurity program can be quickly subverted.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Technology Risks</span></span>\r\nThis broad category includes all of the risks you must consider across the different technologies your organization might rely on to get your work done, keep it running smoothly, and tell people about it.\r\n<ul><li><span style=\"font-weight: bold;\">Physical Infrastructure:</span> Countless industrial processes are now partly or completely automated, relying on SCADA, DCS, or PLC systems to run smoothly — and opening them up to cyber- attacks (like the STUXNET attack that derailed an entire country’s nuclear program).</li><li><span style=\"font-weight: bold;\">IT Infrastructure:</span> Maybe the most commonsensical source of digital risk, this includes all of the potential vulnerabilities in your software and hardware. The proliferation of the internet of things devices poses a growing and sometimes underappreciated risk here.</li><li><span style=\"font-weight: bold;\">Public-Facing Presence:</span> All of the points where you interact with your customers and other public entities, whether through social media, email campaigns, or other marketing strategies, represent potential sources of risk.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Digital_Risk_Protection.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"cspi-aria-software-defined-security":{"id":3725,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/cspi.png","logo":true,"scheme":false,"title":"CSPi Aria Software Defined Security","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"cspi-aria-software-defined-security","companyTitle":"CSPi","companyTypes":["supplier","vendor"],"companyId":5651,"companyAlias":"cspi","description":"The <b>ARIA SDS</b> platform is a radically different approach to comprehensive network and data security as it employs capabilities normally only found in carrier-class or military-grade architectures. When deployed on available optional hardware offerings it provides the high-availability and fast failover and service-level assurance features demanded in a carrier-class infrastructure. It also uses military communication techniques to protect from penetration and administrative eavesdropping from set-up through operation. Yet, even with this added layer of functionality, the deployment and overall platform management is simple as it is handled through advanced zero-touch provisioning techniques.\r\n<b>How It Works</b>\r\nThe ARIA Software-Defined Security (SDS) platform can secure and encrypt containers and/or VMs as they spawn on-premise, private data centers or public cloud instances.\r\nThe ARIA software automatically applies the organization’s appropriate contextually aware security policies. Additionally, the ARIA Orchestrator automatically discovers the SDSi and manages the application of the appropriate type and level of security services upon deployment.\r\nThe central execution, across an entire organization, using a single pane of glass, ensures the desired access controls, micro-segmentation, encryption service types and levels, and other service techniques are correctly applied – no matter where the applications are running – whether it’s on premises, in the public cloud, or anywhere in between.\r\n<b>Benefits:</b>\r\n<b>Achieve SecDevOps</b>\r\nBalance the InfoSec requirement to maintain the consistent application of security policies and data protection with the desire of application developers for more agile and flexible DevOps practices. With ARIA, developers can simply select and connect to their applications for complete encryption.\r\n<b>Gain a Cost-effective, End-to-End Security Solution</b>\r\nThe ARIA software defined security solution works with any enterprise infrastructure, is easy to deploy, and costs up to ten times less than other server host-based encryption solutions. Organizations that run critical security functions on the Myricom ARC Series SIA (versus the server processor) can expect cost savings in the need for fewer server upgrades and lower power consumption, while also achieving increased application performance.\r\n<b>Secure Data at Rest, in Motion and in Use</b>\r\nIt’s not good enough to protect stored data. You must also have a solution for when it moves across the network, when it is accessed and used. ARIA applies the appropriate encryption policies by application, device, or data type – under any use and at any time.\r\n<b>Improve Application and Server Performance</b>\r\nAdvanced security functions like encryption, micro-segmentation, or tokenization are CPU-intensive and, if run through local servers, may cause an unacceptable delay in application performance. The ARIA platform runs seamlessly with the Myricom ARC Series SIA, making it the ideal choice for server off-load. In addition the SIA serves as a zone of trust for keys, making them impenetrable to breaches.","shortDescription":"CSPi is delivering portfolio of products and consulting solutions singularly focused on securing their customers critical business assets","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":10,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"CSPi Aria Software Defined Security","keywords":"","description":"The <b>ARIA SDS</b> platform is a radically different approach to comprehensive network and data security as it employs capabilities normally only found in carrier-class or military-grade architectures. When deployed on available optional hardware offerings it","og:title":"CSPi Aria Software Defined Security","og:description":"The <b>ARIA SDS</b> platform is a radically different approach to comprehensive network and data security as it employs capabilities normally only found in carrier-class or military-grade architectures. When deployed on available optional hardware offerings it","og:image":"https://old.roi4cio.com/fileadmin/user_upload/cspi.png"},"eventUrl":"","translationId":3724,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":43,"title":"Data Encryption","alias":"data-encryption","description":"<span style=\"font-weight: bold;\">Data encryption</span> translates data into another form, or code, so that only people with access to a secret key (formally called a decryption key) or password can read it. Encrypted data is commonly referred to as ciphertext, while unencrypted data is called plaintext. Currently, encryption is one of the most popular and effective data security methods used by organizations. \r\nTwo main types of data encryption exist - <span style=\"font-weight: bold;\">asymmetric encryption</span>, also known as public-key encryption, and <span style=\"font-weight: bold;\">symmetric encryption</span>.<br />The purpose of data encryption is to protect digital data confidentiality as it is stored on computer systems and transmitted using the internet or other computer networks. The outdated data encryption standard (DES) has been replaced by modern encryption algorithms that play a critical role in the security of IT systems and communications.\r\nThese algorithms provide confidentiality and drive key security initiatives including authentication, integrity, and non-repudiation. Authentication allows for the verification of a message’s origin, and integrity provides proof that a message’s contents have not changed since it was sent. Additionally, non-repudiation ensures that a message sender cannot deny sending the message.\r\nData protection software for data encryption can provide encryption of devices, email, and data itself. In many cases, these encryption functionalities are also met with control capabilities for devices, email, and data. \r\nCompanies and organizations face the challenge of protecting data and preventing data loss as employees use external devices, removable media, and web applications more often as a part of their daily business procedures. Sensitive data may no longer be under the company’s control and protection as employees copy data to removable devices or upload it to the cloud. As a result, the best data loss prevention solutions prevent data theft and the introduction of malware from removable and external devices as well as web and cloud applications. In order to do so, they must also ensure that devices and applications are used properly and that data is secured by auto-encryption even after it leaves the organization.\r\nEncryption software program encrypts data or files by working with one or more encryption algorithms. Security personnel use it to protect data from being viewed by unauthorized users.\r\nTypically, each data packet or file encrypted via data encryption programs requires a key to be decrypted to its original form. This key is generated by the software itself and shared between the data/file sender and receiver. Thus, even if the encrypted data is extracted or compromised, its original content cannot be retrieved without the encryption key. File encryption, email encryption, disk encryption and network encryption are widely used types of data encryption software.<br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">What is Encryption software?</span></h1>\r\nEncryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.There are many software products which provide encryption. Software encryption uses a cipher to obscure the content into ciphertext. One way to classify this type of software is by the type of cipher used. Ciphers can be divided into two categories: <span style=\"font-weight: bold;\">public key ciphers</span> (also known as asymmetric ciphers), and <span style=\"font-weight: bold;\">symmetric key ciphers</span>. Encryption software can be based on either public key or symmetric key encryption.\r\nAnother way to classify crypto software is to categorize its purpose. Using this approach, software encryption may be classified into software which encrypts "<span style=\"font-weight: bold;\">data in transit</span>" and software which encrypts "<span style=\"font-weight: bold;\">data at rest</span>". Data in transit generally uses public key ciphers, and data at rest generally uses symmetric key ciphers.\r\nSymmetric key ciphers can be further divided into stream ciphers and block ciphers. Stream ciphers typically encrypt plaintext a bit or byte at a time, and are most commonly used to encrypt real-time communications, such as audio and video information. The key is used to establish the initial state of a keystream generator, and the output of that generator is used to encrypt the plaintext. Block cipher algorithms split the plaintext into fixed-size blocks and encrypt one block at a time. For example, AES processes 16-byte blocks, while its predecessor DES encrypted blocks of eight bytes.<br />There is also a well-known case where PKI is used for data in transit of data at rest.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">How Data Encryption is used?</span></h1>\r\nThe purpose of data encryption is to deter malicious or negligent parties from accessing sensitive data. An important line of defense in a cybersecurity architecture, encryption makes using intercepted data as difficult as possible. It can be applied to all kinds of data protection needs ranging from classified government intel to personal credit card transactions. Data encryption software, also known as an encryption algorithm or cipher, is used to develop an encryption scheme which theoretically can only be broken with large amounts of computing power.\r\nEncryption is an incredibly important tool for keeping your data safe. When your files are encrypted, they are completely unreadable without the correct encryption key. If someone steals your encrypted files, they won’t be able to do anything with them.\r\nThere different types of encryption: hardware and software. Both offer different advantages. So, what are these methods and why do they matter?\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Software Encryption</span></h1>\r\n<p class=\"align-left\">As the name implies, software encryption uses features of encryption software to encrypt your data. Cryptosoft typically relies on a password; give the right password, and your files will be decrypted, otherwise they remain locked. With encryption enabled, it is passed through a special algorithm that scrambles your data as it is written to disk. The same software then unscrambles data as it is read from the disk for an authenticated user.</p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Crypto programs is typically quite cheap to implement, making it very popular with developers. In addition, software-based encryption routines do not require any additional hardware.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Types of encryption software is only as secure as the rest of your computer or smartphone. If a hacker can crack your password, the encryption is immediately undone.<br />Software encryption tools also share the processing resources of your computer, which can cause the entire machine to slow down as data is encrypted/decrypted. You will also find that opening and closing encrypted files is much slower than normal because the process is relatively resource intensive, particularly for higher levels of encryption</p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Hardware encryption</span></h1>\r\n<p class=\"align-left\">At the heart of hardware encryption is a separate processor dedicated to the task of authentication and encryption. Hardware encryption is increasingly common on mobile devices. <br />The encryption protection technology still relies on a special key to encrypt and decrypt data, but this is randomly generated by the encryption processor. Often times, hardware encryption devices replace traditional passwords with biometric logons (like fingerprints) or a PIN number that is entered on an attached keypad<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Pros.</span>Hardware offers strong encryption, safer than software solutions because the encryption process is separate from the rest of the machine. This makes it much harder to intercept or break. </p>\r\n<p class=\"align-left\">The use of a dedicated processor also relieves the burden on the rest of your device, making the encryption and decryption process much faster.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">Cons.</span>Typically, hardware-based encrypted storage is much more expensive than a software encryption tools. <br />If the hardware decryption processor fails, it becomes extremely hard to access your information.<span style=\"font-weight: bold;\"></span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold;\">The Data Recovery Challenge. </span>Encrypted data is a challenge to recover. Even by recovering the raw sectors from a failed drive, it is still encrypted, which means it is still unreadable. </p>\r\n<p class=\"align-left\">Hardware encrypted devices don’t typically have these additional recovery options. Many have a design to prevent decryption in the event of a component failure, stopping hackers from disassembling them. The fastest and most effective way to deal with data loss on an encrypted device is to ensure you have a complete backup stored somewhere safe. For your PC, this may mean copying data to another encrypted device. For other devices, like your smartphone, backing up to the Cloud provides a quick and simple economy copy that you can restore from. As an added bonus, most Cloud services now encrypt their users’ data too. <br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Encryption.png"},{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"cyberx-platform":{"id":3231,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/CyberX.png","logo":true,"scheme":false,"title":"CyberX Platform","vendorVerified":0,"rating":"1.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"cyberx-platform","companyTitle":"CyberX","companyTypes":["supplier","vendor"],"companyId":5111,"companyAlias":"cyberx","description":"The Industrial Internet of Things (IIoT) is unlocking new levels of productivity, helping organizations improve safety, increase output, and maximize revenue. At the same time, digitalization is driving deployment of billions of IIoT devices and increased connectivity between IT and Operational Technology (OT) networks, increasing the attack surface andrisk of cyberattacks on industrial control systems.