Аналитика поведения пользователей и объектов

Cистемы анализа поведения пользователей и сущностей (User and Entity Behavior Analytics - UEBA) — решения, направленные на поиск и выявление аномалий в поведении пользователей и различных систем.
Класс решений поведенческого анализа появился в связи с тем, что для обеспечения информационной безопасности в компаниях внедряют множество различных систем сбора данных. При этом сотрудники не всегда способны просматривать все полученные сведения и вовремя реагировать на потенциальные инциденты. Составляя профили, системы UEBA повышают эффективность и обеспечивают своевременное реагирование на возможные утечки данных.
Системы UEBA крайне близки к решениям поведенческого анализа пользователей (UBA) и, по сути, являются их продолжением. Отличием этих систем друг от друга служит наличие в UEBA профилирования и анализа сущностей, под которыми понимаются приложения, системы хранения данных, сетевой трафик, устройства, серверы и данные. Помимо этого, системы UEBA позволяют решать проблемы не только внутренних утечек конфиденциальных данных, но и внешних целенаправленных на систему атак. В виду расширения объектов анализа, в системе создаются профили не только пользователей, но и различных сущностей, что позволяет своевременно реагировать на скомпрометированные активы и объекты инфраструктуры. Кроме того, системы UBA обычно реализованы в виде отдельных решений под определенные задачи. Они могут самостоятельно функционировать без интеграции с другими решениями, в то время как UEBA поставляются в рамках платформы и могут использовать данные других систем.
Наличие анализа поведения сущностей расширяет возможности системы и отражает тот факт, что сетевые устройства могут в равной мере использоваться в сетевой атаке, и составление модели их поведения может быть полезным при обнаружении активности атаки.
Сравнение продуктов в категории Аналитика поведения пользователей и объектов
Hadoop |
Облачные среды |
Локальное программное обеспечение |
Продвинутая аналитика |
Реагирование на инциденты |
Машинное обучение |
Глубокое обучение |
Видимость действий пользователей через отчеты и инфопанели |
Оповещения в реальном времени |
Инструментарий криминалистической экспертизы |
Настраиваемое уведомление |
Ролевой доступ к отчетам |
Отчеты об угрозах |
Модель лицензирования, основанная на сущностях |
Интеграция с технологиями |
Сбор логов из SaaS-приложений |
Логи и пользовательский контекст данных из Active Directory |
Логи событий безопасности из конечной точки |
Сетевой поток/Пакетные данные |
Неструктурированные контекстные данные |
Сбор логов из ОС, приложений, серисов |
Метаданные электронных сообщений |
Статистические модели |
Моделирование на основе правил и подписей |
Поимка базовой моделью пользователей с аномальным поведением на старте |
Адаптация системы к динамическим изменениям пользователей |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|