\r\nThe CyberX platform is the simplest, most mature, and most interoperable solution for auto-discovering assets, identifying critical vulnerabilities and attack vectors, and continuously monitoring ICS networks for malware and targeted attacks. What’s more, CyberX provides seamless integration with existing SOC workflows for unified IT/OT security governance.\r\nThe CyberX platform delivers continuous ICS threat monitoring and asset discovery, combining a deep embedded understanding of industrial protocols, devices, and applications with ICS-specific behavioral anomaly detection, threat intelligence, risk analytics, and automated threat modeling.The fact is, CyberX is the only company that addresses all four requirements of Gartner’s Adaptive Security Architecture — with a practical, appliance-based system that can be deployed in less than an hour.","shortDescription":"The CyberX platform is the solution for auto-discovering assets, identifying critical vulnerabilities and attack vectors, and continuously monitoring ICS","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"CyberX Platform","keywords":"","description":"The Industrial Internet of Things (IIoT) is unlocking new levels of productivity, helping organizations improve safety, increase output, and maximize revenue. At the same time, digitalization is driving deployment of billions of IIoT devices and increased conn","og:title":"CyberX Platform","og:description":"The Industrial Internet of Things (IIoT) is unlocking new levels of productivity, helping organizations improve safety, increase output, and maximize revenue. At the same time, digitalization is driving deployment of billions of IIoT devices and increased conn","og:image":"https://old.roi4cio.com/fileadmin/user_upload/CyberX.png"},"eventUrl":"","translationId":3235,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":101,"title":"ICS/SCADA Cyber Security"}],"testingArea":"","categories":[{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":483,"title":"Messaging Security","alias":"messaging-security","description":"<span style=\"font-weight: bold; \">Messaging security</span> is a subcategory of <span style=\"font-style: italic; \">unified threat management (UTM) </span>focused on securing and protecting an organization’s communication infrastructure. Communication channels can include email software, messaging apps, and social network IM platforms. This extra layer of security can help secure devices and block a wider range of viruses or malware attacks.\r\nMessaging security helps to ensure the confidentiality and authenticity of an organization’s communication methods. Confidentiality refers to making sure only the intended recipients are able to read the messages and authenticity refers to making sure the identity of each sender or recipient is verified.\r\nOftentimes, attackers aim to gain access to an entire network or system by infiltrating the messaging infrastructure. Implementing proper data and message security can minimize the chance of data leaks and identity theft.\r\n<span style=\"color: rgb(97, 97, 97); \">Encrypted messaging (also known as secure messaging) provides end-to-end encryption for user-to-user text messaging. Encrypted messaging prevents anyone from monitoring text conversations. Many encrypted messenger apps also offer end-to-end encryption for phone calls made using the apps, as well as for files that are sent using the apps.</span>\r\nTwo modern methods of encryption are the <span style=\"font-style: italic; \">Public Key (Asymmetric)</span> and the <span style=\"font-style: italic; \">Private Key (Symmetric</span>) methods. While these two methods of encryption are similar in that they both allow users to encrypt data to hide it from the prying eyes of outsiders and then decrypt it for viewing by an authorized party, they differ in how they perform the steps involved in the process.\r\n<span style=\"font-weight: bold; \">Email</span> security message can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send. \r\n<span style=\"font-weight: bold;\">Encrypted messaging systems </span>must be encrypted end-to-end, so that even the service provider and its staff are unable to decipher what’s in your communications. Ideal solutions is “server-less” encrypted chat where companies won’t store user information anywhere.\r\nIn a more general sense, users of unsecured public Wi-Fi should also consider using a <span style=\"font-weight: bold;\">Virtual Private Network </span>(VPN) application, to conceal their identity and location from Internet Service Providers (ISPs), higher level surveillance, and the attentions of hackers.","materialsDescription":"<h1 class=\"align-center\"> What is messaging security?</h1>\r\nMessaging Security is a program that provides protection for companies' messaging infrastructure. The programs include IP reputation-based anti-spam, pattern-based anti-spam, administrator-defined block/allow lists, mail antivirus, zero-hour malware detection, and email intrusion prevention.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Six Dimensions of Comprehensive Messaging Security</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">IP-Reputation Anti-spam.</span> It checks each email connection request with a database of IP addresses to establish whether a sender is a legitimate or known spam sender and malware. If a sender is recognized it undesirable the messaging Security program drops the connection before the message is accepted.</li><li><span style=\"font-weight: bold; \">Pattern-based anti-spam</span> utilizes a proprietary algorithm to establish a fingerprint-like signature of email messages. When a message comes in, its pattern is calculated and checked against a database to determine if the message matches a known email pattern. </li><li><span style=\"font-weight: bold; \">Block/Allow List Anti-spam.</span> Administrators can create a list of IP addresses or domains that they would like to either block or allow. This method ensures that trusted sources are explicitly allowed and unwanted sources are explicitly denied access.</li><li><span style=\"font-weight: bold; \">Mail Antivirus.</span> This layer of protection blocks a wide range of known viruses and malware attacks.</li><li><span style=\"font-weight: bold; \">Zero-Hour Malware Protection.</span> By analyzing large numbers of messages, outbreaks are detected along with their corresponding messages. These message patterns are then flagged as malicious, giving information about a given attack.</li><li><span style=\"font-weight: bold; \">SmartDefense Email IPS.</span> The messaging security program utilizes SmartDefense Email IPS to stop attacks targeting the messaging infrastructure. </li></ul>\r\n<h1 class=\"align-center\">What are Signal, Wire and LINE messenger security apps like ?</h1>\r\n<p class=\"align-left\">Secure private messenger is a messaging application that emphasizes the privacy and of users using encryption and service transparency. While every modern messenger system is using different security practices (most prominently SSL/HTTPS) - the difference between secure and classic messengers is what we don’t know in the scope of implementation and approach to user data. </p>\r\n<p class=\"align-left\">Message access control and secure messengers evolved into a distinct category due to the growing awareness that communication over the internet is accessible by third parties, and reasonable concerns that the messages can be used against the users.</p>\r\n<h1 class=\"align-center\">Why secure communication is essential for business?</h1>\r\n<p class=\"align-left\">In the context of business operation, communication is a vital element of maintaining an efficient and dynamic working process. It lets you keep everything up to date and on the same page. And since many things are going on at the same time - tools like messengers are one of the many helpers that make the working day a little more manageable.</p>\r\n<p class=\"align-left\">Some of the information, like employee and customer data, proprietary information, data directly linked to business performance or future projections, may be strictly under a non-disclosure agreement. Without proper text message authentication in information security or encryption, it remains vulnerable to exposure. The chances are slim, but the possibility remains. </p>\r\n<p class=\"align-left\">And there are people interested in acquiring that sensitive information, people who like to play dirty because getting a competitive advantage is a decent motivation to go beyond the law. And when private conversations leak, especially the business-related ones - the impact is comparable with the Titanic hitting an iceberg. </p>\r\n<p class=\"align-left\">Encrypted massages in messenger prevents this from happening.</p>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Messaging_Security.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"darktrace-antigena":{"id":3250,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/darktrace.png","logo":true,"scheme":false,"title":"Darktrace Antigena","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"darktrace-antigena","companyTitle":"Darktrace","companyTypes":["vendor"],"companyId":4553,"companyAlias":"darktrace","description":"Powered by Darktrace’s multi-award-winning AI, Darktrace Antigena is an autonomous response solution that takes action against in-progress cyber-attacks, limiting damage and stopping their spread in real time. The technology works like a digital antibody, intelligently generating measured and proportionate responses when a threatening incident arises. This ability to contain threats using proven AI is a game-changer for security teams, who benefit from the critical time needed to catch up and avoid major damage. Bridging the gap between automated threat detection and a security team’s response, Darktrace Antigena represents a new era of cyber defense that autonomously fights back.","shortDescription":"Powered by Darktrace’s AI, Darktrace Antigena is an autonomous response solution that takes action against in-progress cyber-attacks, limiting damage and stopping their spread in real time.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":20,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Darktrace Antigena","keywords":"","description":"Powered by Darktrace’s multi-award-winning AI, Darktrace Antigena is an autonomous response solution that takes action against in-progress cyber-attacks, limiting damage and stopping their spread in real time. The technology works like a digital antibody, inte","og:title":"Darktrace Antigena","og:description":"Powered by Darktrace’s multi-award-winning AI, Darktrace Antigena is an autonomous response solution that takes action against in-progress cyber-attacks, limiting damage and stopping their spread in real time. The technology works like a digital antibody, inte","og:image":"https://old.roi4cio.com/fileadmin/user_upload/darktrace.png"},"eventUrl":"","translationId":3251,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":5,"title":"Security Software","alias":"security-software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":824,"title":"ATP - Advanced Threat Protection","alias":"atp-advanced-threat-protection","description":" Advanced threat protection (ATP) refers to a category of security solutions that defend against sophisticated malware or hacking-based attacks targeting sensitive data. Advanced threat protection solutions can be available as software or as managed services. ATP solutions can differ in approaches and components, but most include some combination of endpoint agents, network devices, email gateways, malware protection systems, and a centralized management console to correlate alerts and manage defenses.\r\nThe primary benefit offered by advanced threat protection software is the ability to prevent, detect, and respond to new and sophisticated attacks that are designed to circumvent traditional security solutions such as antivirus, firewalls, and IPS/IDS. Attacks continue to become increasingly targeted, stealthy, and persistent, and ATP solutions take a proactive approach to security by identifying and eliminating advanced threats before data is compromised.\r\nAdvanced threat protection services build on this benefit by providing access to a global community of security professionals dedicated to monitoring, tracking, and sharing information about emerging and identified threats. ATP service providers typically have access to global threat information sharing networks, augmenting their own threat intelligence and analysis with information from third parties. When a new, advanced threat is detected, ATP service providers can update their defenses to ensure protection keeps up. This global community effort plays a substantial role in maintaining the security of enterprises around the world.\r\nEnterprises that implement advanced threat protection are better able to detect threats early and more quickly formulate a response to minimize damage and recover should an attack occur. A good security provider will focus on the lifecycle of an attack and manage threats in real-time. ATP providers notify the enterprise of attacks that have occurred, the severity of the attack, and the response that was initiated to stop the threat in its tracks or minimize data loss. Whether managed in-house or provided as a service, advanced threat protection solutions secure critical data and systems, no matter where the attack originates or how major the attack or potential attack is perceived.","materialsDescription":" <span style=\"font-weight: bold;\">How Advanced Threat Protection Works?</span>\r\nThere are three primary goals of advanced threat protection: early detection (detecting potential threats before they have the opportunity to access critical data or breach systems), adequate protection (the ability to defend against detected threats swiftly), and response (the ability to mitigate threats and respond to security incidents). To achieve these goals, advanced threat protection services and solutions must offer several components and functions for comprehensive ATP:\r\n<ul><li><span style=\"font-weight: bold;\">Real-time visibility</span> – Without continuous monitoring and real-time visibility, threats are often detected too late. When damage is already done, response can be tremendously costly in terms of both resource utilization and reputation damage.</li><li><span style=\"font-weight: bold;\">Context</span> – For true security effectiveness, threat alerts must contain context to allow security teams to effectively prioritize threats and organize response.</li><li><span style=\"font-weight: bold;\">Data awareness</span> – It’s impossible to determine threats truly capable of causing harm without first having a deep understanding of enterprise data, its sensitivity, value, and other factors that contribute to the formulation of an appropriate response.</li></ul>\r\nWhen a threat is detected, further analysis may be required. Security services offering ATP typically handle threat analysis, enabling enterprises to conduct business as usual while continuous monitoring, threat analysis, and response occurs behind the scenes. Threats are typically prioritized by potential damage and the classification or sensitivity of the data at risk. Advanced threat protection should address three key areas:\r\n<ul><li>Halting attacks in progress or mitigating threats before they breach systems</li><li>Disrupting activity in progress or countering actions that have already occurred as a result of a breach</li><li>Interrupting the lifecycle of the attack to ensure that the threat is unable to progress or proceed</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon-ATP.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dragos-industrial-cybersecurity-platofrm":{"id":3257,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/dragos_logo.jpg","logo":true,"scheme":false,"title":"Dragos Industrial Cybersecurity Platform","vendorVerified":0,"rating":"1.70","implementationsCount":2,"suppliersCount":0,"supplierPartnersCount":0,"alias":"dragos-industrial-cybersecurity-platofrm","companyTitle":"Dragos","companyTypes":["supplier","vendor"],"companyId":5131,"companyAlias":"dragos","description":"<span style=\"font-weight: bold;\">The Dragos Platform </span>contains all the necessary capabilities to monitor and defend ICS environments. It combines the functionality of an OT security incident and event management system (SIEM), network detection and anomaly system, and incident response platform with the experience and intelligence of the Dragos team.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\"><span style=\"left: 105.866px; top: 614.269px; font-size: 15.8333px; font-family: sans-serif; transform: scaleX(0.940557);\">IDENTIFY ASSETS</span></span></p>\r\n<span style=\"left: 262.37px; top: 616.376px; font-size: 15px; font-family: sans-serif; transform: scaleX(1.05034);\">Deep packet inspection (DPI) of ICS protocols, traffic, and asset characterizations, ability to consume host </span><span style=\"left: 105.866px; top: 643.043px; font-size: 15px; font-family: sans-serif; transform: scaleX(1.05341);\">logs and controller events, and integrations with ICS assets such as data historians provide a complete view of ICS environments.</span>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\"><span style=\"left: 105.866px; top: 674.19px; font-size: 15.8333px; font-family: sans-serif; transform: scaleX(0.992681);\">DETECT THREATS</span></span></p>\r\n<span style=\"left: 271.225px; top: 676.376px; font-size: 15px; font-family: sans-serif; transform: scaleX(1.10124);\">Complex characterizations of adversary tactics, techniques, and procedures through threat behavior </span><span style=\"left: 105.866px; top: 703.043px; font-size: 15px; font-family: sans-serif; transform: scaleX(1.09827);\">analytics pinpoint malicious activity</span><span style=\"left: 356.884px; top: 703.043px; font-size: 15px; font-family: sans-serif; transform: scaleX(1.07189);\">on ICS networks and provide in-depth context to alerts.</span>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\"><span style=\"left: 105.866px; top: 734.19px; font-size: 15.8333px; font-family: sans-serif; transform: scaleX(1.02046);\">RESPOND</span></span></p>\r\n<span style=\"left: 208.338px; top: 736.376px; font-size: 15px; font-family: sans-serif; transform: scaleX(1.0756);\">Expert-authored investigation playbooks and case management guide defenders step-by-step through the </span><span style=\"left: 105.866px; top: 763.043px; font-size: 15px; font-family: sans-serif; transform: scaleX(1.05983);\">investigation process to enable independence and transfer knowledge from our team to ICS defenders.</span>\r\n<span style=\"font-weight: bold;\">Benefits:</span>\r\n<ul> <li>Significantly reduce time to identify and inventory all assets and traffic on your network</li> <li>System-generated asset maps and reports provide consistent, time-driven views that are accurate, up-to-date, and thorough</li> <li>Automatic classification of assets based on behavior</li> <li>Set one or more baselines and get notifications when specific changes or anomalies occur in the environment over time</li> <li>Recognize new or rogue assets as they appear; identify assets that have disappeared from the network</li> <li>Powered by human-based intelligence that identifies adversary tradecraft and campaigns</li> <li>No bake-in or tuning period required; threat behavior analytics work immediately upon deployment</li> <li>Detect threats not simply as anomalies to investigate, but with context that guides effective response</li> <li>Notification filtering provides a risk-based approach to management</li> <li>Playbooks codify incident response and best-practice workflows developed by Dragos experts</li> <li>Manage incidents and cases from the same console cross-team</li> <li>Clear Indicator of Compromise reports guide attention to vulnerable assets</li> <li>Easily monitor case, notification, and analyst activity, as well as system-level health and statusT</li> <li>Splunk, QRadar, Pi Historian, LogRythym, Syslog, Windows Host Logs</li> </ul>","shortDescription":"ICS cybersecurity technology that provides ICS defenders with unprecedented visibility of their assets and communications, knowledge of threats through driven analytics.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":5,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dragos Industrial Cybersecurity Platform","keywords":"","description":"<span style=\"font-weight: bold;\">The Dragos Platform </span>contains all the necessary capabilities to monitor and defend ICS environments. It combines the functionality of an OT security incident and event management system (SIEM), network detection and anoma","og:title":"Dragos Industrial Cybersecurity Platform","og:description":"<span style=\"font-weight: bold;\">The Dragos Platform </span>contains all the necessary capabilities to monitor and defend ICS environments. It combines the functionality of an OT security incident and event management system (SIEM), network detection and anoma","og:image":"https://old.roi4cio.com/fileadmin/user_upload/dragos_logo.jpg"},"eventUrl":"","translationId":3260,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[{"id":101,"title":"ICS/SCADA Cyber Security"}],"testingArea":"","categories":[{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":465,"title":"UEBA - User and Entity Behavior Analytics","alias":"ueba-user-and-entity-behavior-analytics","description":"Developments in UBA technology led Gartner to evolve the category to user and entity behavior analytics (UEBA). In September 2015, Gartner published the Market Guide for User and Entity Analytics by Vice President and Distinguished Analyst, Avivah Litan, that provided a thorough definition and explanation. UEBA was referred to in earlier Gartner reports but not in much depth. Expanding the definition from UBA includes devices, applications, servers, data, or anything with an IP address. It moves beyond the fraud-oriented UBA focus to a broader one encompassing "malicious and abusive behavior that otherwise went unnoticed by existing security monitoring systems, such as SIEM and DLP." The addition of "entity" reflects that devices may play a role in a network attack and may also be valuable in uncovering attack activity. "When end users have been compromised, malware can lay dormant and go undetected for months. Rather than trying to find where the outsider entered, UEBAs allow for quicker detection by using algorithms to detect insider threats."\r\nParticularly in the computer security market, there are many vendors for UEBA applications. They can be "differentiated by whether they are designed to monitor on-premises or cloud-based software as a service (SaaS) applications; the methods in which they obtain the source data; the type of analytics they use (i.e., packaged analytics, user-driven or vendor-written), and the service delivery method (i.e., on-premises or a cloud-based)." According to the 2015 market guide released by Gartner, "the UEBA market grew substantially in 2015; UEBA vendors grew their customer base, market consolidation began, and Gartner client interest in UEBA and security analytics increased." The report further projected, "Over the next three years, leading UEBA platforms will become preferred systems for security operations and investigations at some of the organizations they serve. It will be—and in some cases already is—much easier to discover some security events and analyze individual offenders in UEBA than it is in many legacy security monitoring systems."","materialsDescription":"<span style=\"font-weight: bold;\">What is UEBA?</span>\r\nHackers can break into firewalls, send you e-mails with malicious and infected attachments, or even bribe an employee to gain access into your firewalls. Old tools and systems are quickly becoming obsolete, and there are several ways to get past them.\r\nUser and entity behavior analytics (UEBA) give you more comprehensive way of making sure that your organization has top-notch IT security, while also helping you detect users and entities that might compromise your entire system.\r\nUEBA is a type of cybersecurity process that takes note of the normal conduct of users. In turn, they detect any anomalous behavior or instances when there are deviations from these “normal” patterns. For example, if a particular user regularly downloads 10 MB of files every day but suddenly downloads gigabytes of files, the system would be able to detect this anomaly and alert them immediately.\r\nUEBA uses machine learning, algorithms, and statistical analyses to know when there is a deviation from established patterns, showing which of these anomalies could result in, potentially, a real threat. UEBA can also aggregate the data you have in your reports and logs, as well as analyze the file, flow, and packet information.\r\nIn UEBA, you do not track security events or monitor devices; instead, you track all the users and entities in your system. As such, UEBA focuses on insider threats, such as employees who have gone rogue, employees who have already been compromised, and people who already have access to your system and then carry out targeted attacks and fraud attempts, as well as servers, applications, and devices that are working within your system.\r\n<span style=\"font-weight: bold;\">What are the benefits of UEBA?</span>\r\nIt is the unfortunate truth that today's cybersecurity tools are fast becoming obsolete, and more skilled hackers and cyber attackers are now able to bypass the perimeter defenses that are used by most companies. In the old days, you were secure if you had web gateways, firewalls, and intrusion prevention tools in place. This is no longer the case in today’s complex threat landscape, and it’s especially true for bigger corporations that are proven to have very porous IT perimeters that are also very difficult to manage and oversee.\r\nThe bottom line? Preventive measures are no longer enough. Your firewalls are not going to be 100% foolproof, and hackers and attackers will get into your system at one point or another. This is why detection is equally important: when hackers do successfully get into your system, you should be able to detect their presence quickly in order to minimize the damage.\r\n<span style=\"font-weight: bold;\">How Does UEBA Work?</span>\r\nThe premise of UEBA is actually very simple. You can easily steal an employee’s user name and password, but it is much harder to mimic the person’s normal behavior once inside the network.\r\nFor example, let’s say you steal Jane Doe’s password and user name. You would still not be able to act precisely like Jane Doe once in the system unless given extensive research and preparation. Therefore, when Jane Doe’s user name is logged in to the system, and her behavior is different than that of typical Jane Doe, that is when UEBA alerts start to sound.\r\nAnother relatable analogy would be if your credit card was stolen. A thief can pickpocket your wallet and go to a high-end shop and start spending thousands of dollars using your credit card. If your spending pattern on that card is different from the thief’s, the company’s fraud detection department will often recognize the abnormal spending and block suspicious purchases, issuing an alert to you or asking you to verify the authenticity of a transaction.\r\nAs such, UEBA is a very important component of IT security, allowing you to:\r\n1. Detect insider threats. It is not too far-fetched to imagine that an employee, or perhaps a group of employees, could go rogue, stealing data and information by using their own access. UEBA can help you detect data breaches, sabotage, privilege abuse and policy violations made by your own staff.\r\n2. Detect compromised accounts. Sometimes, user accounts are compromised. It could be that the user unwittingly installed malware on his or her machine, or sometimes a legitimate account is spoofed. UEBA can help you weed out spoofed and compromised users before they can do real harm.\r\n3. Detect brute-force attacks. Hackers sometimes target your cloud-based entities as well as third-party authentication systems. With UEBA, you are able to detect brute-force attempts, allowing you to block access to these entities.\r\n4. Detect changes in permissions and the creation of super users. Some attacks involve the use of super users. UEBA allows you to detect when super users are created, or if there are accounts that were granted unnecessary permissions.\r\n5. Detect breach of protected data. If you have protected data, it is not enough to just keep it secure. You should know when a user accesses this data when he or she does not have any legitimate business reason to access it.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_User_and_Entity_Behavior_Analytics.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"dragos-worldview":{"id":3261,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/dragos_logo.jpg","logo":true,"scheme":false,"title":"Dragos WorldView","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"dragos-worldview","companyTitle":"Dragos","companyTypes":["supplier","vendor"],"companyId":5131,"companyAlias":"dragos","description":"<span style=\"font-weight: bold; \">Dragos WorldView </span>is the industrial cybersecurity industry’s only product exclusively focused on ICS threat intelligence. Prepared by Dragos’ expert ICS/OT threat intelligence analysts, it is the essential supplement to any IT-focused intelligence product used by IT or OT professionals with responsibility for an ICS network. Dragos WorldView calls out and cuts through the hype and speculation surrounding ICS cybersecurity, providing an effective antidote to the fear, uncertainty and doubt it sows.<br /><br /><span style=\"font-weight: bold; \">WorldView</span> threat intelligence feeds, alerts, reports, and briefings provide deep, context-rich insight, illuminating the malicious actors and activity targeting industrial control networks globally. This knowledge enables ICS defenders to make both tactical decisions and strategic recommendations on ICS cybersecurity quickly, and with confidence.\r\n<blockquote>Dragos Worldview provides National Grid with clearly articulated intelligence, backed by evidence and specific information to help us mitigate threats. The clear understanding Dragos has of the environment in which we operate, allows us to cut through the hype around many potential industry vulnerabilities, so we can focus on the ones that matter most as we look after vital infrastructure and ensure supply to our customers.</blockquote>\r\n<i>National Grid</i>\r\n<p class=\"align-center\"><br /><span style=\"font-weight: bold; \">Dragos WorldView Content</span></p>\r\n<p class=\"align-left\"><span style=\"font-weight: bold; \"><br /></span></p>\r\n<ul><li>ICS-themed malware identification and analysis ICS vulnerability disclosures and analysis</li><li>ICS adversary behavior trends</li><li>ICS threat/incident media report analysis and commentary</li><li>Cybersecurity conference presentations and researcher discoveries with Dragos’ expert perspective</li><li>Key indicators of compromise (IOCs) for defenders to utilize</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\"><br />Dragos WorldView Benefits</span></p>\r\n<p class=\"align-left\"> <span style=\"font-weight: bold;\">Immediacy</span>: critical threat alerts inform you of rapidly escalating ICS threat situations<br /><span style=\"font-weight: bold;\">Efficiency</span>: expert threat identification and analysis combats alert fatigue<br /><span style=\"font-weight: bold;\">Effectiveness</span>: reduce adversary dwell time and mean time to recovery (MTTR)<br /><span style=\"font-weight: bold;\">Insight</span>: ICS vulnerability, threat and incident assessments promote informed, timely, and confident decision making<br /><br /><br /></p>","shortDescription":"Industrial cybersecurity industry’s only product exclusively focused on ICS threat intelligence.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":16,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dragos WorldView","keywords":"","description":"<span style=\"font-weight: bold; \">Dragos WorldView </span>is the industrial cybersecurity industry’s only product exclusively focused on ICS threat intelligence. Prepared by Dragos’ expert ICS/OT threat intelligence analysts, it is the essential supplement to ","og:title":"Dragos WorldView","og:description":"<span style=\"font-weight: bold; \">Dragos WorldView </span>is the industrial cybersecurity industry’s only product exclusively focused on ICS threat intelligence. Prepared by Dragos’ expert ICS/OT threat intelligence analysts, it is the essential supplement to ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/dragos_logo.jpg"},"eventUrl":"","translationId":3262,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"fireeye-security-suite":{"id":3529,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/FireEye_NX.png","logo":true,"scheme":false,"title":"FireEye Security Suite","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":3,"alias":"fireeye-security-suite","companyTitle":"FireEye","companyTypes":["vendor"],"companyId":2739,"companyAlias":"fireeye","description":"<span style=\"color: rgb(97, 97, 97); \">FireEye Security Suite provides enterprise-grade protection to secure networks, emails and endpoints for organizations of all sizes. It defends against advanced attacks, accelerates incident response and safeguards the core business.<br /></span>\r\n<span style=\"color: rgb(97, 97, 97); \">FireEye Security Suite is designed for organizations with 100-2000 users. It protects multiple attack vectors to break the chain of events that often leads to data loss and business disruption.<br /><br /><span style=\"font-weight: bold;\">Security Suite features</span><span style=\"text-decoration: underline;\"></span></span>\r\n<span style=\"color: rgb(97, 97, 97); \"><span style=\"text-decoration: underline;\">FireEye Network Security, NX Edition</span><br />Secure networks with the integrated Intrusion Prevention System (IPS) and detect advanced malicious network attacks such as zero-day attacks and signature-less malware.<span style=\"text-decoration: underline;\"></span></span>\r\n<span style=\"color: rgb(97, 97, 97); \"><span style=\"text-decoration: underline;\">Multi-Vector Virtual Execution (MVX) Engine</span><br />Cloud MVX engine detonates suspicious artifacts that don't match signature-based indicators and disrupts advanced malicious network attacks.<span style=\"text-decoration: underline;\"></span></span>\r\n<span style=\"color: rgb(97, 97, 97); \"><span style=\"text-decoration: underline;\">FireEye Email Security, Cloud Edition</span><br />Arrests the first line of attack by stopping viruses, spam, zero-day malware, advanced URL threats and low-volume, highly-targeted phishing attacks.<span style=\"text-decoration: underline;\"></span></span>\r\n<span style=\"color: rgb(97, 97, 97); \"><span style=\"text-decoration: underline;\">Email Sender Impersonation Detection</span><br />Blocks malware-less impersonation attacks and protects organizations from hard to detect CEO fraud scams and financial loss.<span style=\"text-decoration: underline;\"></span></span>\r\n<span style=\"color: rgb(97, 97, 97); \"><span style=\"text-decoration: underline;\">FireEye Endpoint Security, Essentials Edition</span><br />Last line of defense with an antivirus engine, behavioral analysis and machine-learning managed by a single unified agent.<span style=\"text-decoration: underline;\"></span></span>\r\n<span style=\"color: rgb(97, 97, 97); \"><span style=\"text-decoration: underline;\">Endpoint Protection Against Signature-Free Vulnerability Exploits</span><br />Ability to assess and analyze endpoint behavior to reveal and block application exploits.<br /></span>\r\n\r\n<span style=\"font-weight: bold;\">FireEye solutions included in the Security Suite</span>\r\n<ul><li>Network Security: defend networks, data and users with today’s fastest, most reliable cyber-attack protection.</li><li>Endpoint Security: proactively detect, prevent and analyze known and unknown threats on any endpoint.</li><li>Email Security: proactively detect and stop all types ofemail-borne threats.</li><li>FireEye Helix: simplify, integrate and automate security operations to stop threats faster.<span style=\"color: rgb(97, 97, 97); \"></span></li></ul>","shortDescription":"FireEye Security Suite is an enterprise-grade protection to secure networks, emails and endpoints for growing mid-market organizations\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":16,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"FireEye Security Suite","keywords":"","description":"<span style=\"color: rgb(97, 97, 97); \">FireEye Security Suite provides enterprise-grade protection to secure networks, emails and endpoints for organizations of all sizes. It defends against advanced attacks, accelerates incident response and safeguards the co","og:title":"FireEye Security Suite","og:description":"<span style=\"color: rgb(97, 97, 97); \">FireEye Security Suite provides enterprise-grade protection to secure networks, emails and endpoints for organizations of all sizes. It defends against advanced attacks, accelerates incident response and safeguards the co","og:image":"https://old.roi4cio.com/fileadmin/user_upload/FireEye_NX.png"},"eventUrl":"","translationId":3530,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":5,"title":"Security Software","alias":"security-software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png"},{"id":40,"title":"Endpoint security","alias":"endpoint-security","description":"In network security, endpoint security refers to a methodology of protecting the corporate network when accessed via remote devices such as laptops or other wireless and mobile devices. Each device with a remote connecting to the network creates a potential entry point for security threats. Endpoint security is designed to secure each endpoint on the network created by these devices.\r\nUsually, endpoint security is a security system that consists of security software, located on a centrally managed and accessible server or gateway within the network, in addition to client software being installed on each of the endpoints (or devices). The server authenticates logins from the endpoints and also updates the device software when needed. While endpoint security software differs by vendor, you can expect most software offerings to provide antivirus, antispyware, firewall and also a host intrusion prevention system (HIPS).\r\nEndpoint security is becoming a more common IT security function and concern as more employees bring consumer mobile devices to work and companies allow its mobile workforce to use these devices on the corporate network.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What are endpoint devices?</span>\r\nAny device that can connect to the central business network is considered an endpoint. Endpoint devices are potential entry points for cybersecurity threats and need strong protection because they are often the weakest link in network security.\r\n<span style=\"font-weight: bold;\">What is endpoint security management?</span>\r\nA set of rules defining the level of security that each device connected to the business network must comply with. These rules may include using an approved operating system (OS), installing a virtual private network (VPN), or running up-to-date antivirus software. If the device connecting to the network does not have the desired level of protection, it may have to connect via a guest network and have limited network access.\r\n<span style=\"font-weight: bold;\">What is endpoint security software?</span>\r\nPrograms that make sure your devices are protected. Endpoint protection software may be cloud-based and work as SaaS (Software as a Service). Endpoint security software can also be installed on each device separately as a standalone application.\r\n<span style=\"font-weight: bold;\">What is endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response (EDR) solutions analyze files and programs, and report on any threats found. EDR solutions monitor continuously for advanced threats, helping to identify attacks at an early stage and respond rapidly to a range of threats.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Endpoint_security.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"},{"id":483,"title":"Messaging Security","alias":"messaging-security","description":"<span style=\"font-weight: bold; \">Messaging security</span> is a subcategory of <span style=\"font-style: italic; \">unified threat management (UTM) </span>focused on securing and protecting an organization’s communication infrastructure. Communication channels can include email software, messaging apps, and social network IM platforms. This extra layer of security can help secure devices and block a wider range of viruses or malware attacks.\r\nMessaging security helps to ensure the confidentiality and authenticity of an organization’s communication methods. Confidentiality refers to making sure only the intended recipients are able to read the messages and authenticity refers to making sure the identity of each sender or recipient is verified.\r\nOftentimes, attackers aim to gain access to an entire network or system by infiltrating the messaging infrastructure. Implementing proper data and message security can minimize the chance of data leaks and identity theft.\r\n<span style=\"color: rgb(97, 97, 97); \">Encrypted messaging (also known as secure messaging) provides end-to-end encryption for user-to-user text messaging. Encrypted messaging prevents anyone from monitoring text conversations. Many encrypted messenger apps also offer end-to-end encryption for phone calls made using the apps, as well as for files that are sent using the apps.</span>\r\nTwo modern methods of encryption are the <span style=\"font-style: italic; \">Public Key (Asymmetric)</span> and the <span style=\"font-style: italic; \">Private Key (Symmetric</span>) methods. While these two methods of encryption are similar in that they both allow users to encrypt data to hide it from the prying eyes of outsiders and then decrypt it for viewing by an authorized party, they differ in how they perform the steps involved in the process.\r\n<span style=\"font-weight: bold; \">Email</span> security message can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send. \r\n<span style=\"font-weight: bold;\">Encrypted messaging systems </span>must be encrypted end-to-end, so that even the service provider and its staff are unable to decipher what’s in your communications. Ideal solutions is “server-less” encrypted chat where companies won’t store user information anywhere.\r\nIn a more general sense, users of unsecured public Wi-Fi should also consider using a <span style=\"font-weight: bold;\">Virtual Private Network </span>(VPN) application, to conceal their identity and location from Internet Service Providers (ISPs), higher level surveillance, and the attentions of hackers.","materialsDescription":"<h1 class=\"align-center\"> What is messaging security?</h1>\r\nMessaging Security is a program that provides protection for companies' messaging infrastructure. The programs include IP reputation-based anti-spam, pattern-based anti-spam, administrator-defined block/allow lists, mail antivirus, zero-hour malware detection, and email intrusion prevention.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Six Dimensions of Comprehensive Messaging Security</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">IP-Reputation Anti-spam.</span> It checks each email connection request with a database of IP addresses to establish whether a sender is a legitimate or known spam sender and malware. If a sender is recognized it undesirable the messaging Security program drops the connection before the message is accepted.</li><li><span style=\"font-weight: bold; \">Pattern-based anti-spam</span> utilizes a proprietary algorithm to establish a fingerprint-like signature of email messages. When a message comes in, its pattern is calculated and checked against a database to determine if the message matches a known email pattern. </li><li><span style=\"font-weight: bold; \">Block/Allow List Anti-spam.</span> Administrators can create a list of IP addresses or domains that they would like to either block or allow. This method ensures that trusted sources are explicitly allowed and unwanted sources are explicitly denied access.</li><li><span style=\"font-weight: bold; \">Mail Antivirus.</span> This layer of protection blocks a wide range of known viruses and malware attacks.</li><li><span style=\"font-weight: bold; \">Zero-Hour Malware Protection.</span> By analyzing large numbers of messages, outbreaks are detected along with their corresponding messages. These message patterns are then flagged as malicious, giving information about a given attack.</li><li><span style=\"font-weight: bold; \">SmartDefense Email IPS.</span> The messaging security program utilizes SmartDefense Email IPS to stop attacks targeting the messaging infrastructure. </li></ul>\r\n<h1 class=\"align-center\">What are Signal, Wire and LINE messenger security apps like ?</h1>\r\n<p class=\"align-left\">Secure private messenger is a messaging application that emphasizes the privacy and of users using encryption and service transparency. While every modern messenger system is using different security practices (most prominently SSL/HTTPS) - the difference between secure and classic messengers is what we don’t know in the scope of implementation and approach to user data. </p>\r\n<p class=\"align-left\">Message access control and secure messengers evolved into a distinct category due to the growing awareness that communication over the internet is accessible by third parties, and reasonable concerns that the messages can be used against the users.</p>\r\n<h1 class=\"align-center\">Why secure communication is essential for business?</h1>\r\n<p class=\"align-left\">In the context of business operation, communication is a vital element of maintaining an efficient and dynamic working process. It lets you keep everything up to date and on the same page. And since many things are going on at the same time - tools like messengers are one of the many helpers that make the working day a little more manageable.</p>\r\n<p class=\"align-left\">Some of the information, like employee and customer data, proprietary information, data directly linked to business performance or future projections, may be strictly under a non-disclosure agreement. Without proper text message authentication in information security or encryption, it remains vulnerable to exposure. The chances are slim, but the possibility remains. </p>\r\n<p class=\"align-left\">And there are people interested in acquiring that sensitive information, people who like to play dirty because getting a competitive advantage is a decent motivation to go beyond the law. And when private conversations leak, especially the business-related ones - the impact is comparable with the Titanic hitting an iceberg. </p>\r\n<p class=\"align-left\">Encrypted massages in messenger prevents this from happening.</p>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Messaging_Security.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":824,"title":"ATP - Advanced Threat Protection","alias":"atp-advanced-threat-protection","description":" Advanced threat protection (ATP) refers to a category of security solutions that defend against sophisticated malware or hacking-based attacks targeting sensitive data. Advanced threat protection solutions can be available as software or as managed services. ATP solutions can differ in approaches and components, but most include some combination of endpoint agents, network devices, email gateways, malware protection systems, and a centralized management console to correlate alerts and manage defenses.\r\nThe primary benefit offered by advanced threat protection software is the ability to prevent, detect, and respond to new and sophisticated attacks that are designed to circumvent traditional security solutions such as antivirus, firewalls, and IPS/IDS. Attacks continue to become increasingly targeted, stealthy, and persistent, and ATP solutions take a proactive approach to security by identifying and eliminating advanced threats before data is compromised.\r\nAdvanced threat protection services build on this benefit by providing access to a global community of security professionals dedicated to monitoring, tracking, and sharing information about emerging and identified threats. ATP service providers typically have access to global threat information sharing networks, augmenting their own threat intelligence and analysis with information from third parties. When a new, advanced threat is detected, ATP service providers can update their defenses to ensure protection keeps up. This global community effort plays a substantial role in maintaining the security of enterprises around the world.\r\nEnterprises that implement advanced threat protection are better able to detect threats early and more quickly formulate a response to minimize damage and recover should an attack occur. A good security provider will focus on the lifecycle of an attack and manage threats in real-time. ATP providers notify the enterprise of attacks that have occurred, the severity of the attack, and the response that was initiated to stop the threat in its tracks or minimize data loss. Whether managed in-house or provided as a service, advanced threat protection solutions secure critical data and systems, no matter where the attack originates or how major the attack or potential attack is perceived.","materialsDescription":" <span style=\"font-weight: bold;\">How Advanced Threat Protection Works?</span>\r\nThere are three primary goals of advanced threat protection: early detection (detecting potential threats before they have the opportunity to access critical data or breach systems), adequate protection (the ability to defend against detected threats swiftly), and response (the ability to mitigate threats and respond to security incidents). To achieve these goals, advanced threat protection services and solutions must offer several components and functions for comprehensive ATP:\r\n<ul><li><span style=\"font-weight: bold;\">Real-time visibility</span> – Without continuous monitoring and real-time visibility, threats are often detected too late. When damage is already done, response can be tremendously costly in terms of both resource utilization and reputation damage.</li><li><span style=\"font-weight: bold;\">Context</span> – For true security effectiveness, threat alerts must contain context to allow security teams to effectively prioritize threats and organize response.</li><li><span style=\"font-weight: bold;\">Data awareness</span> – It’s impossible to determine threats truly capable of causing harm without first having a deep understanding of enterprise data, its sensitivity, value, and other factors that contribute to the formulation of an appropriate response.</li></ul>\r\nWhen a threat is detected, further analysis may be required. Security services offering ATP typically handle threat analysis, enabling enterprises to conduct business as usual while continuous monitoring, threat analysis, and response occurs behind the scenes. Threats are typically prioritized by potential damage and the classification or sensitivity of the data at risk. Advanced threat protection should address three key areas:\r\n<ul><li>Halting attacks in progress or mitigating threats before they breach systems</li><li>Disrupting activity in progress or countering actions that have already occurred as a result of a breach</li><li>Interrupting the lifecycle of the attack to ensure that the threat is unable to progress or proceed</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon-ATP.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"forcepoint-web-security":{"id":1630,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/forcepoint_logo.png","logo":true,"scheme":false,"title":"Forcepoint Web Security","vendorVerified":0,"rating":"2.00","implementationsCount":4,"suppliersCount":0,"supplierPartnersCount":8,"alias":"forcepoint-web-security","companyTitle":"Forcepoint","companyTypes":["supplier","vendor"],"companyId":178,"companyAlias":"forcepoint","description":"Forcepoint Web Security provides industry-leading reporting, sandboxing and DLP capabilities, and stops more advanced, non-signature threats to your data than any other solution – including Blue Coat, Cisco and Zscaler. And because it is cloud hosted, you won’t backhaul traffic or pay for appliances.\r\nForcepoint Web Security is built on a multi-tenant platform and deployed globally on the industry’s most secure cloud platform. And because every environment is different, Forcepoint Web Security can be deployed as a hybrid solution in combination with a Forcepoint Next Generation Firewall, providing protection for every user, everywhere.\r\n<span style=\"font-weight: bold;\">Highly secured and always available Forcepoint cloud</span>\r\nExtend web protection to roaming users with global coverage from the industry’s only certified global cloud infrastructure (ISO 27001, 27018, CSA STAR) for protecting every user from advanced threats.\r\n<span style=\"font-weight: bold;\">Empower the anytime, anywhere global workforce</span>\r\nForcepoint’s patent-pending Direct Connect Endpoint™ technology allows for unparalleled speed and connectivity for roaming users, eliminating latencies with a proxy-less endpoint.\r\n<span style=\"font-weight: bold;\">The features, API, and ports of a cloud security solution</span>\r\nForcepoint Web Security includes features typically found in as-a-service only cloud security product—but that’s just the start. Our enterprise-grade gateway appliance includes an SSL decryption mirror port and ingest API for additional threat feeds.\r\n<span style=\"font-weight: bold;\">Unrivaled threat protection with Forcepoint ACE</span>\r\nForcepoint’s Advanced Classification Engine (ACE) identifies threats with over 10,000 analytics, machine learning, behavioral baselines, and other advanced techniques maintained through real-time global threat intelligence.\r\n<span style=\"font-weight: bold;\">Superior real-time reporting—simplified</span>\r\nStreamline your workflow with easy-to-use drag-and-drop reporting, delivered in real-time through an interactive interface—all in a centralized system.\r\n<span style=\"font-weight: bold;\">Remove layers of latency</span>\r\nGo direct. Unlike other cloud solutions, Forcepoint has direct peering partners, critical to the security and productivity of a global workforce and its shared data.\r\n\r\n<span style=\"font-weight: bold;\">Key features:</span><span style=\"font-style: italic;\"></span>\r\n<span style=\"font-weight: bold;\">Integrated CASB functionality</span><br />Easily extend visibility and control to cloud applications, from shadow IT reporting to full control via inline (proxy) mode.\r\n<span style=\"font-weight: bold;\">Not just URL filtering</span>\r\nDon’t need your traffic forwarded to the cloud? Enable URL filtering in our leading Next Generation Firewall (NGFW), allowing for granular controls based on users and applications.\r\n<span style=\"font-weight: bold;\">Streamline compliance</span>\r\nMeet the highest certification standards across data privacy laws and residency requirements in different jurisdictions—while allowing users to keep doing good things.\r\n<span style=\"font-weight: bold;\">Expand internet access for roaming users</span>\r\nApply different policies when an employee connects from corporate and non-corporate locations with Forcepoint Web Security.\r\n<span style=\"font-weight: bold;\">Security and protection beyond the endpoint</span>\r\nExtend your existing policies to mobile devices and protect them from Advanced Threats, mobile malware, phishing attacks, spoofing, and more with Web Security.\r\n<span style=\"font-weight: bold;\">ThreatSeeker Intelligence</span>\r\nUnite over 900 million endpoints (including inputs from Facebook), and with Forcepoint ACE security defenses, analyze up to five billion requests per day. This is the core collective intelligence for all Forcepoint products—managed by Forcepoint Security Labs.\r\n<span style=\"font-weight: bold;\">Enterprise-grade DLP protection</span>\r\nForcepoint’s 9x Magic Quadrant leading DLP and integrated Incident Risk Ranking (IRR) can protect your data from people-based security incidents, including risk caused by accidental, compromised, and malicious insiders.\r\n<span style=\"font-weight: bold;\">Eliminate crippling false malware with AMD</span>\r\nCloud sandboxing allows you to optimize remediation efforts for incident response teams with comprehensive and actionable intelligence—providing 100% efficacy in malware detection.","shortDescription":"Forcepoint Web Security provides robust protection through content aware defenses and cloud app discovery and monitoring, reducing risks to sensitive data for both on premise and mobile users.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":true,"bonus":100,"usingCount":17,"sellingCount":10,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Forcepoint Web Security","keywords":"data, Forcepoint, theft, Security, your, content, within, include","description":"Forcepoint Web Security provides industry-leading reporting, sandboxing and DLP capabilities, and stops more advanced, non-signature threats to your data than any other solution – including Blue Coat, Cisco and Zscaler. And because it is cloud hosted, you won’","og:title":"Forcepoint Web Security","og:description":"Forcepoint Web Security provides industry-leading reporting, sandboxing and DLP capabilities, and stops more advanced, non-signature threats to your data than any other solution – including Blue Coat, Cisco and Zscaler. And because it is cloud hosted, you won’","og:image":"https://old.roi4cio.com/fileadmin/user_upload/forcepoint_logo.png"},"eventUrl":"","translationId":1561,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":42,"title":"UTM - Unified threat management","alias":"utm-unified-threat-management","description":"<span style=\"font-weight: bold; \">UTM (Unified Threat Management)</span> system is a type of network hardware appliance, virtual appliance or cloud service that protects businesses from security threats in a simplified way by combining and integrating multiple security services and features.\r\nUnified threat management <span style=\"font-weight: bold; \">devices </span>are often packaged as network security appliances that can help protect networks against combined security threats, including malware and attacks that simultaneously target separate parts of the network.\r\nUTM <span style=\"font-weight: bold; \">cloud services</span> and virtual network appliances are becoming increasingly popular for network security, especially for smaller and medium-sized businesses. They both do away with the need for on-premises network security appliances, yet still provide centralized control and ease of use for building network security defense in depth. While UTM systems and <span style=\"font-weight: bold; \">next-generation firewalls (NGFWs)</span> are sometimes comparable, unified threat management device includes added security features that NGFWs don't offer.\r\nOriginally developed to fill the network security gaps left by traditional firewalls, NGFWs usually include application intelligence and intrusion prevention systems, as well as denial-of-service protection. Unified threat management devices offer multiple layers of network security, including next-generation firewalls, intrusion detection/prevention systems, antivirus, virtual private networks (VPN), spam filtering and URL filtering for web content.\r\nUnified threat management appliance has gained traction in the industry due to the emergence of blended threats, which are combinations of different types of malware and attacks that target separate parts of the network simultaneously. By creating a single point of defense and providing a single console, unified security management make dealing with varied threats much easier.\r\nUnified threat management products provide increased protection and visibility, as well as control over network security, reducing complexity. Unified threat management system typically does this via inspection methods that address different types of threats. These methods include:\r\n<ul><li><span style=\"font-weight: bold; \">Flow-based inspection,</span> also known as stream-based inspection, samples data that enters a UTM device, and then uses pattern matching to determine whether there is malicious content in the data flow.</li><li> <span style=\"font-weight: bold; \">Proxy-based inspection</span> acts as a proxy to reconstruct the content entering a UTM device, and then executes a full inspection of the content to search for potential security threats. If the content is clean, the device sends the content to the user. However, if a virus or other security threat is detected, the device removes the questionable content, and then sends the file or webpage to the user.</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> How UTM is deployed?</h1>\r\nBusinesses can implement UTM as a UTM appliance that connects to a company's network, as a software program running on an existing network server, or as a service that works in a cloud environment.\r\nUTMs are particularly useful in organizations that have many branches or retail outlets that have traditionally used dedicated WAN, but are increasingly using public internet connections to the headquarters/data center. Using a UTM in these cases gives the business more insight and better control over the security of those branch or retail outlets.\r\nBusinesses can choose from one or more methods to deploy UTM to the appropriate platforms, but they may also find it most suitable to select a combination of platforms. Some of the options include installing unified threat management software on the company's servers in a data center; using software-based UTM products on cloud-based servers; using traditional UTM hardware appliances that come with preintegrated hardware and software; or using virtual appliances, which are integrated software suites that can be deployed in virtual environments.\r\n<h1 class=\"align-center\">Benefits of Using a Unified Threat Management Solution</h1>\r\nUTM solutions offer unique benefits to small and medium businesses that are looking to enhance their security programs. Because the capabilities of multiple specialized programs are contained in a single appliance, UTM threat management reduces the complexity of a company’s security system. Similarly, having one program that controls security reduces the amount of training that employees receive when being hired or migrating to a new system and allows for easy management in the future. This can also save money in the long run as opposed to having to buy multiple devices.\r\nSome UTM solutions provide additional benefits for companies in strictly regulated industries. Appliances that use identity-based security to report on user activity while enabling policy creation based on user identity meet the requirements of regulatory compliance such as HIPPA, CIPA, and GLBA that require access controls and auditing that meet control data leakage.\r\nUTM solutions also help to protect networks against combined threats. These threats consist of different types of malware and attacks that target separate parts of the network simultaneously. When using separate appliances for each security wall, preventing these combined attacks can be difficult. This is because each security wall has to be managed individually in order to remain up-to-date with the changing security threats. Because it is a single point of defense, UTM’s make dealing with combined threats easier.\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_UTM.jpg"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"frontlinecloud":{"id":4468,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/digital-defense.png","logo":true,"scheme":false,"title":"Frontline.Cloud","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"frontlinecloud","companyTitle":"Digital Defense","companyTypes":["vendor"],"companyId":6895,"companyAlias":"digital-defense","description":"As the creators of the original SaaS security platform – well before cloud security services became all the rage, and long before competitive companies saw the light – Digital Defense continues to set the standard for the delivery of SaaS solutions and services.\r\n<span style=\"font-weight: bold;\">The Frontline.Cloud security Software as a Service (SaaS) platform supports multiple systems including Frontline Vulnerability Manager™ (Frontline VM™), Frontline Pen Testing™ (Frontline Pen Test™), Frontline Web Application Scanning™ (Frontline WAS™) and a new offering, Frontline Active Threat Sweep (Frontline ATS™).</span>\r\nFrontline.Cloud, is hosted on Amazon Web Services (AWS) and incorporates Digital Defense’s patented and proprietary technology. \r\nThe platform, already industry recognized for ease of use and rapid deployment, now offers organizations significant administration efficiencies for assessing premise-based, cloud, or hybrid network implementations through AWS hosting.\r\nThe Frontline.Cloud platform delivers high quality results and includes unified management and comprehensive reporting. Extensive application programming interfaces are also available, enabling tight integration with 3rd party cloud and/or premise-based systems resulting in effective automation of security operations.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">The Frontline.Cloud™ Systems</span></p>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Frontline Vulnerability Manager (Frontline VM) is the industry’s most comprehensive, accurate, and easy to use VM platform – bar none.</span></span>\r\nFrontline VM comprehensively identifies and evaluates the security and business risk postures of network devices and applications deployed as premise, cloud, or hybrid network-based implementations. Now residing entirely in Amazon Web Services (AWS), Frontline VM easily addresses the security compliance requirements of organizations around the globe.\r\nCompetitors’ vulnerability management software solutions may have, in fact, reached “commodity” stature – being milked for cash at the expense of continued R&D investment. Nothing could be further from the truth for Frontline VM. \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Frontline Active Threat Sweep (Frontline ATS), an agentless system, enhances your existing defense-in-depth coverage by uncovering gaps in your present endpoint protection, active threats and indicators of compromise.</span></span>\r\nDigital Defense’s Frontline Active Threat Sweep™ (Frontline ATS™) complements your existing endpoint protection technologies providing an agentless, easy to deploy method to quickly and reliably analyze assets for active threat activity and indications of compromise. \r\nEnhance your existing defense-in-depth coverage by uncovering gaps in your existing protection. Pinpoint which assets have no endpoint protection installed or that are out-of-sync and out-of-date leaving one or more assets at risk.\r\nFrontline ATS enables organizations interested in threat hunting to deploy a threat detection capability on top of Digital Defense’s proprietary technology architecture that is lightweight and effective, to gain instant visibility into assets that demonstrate indications of compromise.\r\nFrontline Web Application Scanning (Frontline WAS) has been developed to provide the highest level of dynamic web application testing results through a system that is easily deployed and maintained.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Frontline Web Application Scanning™ (Frontline WAS™), a Frontline.Cloud SaaS security system, is housed in Amazon Web Services and has been developed to provide the highest level of dynamic web application testing results through a system that is easily deployed and maintained. </span></span>\r\nEnjoy the benefits of a technology you can trust to deliver unparalleled accuracy with minimal consumption of resources.\r\nUnderpinned by DDI NIRV™, Digital Defense’s patented scanning technology, Frontline WAS overcomes frustrations experienced by security professionals such as the lack of accurate results and complexity found in deploying other web application scanning tools.\r\n<ul><li>Easy deployment and configuration</li><li>High level dashboards at the scan level and a per web application to easily expose overall security postures at various levels</li><li>“Blind Spot” coverage commonly missed by other web application assessment technologies</li><li>Prioritization of the most critical vulnerabilities, saving organizations valuable resources through targeted remediation efforts</li><li>Tracking of and trending on new, recurred and fixed vulnerabilities</li><li>Intuitive results navigationActive View – web application scan data management across all web application scan activities</li><li>Robust filtering – providing the data and views you want instantly</li><li>Dynamic reporting / visualization including OWASP Top 10</li><li>Frontline Security GPA® trending that offers a dynamic view of your security posture</li><li>Ability to compare Frontline VM and WAS Asset Ratings automatically, with no manual intervention required</li></ul>","shortDescription":"Cloud platform continues to provide organizations with a robust, yet easy to deploy security solutions that can be trusted to deliver unparalleled results.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":3,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Frontline.Cloud","keywords":"","description":"As the creators of the original SaaS security platform – well before cloud security services became all the rage, and long before competitive companies saw the light – Digital Defense continues to set the standard for the delivery of SaaS solutions and service","og:title":"Frontline.Cloud","og:description":"As the creators of the original SaaS security platform – well before cloud security services became all the rage, and long before competitive companies saw the light – Digital Defense continues to set the standard for the delivery of SaaS solutions and service","og:image":"https://old.roi4cio.com/fileadmin/user_upload/digital-defense.png"},"eventUrl":"","translationId":4469,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":79,"title":"VM - Vulnerability management","alias":"vm-vulnerability-management","description":"Vulnerability management is the "cyclical practice of identifying, classifying, prioritizing, remediating and mitigating" software vulnerabilities. Vulnerability management is integral to computer security and network security, and must not be confused with a Vulnerability assessment.\r\nVulnerability management is an ongoing process that includes proactive asset discovery, continuous monitoring, mitigation, remediation and defense tactics to protect your organization's modern IT attack surface from Cyber Exposure.\r\nVulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer system in search of known vulnerabilities, such as open ports, insecure software configurations, and susceptibility to malware infections. They may also be identified by consulting public sources, such as NVD, or subscribing to a commercial vulnerability alerting services. Unknown vulnerabilities, such as a zero-day, may be found with fuzz testing, which can identify certain kinds of vulnerabilities, such as a buffer overflow with relevant test cases. Such analysis can be facilitated by test automation. In addition, antivirus software capable of heuristic analysis may discover undocumented malware if it finds software behaving suspiciously (such as attempting to overwrite a system file).\r\nCorrecting vulnerabilities may variously involve the installation of a patch, a change in network security policy, reconfiguration of software, or educating users about social engineering.\r\nNetwork vulnerabilities represent security gaps that could be abused by attackers to damage network assets, trigger a denial of service, and/or steal potentially sensitive information. Attackers are constantly looking for new vulnerabilities to exploit — and taking advantage of old vulnerabilities that may have gone unpatched.\r\nHaving a vulnerability management framework in place that regularly checks for new vulnerabilities is crucial for preventing cybersecurity breaches. Without a vulnerability testing and patch management system, old security gaps may be left on the network for extended periods of time. This gives attackers more of an opportunity to exploit vulnerabilities and carry out their attacks.\r\nOne statistic that highlights how crucial vulnerability management was featured in an Infosecurity Magazine article. According to survey data cited in the article, of the organizations that “suffered a breach, almost 60% were due to an unpatched vulnerability.” In other words, nearly 60% of the data breaches suffered by survey respondents could have been easily prevented simply by having a vulnerability management plan that would apply critical patches before attackers leveraged the vulnerability.","materialsDescription":" <span style=\"font-weight: bold;\">What is vulnerability management?</span>\r\nVulnerability management is a pro-active approach to managing network security by reducing the likelihood that flaws in code or design compromise the security of an endpoint or network.\r\n<span style=\"font-weight: bold;\">What processes does vulnerability management include?</span>\r\nVulnerability management processes include:\r\n<ul><li><span style=\"font-style: italic;\">Checking for vulnerabilities:</span> This process should include regular network scanning, firewall logging, penetration testing or use of an automated tool like a vulnerability scanner.</li><li><span style=\"font-style: italic;\">Identifying vulnerabilities:</span> This involves analyzing network scans and pen test results, firewall logs or vulnerability scan results to find anomalies that suggest a malware attack or other malicious event has taken advantage of a security vulnerability, or could possibly do so.</li><li><span style=\"font-style: italic;\">Verifying vulnerabilities:</span> This process includes ascertaining whether the identified vulnerabilities could actually be exploited on servers, applications, networks or other systems. This also includes classifying the severity of a vulnerability and the level of risk it presents to the organization.</li><li><span style=\"font-style: italic;\">Mitigating vulnerabilities:</span> This is the process of figuring out how to prevent vulnerabilities from being exploited before a patch is available, or in the event that there is no patch. It can involve taking the affected part of the system off-line (if it's non-critical), or various other workarounds.</li><li><span style=\"font-style: italic;\">Patching vulnerabilities:</span> This is the process of getting patches -- usually from the vendors of the affected software or hardware -- and applying them to all the affected areas in a timely way. This is sometimes an automated process, done with patch management tools. This step also includes patch testing.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VM_-_Vulnerability_management1.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":457,"title":"DDoS Protection","alias":"ddos-protection","description":" A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks. ","materialsDescription":" <span style=\"font-weight: bold;\">What are the Different Types of DDoS Attacks?</span>\r\nDistributed Denial of Service attacks vary significantly, and there are thousands of different ways an attack can be carried out (attack vectors), but an attack vector will generally fall into one of three broad categories:\r\n<span style=\"font-weight: bold;\">Volumetric Attacks:</span>\r\nVolumetric attacks attempt to consume the bandwidth either within the target network/service or between the target network/service and the rest of the Internet. These attacks are simply about causing congestion.\r\n<span style=\"font-weight: bold;\">TCP State-Exhaustion Attacks:</span>\r\nTCP State-Exhaustion attacks attempt to consume the connection state tables which are present in many infrastructure components such as load-balancers, firewalls and the application servers themselves. Even high capacity devices capable of maintaining state on millions of connections can be taken down by these attacks.\r\n<span style=\"font-weight: bold;\">Application Layer Attacks:</span>\r\nApplication Layer attacks target some aspect of an application or service at Layer-7. These are the deadliest kind of attacks as they can be very effective with as few as one attacking machine generating a low traffic rate (this makes these attacks very difficult to proactively detect and mitigate). Application layer attacks have come to prevalence over the past three or four years and simple application layer flood attacks (HTTP GET flood etc.) have been some of the most common denials of service attacks seen in the wild.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":489,"title":"Network Security Policy Management","alias":"network-security-policy-management","description":" <span style=\"font-weight: bold; \">Network security policy management </span>streamlines security policy design and enforcement. It applies rules and best practices to manage firewalls and other devices more effectively, efficiently, and consistently. Administrators need network security management solutions to get a high level of visibility into network behavior, automate device configuration, enforce global policies, view firewall traffic, generate reports, and provide a single management interface for physical and virtual systems.\r\nSecurity policies govern the integrity and safety of the network. They provide rules for accessing the network, connecting to the Internet, adding or modifying devices or services, and more. However, rules are only effective when they are implemented. Network security management policy helps organizations stay compliant and secure by ensuring that their policies are simplified, consistent, and enforced. It helps reduce manual tasks and human errors by simplifying administration with security policy and workflow tools through a centralized management interface.\r\nNetwork security management can reduce risk across the network and protect data by leveraging the information on threats, network vulnerabilities and their criticality, evaluating potential options to block an attack, and providing intelligence for decision support. Policy administration is improved by unifying common policy tasks within a single interface, automating policy change workflow, including compliance audits and the management of multiple firewall vendors. This simplified and automated security policy management enables IT teams to save time, avoid manual errors, and reduce risk. \r\nThere are the whole network security policy management market with different tools and solutions available. Businesses use them to automate administrative tasks, which can improve accuracy and save time. The solutions can make management processes less tedious and time consuming, and can free up personnel for higher-value projects. These solutions also help IT teams avoid misconfigurations that can cause vulnerabilities in their networks. And if problems arise, network security policy management solutions can ease troubleshooting and remediation. ","materialsDescription":"<h1 class=\"align-center\">Benefits of network security policy management</h1>\r\n<span style=\"font-weight: bold;\">Streamline security policy design and enforcement</span>\r\nA network security policy management solution can help organizations achieve:\r\n<ul><li><span style=\"font-weight: bold;\">Better security.</span> Network security policy management streamlines security policy design and enforcement.</li><li><span style=\"font-weight: bold;\">Ease of use.</span> Network security policy management tools orchestrate policy design and implementation.</li><li><span style=\"font-weight: bold;\">Consistency. </span>Solutions provide templates, model policies, and configurations.</li><li><span style=\"font-weight: bold;\">Time savings.</span> Deployments are faster, and automation helps empower staff to focus on other business priorities.</li><li><span style=\"font-weight: bold;\">Lower costs.</span> Cloud-based solutions scale to thousands of devices, requiring fewer resources and allowing for centralized management.</li></ul>\r\n<span style=\"font-weight: bold;\">Apply best practices to meet challenges in firewall management</span>\r\nOver time, firewalls collect more and more configuration rules and objects. Network security policy management solutions can help combat this bloat and improve security by addressing:\r\n<ul><li><span style=\"font-weight: bold;\">Object auditing.</span> Administrators need to merge and reduce duplicate objects, determine which unused objects should be deleted, and identify inconsistent objects. Network security policy management tools help them achieve a cleaner, more consistent configuration that is less of a nuisance to manage and less vulnerable to attacks.</li><li><span style=\"font-weight: bold;\">Policy inconsistencies.</span> The network security policy management tools locate unused or shadow policies and assist IT to fix possible problems.</li><li><span style=\"font-weight: bold;\">Version control and upgrades.</span> Network security policy management solutions ease these transitions with filters that simplify and automate processes and ensure high availability.</li></ul>\r\n<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Security_Policy_Management.png"},{"id":824,"title":"ATP - Advanced Threat Protection","alias":"atp-advanced-threat-protection","description":" Advanced threat protection (ATP) refers to a category of security solutions that defend against sophisticated malware or hacking-based attacks targeting sensitive data. Advanced threat protection solutions can be available as software or as managed services. ATP solutions can differ in approaches and components, but most include some combination of endpoint agents, network devices, email gateways, malware protection systems, and a centralized management console to correlate alerts and manage defenses.\r\nThe primary benefit offered by advanced threat protection software is the ability to prevent, detect, and respond to new and sophisticated attacks that are designed to circumvent traditional security solutions such as antivirus, firewalls, and IPS/IDS. Attacks continue to become increasingly targeted, stealthy, and persistent, and ATP solutions take a proactive approach to security by identifying and eliminating advanced threats before data is compromised.\r\nAdvanced threat protection services build on this benefit by providing access to a global community of security professionals dedicated to monitoring, tracking, and sharing information about emerging and identified threats. ATP service providers typically have access to global threat information sharing networks, augmenting their own threat intelligence and analysis with information from third parties. When a new, advanced threat is detected, ATP service providers can update their defenses to ensure protection keeps up. This global community effort plays a substantial role in maintaining the security of enterprises around the world.\r\nEnterprises that implement advanced threat protection are better able to detect threats early and more quickly formulate a response to minimize damage and recover should an attack occur. A good security provider will focus on the lifecycle of an attack and manage threats in real-time. ATP providers notify the enterprise of attacks that have occurred, the severity of the attack, and the response that was initiated to stop the threat in its tracks or minimize data loss. Whether managed in-house or provided as a service, advanced threat protection solutions secure critical data and systems, no matter where the attack originates or how major the attack or potential attack is perceived.","materialsDescription":" <span style=\"font-weight: bold;\">How Advanced Threat Protection Works?</span>\r\nThere are three primary goals of advanced threat protection: early detection (detecting potential threats before they have the opportunity to access critical data or breach systems), adequate protection (the ability to defend against detected threats swiftly), and response (the ability to mitigate threats and respond to security incidents). To achieve these goals, advanced threat protection services and solutions must offer several components and functions for comprehensive ATP:\r\n<ul><li><span style=\"font-weight: bold;\">Real-time visibility</span> – Without continuous monitoring and real-time visibility, threats are often detected too late. When damage is already done, response can be tremendously costly in terms of both resource utilization and reputation damage.</li><li><span style=\"font-weight: bold;\">Context</span> – For true security effectiveness, threat alerts must contain context to allow security teams to effectively prioritize threats and organize response.</li><li><span style=\"font-weight: bold;\">Data awareness</span> – It’s impossible to determine threats truly capable of causing harm without first having a deep understanding of enterprise data, its sensitivity, value, and other factors that contribute to the formulation of an appropriate response.</li></ul>\r\nWhen a threat is detected, further analysis may be required. Security services offering ATP typically handle threat analysis, enabling enterprises to conduct business as usual while continuous monitoring, threat analysis, and response occurs behind the scenes. Threats are typically prioritized by potential damage and the classification or sensitivity of the data at risk. Advanced threat protection should address three key areas:\r\n<ul><li>Halting attacks in progress or mitigating threats before they breach systems</li><li>Disrupting activity in progress or countering actions that have already occurred as a result of a breach</li><li>Interrupting the lifecycle of the attack to ensure that the threat is unable to progress or proceed</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon-ATP.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},"gfi-lan-guard":{"id":4340,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/GFI_Software.jpg","logo":true,"scheme":false,"title":"GFI LAN Guard","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"gfi-lan-guard","companyTitle":"GFI Software","companyTypes":["supplier","vendor"],"companyId":6727,"companyAlias":"gfi-software","description":"<p class=\"align-center\"><span style=\"font-weight: bold; \">Patch management: Fix vulnerabilities before an attack</span></p>\r\nPatch management is vital to your business. Network security breaches are most commonly caused by missing network patches. GFI LanGuard scans and detects network vulnerabilities before they are exposed, reducing the time required to patch machines on your network. GFI LanGuard patches Microsoft ®, Mac® OS X®, Linux® and more than 60 third-party applications, and deploys both security and non-security patches.\r\n<p class=\"align-center\"> <span style=\"font-weight: bold; \">Network auditing: Analyze your network centrally</span></p>\r\n<p class=\"align-left\">GFI LanGuard provides a detailed analysis of the state of your network. This includes applications or default configurations posing a security risk. GFI LanGuard also gives you a complete picture of installed applications; hardware on your network; mobile devices that connect to the Exchange servers; the state of security applications (antivirus, anti-spam, firewalls, etc.); open ports; and any existing shares and services running on your machines.</p>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Vulnerability assessment: Discover security threats early</span></p>\r\n<p class=\"align-left\">More than 60,000 vulnerability assessments are carried out across your networks, including virtual environments, mobile and network devices. GFI LanGuard scans your operating systems, virtual environments and installed applications through vulnerability check databases such as OVAL and SANS Top 20. GFI LanGuard enables you to analyze the state of your network security, identify risks and address how to take action before it is compromised.</p>\r\n<ul><li><span style=\"font-weight: bold;\">Patch management across multiple operating systems.</span> GFI LanGuard is compatible with Microsoft®, Mac OS X® and Linux®, operating systems, as well as many third-party applications. Scan your network automatically or on demand. Auto-download missing patches or roll-back patches.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integrates with third-party security app.</span> GFI LanGuard integrates with more than 4,000 critical security applications, including: antivirus, anti-spyware, firewall, anti-phishing, backup client, VPN client, URL filtering, patch management, web browser, instant messaging, peer-to-peer, disk encryption, data loss prevention and device access control. It provides status reports and lists of instant messaging or peer-to-peer applications installed on your network. It also rectifies any issues that require attention such as triggering antivirus or anti-spyware updates.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Know what’s happening on your network.</span> GFI LanGuard's network auditing gives you a comprehensive view of your network – including connected USB devices smartphones and tablets, as well as installed software, open shares, open ports, weak passwords and any hardware information. Secure your network by closing ports, deleting obsolete users or disabling wireless access points.<span style=\"font-weight: bold;\"></span></li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Network and software auditing. Security audits.</span> The interactive dashboard provides a summary of the current network security status and a history of all relevant changes in the network over time. Drill down through information, from network-wide security sensors to individual security scan results.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Manage reporting.</span> Reports can be exported to popular formats like PDF, HTML, XLS, XLSX, RTF and CSV, and can be scheduled and sent by email. They can also be used as a template to create new custom reports and are fully re-brandable.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Run agent-less or agent-based modes.</span> GFI LanGuard can be configured to run in agent-less or agent-based mode. Agent technology enables automated network security audits and distributes the scanning load across client machines.</li></ul>\r\n<p class=\"align-left\"> </p>","shortDescription":"Close the door on patch vulnerabilities. Keep your network and applications safe for minutes a day.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":10,"sellingCount":2,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"GFI LAN Guard","keywords":"","description":"<p class=\"align-center\"><span style=\"font-weight: bold; \">Patch management: Fix vulnerabilities before an attack</span></p>\r\nPatch management is vital to your business. Network security breaches are most commonly caused by missing network patches. GFI LanGuard","og:title":"GFI LAN Guard","og:description":"<p class=\"align-center\"><span style=\"font-weight: bold; \">Patch management: Fix vulnerabilities before an attack</span></p>\r\nPatch management is vital to your business. Network security breaches are most commonly caused by missing network patches. GFI LanGuard","og:image":"https://old.roi4cio.com/fileadmin/user_upload/GFI_Software.jpg"},"eventUrl":"","translationId":4341,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":79,"title":"VM - Vulnerability management","alias":"vm-vulnerability-management","description":"Vulnerability management is the "cyclical practice of identifying, classifying, prioritizing, remediating and mitigating" software vulnerabilities. Vulnerability management is integral to computer security and network security, and must not be confused with a Vulnerability assessment.\r\nVulnerability management is an ongoing process that includes proactive asset discovery, continuous monitoring, mitigation, remediation and defense tactics to protect your organization's modern IT attack surface from Cyber Exposure.\r\nVulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer system in search of known vulnerabilities, such as open ports, insecure software configurations, and susceptibility to malware infections. They may also be identified by consulting public sources, such as NVD, or subscribing to a commercial vulnerability alerting services. Unknown vulnerabilities, such as a zero-day, may be found with fuzz testing, which can identify certain kinds of vulnerabilities, such as a buffer overflow with relevant test cases. Such analysis can be facilitated by test automation. In addition, antivirus software capable of heuristic analysis may discover undocumented malware if it finds software behaving suspiciously (such as attempting to overwrite a system file).\r\nCorrecting vulnerabilities may variously involve the installation of a patch, a change in network security policy, reconfiguration of software, or educating users about social engineering.\r\nNetwork vulnerabilities represent security gaps that could be abused by attackers to damage network assets, trigger a denial of service, and/or steal potentially sensitive information. Attackers are constantly looking for new vulnerabilities to exploit — and taking advantage of old vulnerabilities that may have gone unpatched.\r\nHaving a vulnerability management framework in place that regularly checks for new vulnerabilities is crucial for preventing cybersecurity breaches. Without a vulnerability testing and patch management system, old security gaps may be left on the network for extended periods of time. This gives attackers more of an opportunity to exploit vulnerabilities and carry out their attacks.\r\nOne statistic that highlights how crucial vulnerability management was featured in an Infosecurity Magazine article. According to survey data cited in the article, of the organizations that “suffered a breach, almost 60% were due to an unpatched vulnerability.” In other words, nearly 60% of the data breaches suffered by survey respondents could have been easily prevented simply by having a vulnerability management plan that would apply critical patches before attackers leveraged the vulnerability.","materialsDescription":" <span style=\"font-weight: bold;\">What is vulnerability management?</span>\r\nVulnerability management is a pro-active approach to managing network security by reducing the likelihood that flaws in code or design compromise the security of an endpoint or network.\r\n<span style=\"font-weight: bold;\">What processes does vulnerability management include?</span>\r\nVulnerability management processes include:\r\n<ul><li><span style=\"font-style: italic;\">Checking for vulnerabilities:</span> This process should include regular network scanning, firewall logging, penetration testing or use of an automated tool like a vulnerability scanner.</li><li><span style=\"font-style: italic;\">Identifying vulnerabilities:</span> This involves analyzing network scans and pen test results, firewall logs or vulnerability scan results to find anomalies that suggest a malware attack or other malicious event has taken advantage of a security vulnerability, or could possibly do so.</li><li><span style=\"font-style: italic;\">Verifying vulnerabilities:</span> This process includes ascertaining whether the identified vulnerabilities could actually be exploited on servers, applications, networks or other systems. This also includes classifying the severity of a vulnerability and the level of risk it presents to the organization.</li><li><span style=\"font-style: italic;\">Mitigating vulnerabilities:</span> This is the process of figuring out how to prevent vulnerabilities from being exploited before a patch is available, or in the event that there is no patch. It can involve taking the affected part of the system off-line (if it's non-critical), or various other workarounds.</li><li><span style=\"font-style: italic;\">Patching vulnerabilities:</span> This is the process of getting patches -- usually from the vendors of the affected software or hardware -- and applying them to all the affected areas in a timely way. This is sometimes an automated process, done with patch management tools. This step also includes patch testing.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VM_-_Vulnerability_management1.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":335,"title":"Secure Content and Threat Management","alias":"secure-content-and-threat-management","description":" Secure content management is the set of processes and technologies that supports the collection, managing, and publishing of information. It involves processes for protecting the company from viruses, spam and undesirable web pages to not only provide enhanced security but also address productivity and potential human resources issues. Even after controlling the number of avenues through which information can enter, after the implementation of perimeter security, the cyber attackers still find ways to piggyback across valid communication channels.\r\nSecure Content Management technologies have evolved rapidly over the last few years due to the complexity of threats associated with email and web gateways. Businesses are increasingly focusing on eliminating this threat by adopting the 2 gateways, rather than the purely productive driven anti-spam and web-filtering techniques.\r\nSecure Content Management solutions are gaining traction due to the increased need for handling voluminous content that is getting generated in organizations on a daily basis. The rising adoption of digitalization, Bring Your Own Device (BYOD), growth of e-commerce, and social media has increased the amount of content generated in inter-organizations and intra-organizations.\r\nSCM solutions offer clients with the benefit of paper-free workflow, accurate searching of the required information, and better information sharing, and also addresses required industry standards and regulations. SCM solutions enable clients with handling essential enterprise information and save time and cost associated with searching for the required business data for making key business decisions.\r\nThe solutions offered for Secure Content Management includes:\r\n<span style=\"font-style: italic;\">Anti-Spam:</span> Spam Filters are introduced for spam e-mail which not only consumes time and money but also network and mail server resources.\r\n<span style=\"font-style: italic;\">Web Surfing:</span> Limiting the websites that end-users are allowed to access will increase work productivity, ensure maximum bandwidth availability and lower the liability issues.\r\n<span style=\"font-style: italic;\">Instant Messaging:</span> Convenient and growing, but difficult to handle, this technology serves as a back door for viruses and worms to enter your network. It also provides a way for sensitive information to be shared over the network.<br /><br /><br />","materialsDescription":" <span style=\"font-weight: bold;\">What are the reasons for adopting secure content management?</span>\r\nFollowing are the reasons for creating the need for secure content management:\r\n<ul><li>Lost productivity</li><li>Introduction of malicious code</li><li>Potential liability</li><li>Wasted network resources</li><li>Control over intellectual property</li><li>Regulatory Compliance</li></ul>\r\nBecause of these reasons, there is rising concern over the security of the organization and creating the need for the adoption of Secure content Management from the clients.\r\n<span style=\"font-weight: bold;\">Strategy Adopted for implementing Secure Content Management</span>\r\nThe strategy applied for Secure Content Management includes the 4 step process including\r\n<span style=\"font-weight: bold;\">Discover</span> involves Identifying and Defining the process of Data Management and collecting the data created.\r\n<span style=\"font-weight: bold;\">Classify</span> is the process of identifying critical data and segregating between secure information and unstructured information.\r\n<span style=\"font-weight: bold;\">Control</span> involves the process of data cleansing, Encrypting the digital content and Securing critical information.\r\n<span style=\"font-weight: bold;\">Govern</span> is the process of creating Service Level Agreements for usage rules, retention rules.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Secure_Content_and_Threat_Management.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":485,"title":"Web security","alias":"web-security","description":" Web security basically means protecting a website or web application by detecting, preventing and responding to cyber threats.\r\nWebsites and web applications are just as prone to security breaches as physical homes, stores, and government locations. Unfortunately, cybercrime happens every day, and great web security measures are needed to protect websites and web applications from becoming compromised.\r\nThat’s exactly what web security does – it is a system of protection measures and protocols that can protect your website or web application from being hacked or entered by unauthorized personnel. This integral division of Information Security is vital to the protection of websites, web applications, and web services. Anything that is applied over the Internet should have some form of web security to protect it.\r\nThere are a lot of factors that go into web security and web protection. Any website or application that is secure is surely backed by different types of checkpoints and techniques for keeping it safe.\r\nThere are a variety of security standards that must be followed at all times, and these standards are implemented and highlighted by the OWASP. Most experienced web developers from top cybersecurity companies will follow the standards of the OWASP as well as keep a close eye on the Web Hacking Incident Database to see when, how, and why different people are hacking different websites and services.\r\nEssential steps in protecting web apps from attacks include applying up-to-date encryption, setting proper authentication, continuously patching discovered vulnerabilities, avoiding data theft by having secure software development practices. The reality is that clever attackers may be competent enough to find flaws even in a fairly robust secured environment, and so a holistic security strategy is advised.\r\nThere are different types of technologies available for maintaining the best security standards. Some popular technical solutions for testing, building, and preventing threats include black and white box testing tools, fuzzing tools, WAF, security or vulnerability scanners, password cracking tools, and so on.","materialsDescription":" <span style=\"font-weight: bold; \">What is Malware?</span>\r\nThe name malware is short for ‘malicioussoftware’. Malware includes any software program that has been created to perform an unauthorised — and often harmful — action on a user’s device. Examples of malware include:\r\n<ul><li>Computer viruses</li><li>Word and Excel macro viruses</li><li>Boot sector viruses</li><li>Script viruses — including batch, Windows shell, Java and others</li><li>Keyloggers</li><li>Password stealers</li><li>Backdoor Trojan viruses</li><li>Other Trojan viruses</li><li>Crimeware</li><li>Spyware</li><li>Adware... and many other types of malicious software programs</li></ul>\r\n<span style=\"font-weight: bold; \">What is the difference between a computer virus and a worm?</span>\r\n<span style=\"font-weight: bold; \">Computer virus.</span> This is a type of malicious program that can replicate itself — so that it can spread from file to file on a computer, and can also spread from one computer to another. Computer viruses are often programmed to perform damaging actions — such as corrupting or deleting data. The longer a virus remains undetected on your machine, the greater the number of infected files that may be on your computer.\r\n<span style=\"font-weight: bold; \">Worms.</span> Worms are generally considered to be a subset of computer viruses — but with some specific differences:\r\n<ul><li>A worm is a computer program that replicates, but does not infect other files.</li><li>The worm will install itself once on a computer — and then look for a way to spread to other computers.</li><li>Whereas a virus is a set of code that adds itself to existing files, a worm exists as a separate, standalone file.</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Trojan virus?</span>\r\nA Trojan is effectively a program that pretends to be legitimate software — but, when launched, it will perform a harmful action. Unlike computer viruses and worms, Trojans cannot spread by themselves. Typically, Trojans are installed secretly and they deliver their malicious payload without the user’s knowledge.\r\nCybercriminals use many different types of Trojans — and each has been designed to perform a specific malicious function. The most common are:\r\n<ul><li>Backdoor Trojans (these often include a keylogger)</li><li>Trojan Spies</li><li>Password stealing Trojans</li><li>Trojan Proxies — that convert your computer into a spam distribution machine</li></ul>\r\n<span style=\"font-weight: bold; \">Why are Trojan viruses called Trojans?</span>\r\nIn Greek mythology — during the Trojan war — the Greeks used subterfuge to enter the city of Troy. The Greeks constructed a massive wooden horse — and, unaware that the horse contained Greek soldiers, the Trojans pulled the horse into the city. At night, the Greek soldiers escaped from the horse and opened the city gates — for the Greek army to enter Troy.\r\nToday, Trojan viruses use subterfuge to enter unsuspecting users’ computers and devices.\r\n<span style=\"font-weight: bold; \">What is a Keylogger?</span>\r\nA keylogger is a program that can record what you type on your computer keyboard. Criminals use keyloggers to obtain confidential data — such as login details, passwords, credit card numbers, PINs and other items. Backdoor Trojans typically include an integrated keylogger.\r\n<span style=\"font-weight: bold; \">What is Phishing?</span>\r\nPhishing is a very specific type of cybercrime that is designed to trick you into disclosing valuable information — such as details about your bank account or credit cards. Often, cybercriminals will create a fake website that looks just like a legitimate site — such as a bank’s official website. The cybercriminal will try to trick you into visiting their fake site — typically by sending you an email that contains a hyperlink to the fake site. When you visit the fake website, it will generally ask you to type in confidential data — such as your login, password or PIN.\r\n<span style=\"font-weight: bold; \">What is Spyware?</span>\r\nSpyware is software that is designed to collect your data and send it to a third party — without your knowledge or consent. Spyware programs will often:\r\n<ul><li>Monitor the keys you press on your keyboard — using a keylogger</li><li>Collect confidential information — such as your passwords, credit card numbers, PIN numbers and more</li><li>Gather — or ‘harvest’ — email addresses from your computer</li><li>Track your Internet browsing habits</li></ul>\r\n<span style=\"font-weight: bold; \">What is a Rootkit?</span>\r\nRootkits are programs that hackers use in order to evade detection while trying to gain unauthorised access to a computer. Rootkits have been used increasingly as a form of stealth to hide Trojan virus activity. When installed on a computer, rootkits are invisible to the user and also take steps to avoid being detected by security software.\r\nThe fact that many people log into their computers with administrator rights — rather than creating a separate account with restricted access — makes it easier for cybercriminals to install a rootkit.\r\n<span style=\"font-weight: bold; \">What is a Botnet?</span>\r\nA botnet is a network of computers controlled by cybercriminals using a Trojan virus or other malicious program.\r\n<span style=\"font-weight: bold;\">What is a DDoS attack?</span>\r\nA Distributed-Denial-of-Service (DDoS) attack is similar to a DoS. However, a DDoS attack is conducted using multiple machines. Usually, for a DDoS attack, the hacker will use one security compromised computer as the ‘master’ machine that co-ordinates the attack by other ‘zombie machines’. Typically, the cybercriminal will compromise the security on the master and all of the zombie machines, by exploiting a vulnerability in an application on each computer — to install a Trojan or other piece of malicious code.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/security-web-application-security.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":838,"title":"Endpoint Detection and Response","alias":"endpoint-detection-and-response","description":"Endpoint Detection and Response (EDR) is a cybersecurity technology that addresses the need for continuous monitoring and response to advanced threats. It is a subset of endpoint security technology and a critical piece of an optimal security posture. EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to automatically stop threats in the pre-execution phase on an endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to help security analysts discover, investigate and respond to very advanced threats and broader attack campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.\r\nWhile small and mid-market organizations are increasingly turning to EDR technology for more advanced endpoint protection, many lack the resources to maximize the benefits of the technology. Utilizing advanced EDR features such as forensic analysis, behavioral monitoring and artificial intelligence (AI) is labor and resource intensive, requiring the attention of dedicated security professionals.\r\nA managed endpoint security service combines the latest technology, an around-the-clock team of certified CSOC experts and up-to-the-minute industry intelligence for a cost-effective monthly subscription. Managed services can help reduce the day-to-day burden of monitoring and responding to alerts, enhance security orchestration and automation (SOAR) and improve threat hunting and incident response.","materialsDescription":"<span style=\"font-weight: bold; \">What is Endpoint detection and response (EDR)?</span>\r\nEndpoint detection and response is an emerging technology that addresses the need for continuous monitoring and response to advanced threats. One could even make the argument that endpoint detection and response is a form of advanced threat protection.\r\n<span style=\"font-weight: bold;\">What are the Key Aspects of EDR Security?</span>\r\nAccording to Gartner, effective EDR must include the following capabilities:\r\n<ul><li>Incident data search and investigation</li><li>Alert triage or suspicious activity validation</li><li>Suspicious activity detection</li><li>Threat hunting or data exploration</li><li>Stopping malicious activity</li></ul>\r\n<span style=\"font-weight: bold;\">What to look for in an EDR Solution?</span>\r\nUnderstanding the key aspects of EDR and why they are important will help you better discern what to look for in a solution. It’s important to find EDR software that can provide the highest level of protection while requiring the least amount of effort and investment — adding value to your security team without draining resources. Here are the six key aspects of EDR you should look for:\r\n<span style=\"font-weight: bold;\">1. Visibility:</span> Real-time visibility across all your endpoints allows you to view adversary activities, even as they attempt to breach your environment and stop them immediately.\r\n<span style=\"font-weight: bold;\">2. Threat Database:</span> Effective EDR requires massive amounts of telemetry collected from endpoints and enriched with context so it can be mined for signs of attack with a variety of analytic techniques.\r\n<span style=\"font-weight: bold;\">3. Behavioral Protection:</span> Relying solely on signature-based methods or indicators of compromise (IOCs) lead to the “silent failure” that allows data breaches to occur. Effective endpoint detection and response requires behavioral approaches that search for indicators of attack (IOAs), so you are alerted of suspicious activities before a compromise can occur.\r\n<span style=\"font-weight: bold;\">4. Insight and Intelligence:</span> An endpoint detection and response solution that integrates threat intelligence can provide context, including details on the attributed adversary that is attacking you or other information about the attack.\r\n<span style=\"font-weight: bold;\">5. Fast Response:</span> EDR that enables a fast and accurate response to incidents can stop an attack before it becomes a breach and allow your organization to get back to business quickly.\r\n<span style=\"font-weight: bold;\">6. Cloud-based Solution:</span> Having a cloud-based endpoint detection and response solution is the only way to ensure zero impact on endpoints while making sure capabilities such as search, analysis and investigation can be done accurately and in real time.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/hgghghg.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}},"aliases":{"1":["6scan","aegidy-rsc-suite","amt-banking-malware-detector","avocado-systems-platform","barracuda-sentinel","barracuda-web-security-gateway","bufferzone","claroty-continuous-threat-detection","platforma-claroty","core-security","coronet-securecloud","cspi-aria-software-defined-security","cyberx-platform","darktrace-antigena","dragos-industrial-cybersecurity-platofrm","dragos-worldview","fireeye-security-suite","forcepoint-web-security","frontlinecloud","gfi-lan-guard"]},"links":{"first":"http://apis.roi4cio.com/api/products?page=1","last":"http://apis.roi4cio.com/api/products?page=3","prev":null,"next":"http://apis.roi4cio.com/api/products?page=2"},"meta":{"current_page":1,"from":1,"last_page":3,"path":"http://apis.roi4cio.com/api/products","per_page":20,"to":20,"total":59},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{"101":{"id":101,"title":"ICS/SCADA Cyber Security"}},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}